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Abstract. Due to the exploratory nature of DNNs, DL specialists often need to modify the input dataset, change
a filter when preprocessing input data, or fine-tune the models’ hyperparameters, while analyzing the evolution of the
training. However, the specialist may lose track of what hyperparameter configurations have been used and tuned if these
data are not properly registered. Thus, these configurations must be tracked and made available for the user’s analysis.
One way of doing this is to use provenance data derivation traces to help the hyperparameter’s fine-tuning by providing
a global data picture with clear dependencies. Current provenance solutions present provenance data disconnected
from W3C PROV recommendation, which is difficult to reproduce and compare to other provenance data. To help
with these challenges, we present Keras-Prov, an extension to the Keras deep learning library to collect provenance
data compliant with PROV. To show the flexibility of Keras-Prov, we extend a previous Keras-Prov demonstration
paper with larger experiments using GPUs with the help of Google Colab. Despite the challenges of running a DBMS
with virtual environments, DL analysis with provenance has added trust and persistence in databases and PROV
serializations. Experiments show Keras-Prov data analysis, during training execution, to support hyperparameter fine-
tuning decisions, favoring the comparison, and reproducibility of such DL experiments. Keras-Prov is open source and
can be downloaded from https://github.com/dbpina/keras-prov.

Categories and Subject Descriptors: H.2 [Database Management]: Miscellaneous; H.3 [Information Storage and
Retrieval]: Miscellaneous; I.7 [Document and Text Processing]: Miscellaneous

Keywords: Deep Learning, Metadata, Provenance

1. INTRODUCTION

Over the last decade, Machine Learning (ML) has gained importance both in academia and industry
[Iqbal et al. 2021; Beeharry and Fokone 2022]. Among several existing ML techniques [Russell and
Norvig 2020], Deep Learning (DL) [Goodfellow et al. 2016a] has been one of the most prominent. The
outcomes of Deep Neural Networks (DNN), trained from an input dataset, are quite sensitive to the
hyperparameter configuration used for training [Montavon et al. 2012]. It is necessary to fine-tune
such hyperparameters, in addition to the automatic tuning. DL dataflow visualization tools such as
TensorBoard1 use logs to represent hyperparameters and metrics. Comparing different runs requires
preprocessing these logs, as well as computing derivation paths for deeper analyses. In addition, there
is heterogeneity when representing log data in CSV tables, which limits the analytical power of DL
visualization tools. To adjust the parameters during model training, it is necessary to have access to
the “cause-effect” data, such as which filter was applied to the current hyperparameter configuration

1TensorBoard - https://www.tensorflow.org/tensorboard
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model, when the value of dropout was below a specific threshold. When analyzing the data, the user
can decide to accept the trained model or select a new hyperparameter configuration, and from that
point re-train the model. A data derivation path from input data to the final DL model can help in
this “cause-effect” investigation [Lourenço et al. 2020].

Provenance data [Freire et al. 2008; Moreau and Groth 2013] represent derivation paths, metadata,
and relevant parameters from the execution of experiments involving multiple data transformations.
Provenance data assist in reproducibility and experiment data analysis. Provenance data have been
successfully used to support monitoring, analysis, and reproduction steps in multi-domain experiments,
such as Bioinformatics [Almeida et al. 2019], Healthcare [Fairweather et al. 2021], Visualization [Fekete
et al. 2020], etc.

In ML experiments, provenance data allow for associating configurations and input datasets to the
derivation path that leads to an ML model. The life cycle of an ML experiment can be thought
of as evaluating several data-centric workflows, each having a different configuration. Generating
provenance of ML experiments has been gaining importance [Schelter et al. 2017; Agrawal et al.
2019; Gharibi et al. 2019; Ormenisan et al. 2020]. These approaches propose a framework that
encompasses ML solutions to add provenance data capture during ML workflow executions. However,
these approaches have proprietary representations for the provenance data, which makes it difficult to
interpret and, particularly, to compare ML experiments from different tools. These comparisons can
be improved when using a standard data representation such as W3C PROV [Moreau and Groth 2013].
The W3C PROV recommendation defines a data model, serializations, and definitions to support the
interchange of provenance information2. PROV represents different types of provenance data in a
domain-agnostic way.

Recently, the W3C PROV has been specialized to represent the provenance of the ML life cycle
in scientific experiments [Souza et al. 2019; Huynh et al. 2019]. This representation allows for a
broad view of data derivation from raw data selection to several data transformations even before
training the neural network. However, to have access to data from “inside” the training and validation
activities, the data capture must be coupled to the DNN solution, and the provenance data needs
further specialization. Therefore, domain-agnostic solutions to capture provenance data need ML
extensions. Such approaches are usually coupled to a specific programming language e.g., Python in
noWorkflow [Pimentel et al. 2017] or notation like in UML2PROV [Sáenz-Adán et al. 2022], which ends
up limiting their use in many DL tools. Provenance capture solutions not coupled to a programming
language like [McPhillips et al. 2015; Silva et al. 2020; Gehani and Tariq 2012] require an (often)
expensive process of instrumentation of the code or a significant time and effort to understand what
and how data was modeled to analyze it. Therefore, adding provenance data to DL training to be
compared with different configurations is still an open problem in provenance solutions for DL.

In a previous work [Pina et al. 2021] we have shown Keras-Prov as a way to provide automatic
provenance data capture at runtime in DL experiments, to support analyses. Keras-Prov identifies
the most common data transformations, such as training, testing, and adaptation, and allows the user
to extend this automatic provenance capture with new data. In DL experiments with Keras-Prov,
provenance data is associated with metadata to support human-guided analysis regarding hyperpa-
rameter settings or even training data. Evaluating the various hyperparameters requires the user to be
aware of the relationship between many types of metadata, such as the chosen hyperparameter values,
performance execution data, epochs monitoring, environment configuration, etc. To monitor, track
and analyze data during training execution (i.e. between epochs of a single model configuration), typ-
ical DL provenance data must be captured and made available at runtime. In this article, we extend
[Pina et al. 2021] to present Keras-Prov behavior in DL experiments running on GPUs. The evalu-
ation runs part of Keras-Prov components with Google Colab while the components responsible for
storing the provenance data run outside Colab. This work contributes to our previous Keras-Prov ex-

2https://www.w3.org/TR/prov-overview/
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periment [Pina et al. 2021] by showing how provenance services can be used in different environments,
like Google Colab notebook. We also evaluated the benefits of our provenance services in comparing
AlexNet and DenseNet experiments under Google Colab cloud executions. The remainder of this
article is structured as follows. Section 2 presents Keras-Prov provenance data representation and
describes its architecture components. Section 3 discusses how Keras-Prov was deployed with Colab.
Section 4 details the case studies and the experimental evaluation. Finally, Section 5 concludes.

2. KERAS-PROV IN A NUTSHELL

Keras-Prov [Pina et al. 2021] is a library that aims at capturing provenance data from DL experiments
automatically. Similar to previous solutions developed in our research group [Silva et al. 2018], the
representation of provenance data in Keras-Prov follows the W3C PROV recommendation. By fol-
lowing W3C-PROV, Keras-Prov fosters provenance data analysis, easing the comparison with results
generated from other DL libraries (in the case where the DL libraries can export provenance following
PROV). In addition to the advantages of provenance data to interpret, reproduce and add quality to
the DL data, the target user of Keras-Prov is the user who specifies the DL experiment, being respon-
sible for fine-tuning the hyperparameters and the network architecture. Thus, Keras-Prov stands out
for its analytical support during model training and evaluation.

Keras-Prov extends the core functionalities of Keras API3 (i.e., a deep neural network training
library) and adds features of DfAnalyzer (a provenance system for distributed applications) to capture
provenance without requiring source code instrumentation. The Keras-Prov architecture (Fig. 1)
is composed of three layers: (i) Keras-Prov Core, which is composed by the Keras Core and the
Provenance Extractor component, (ii) Data Layer, which is composed of the File System and the
Provenance Database and (iii) Analysis Layer, which is composed of the Provenance Exporter and the
Provenance Viewer components. As aforementioned, Keras-Prov embeds all native Keras features.
When Keras is executing, provenance data is captured and sent to the Provenance Extractor to
be processed asynchronously to Keras execution. The Provenance Extractor is already coupled to
the Keras library, so the user does not need to instrument its source code to capture provenance
data. The user chooses, among the predefined options, the domain data (datasets) and the set of
hyperparameters to be captured. The Provenance Extractor automatically extracts the values of the
hyperparameters used in each training and corresponding execution time from epochs and time for
the training. Once captured, the data is managed asynchronously with the training of the neural
network. The Provenance Extractor also accesses the File System to obtain the paths of JSON files
that describe the neural network and its input data.

Ideally, the Provenance Extractor should execute in a different processor of Keras. As observed in
previous experiments [Silva et al. 2020], this data capturing approach presents negligible overhead in
the performance of the DL experiment. Different instances of Keras running the DL experiment in
separate GPUs send its local data to the Provenance Extractor, which is integrated into the Provenance
Database. All file paths, hyperparameter values used, metrics, etc., are stored in the same provenance
database (in the current version, instantiated in MonetDB4). The Provenance Extractor structures
and stores the captured provenance data in MonetDB, which relates them to other data from previous
executions of the experiment. As soon as the data is managed by MonetDB it is ready for queries
through the components of the Analysis Layer.

Since W3C PROV is domain-agnostic, Keras-Prov specializes the PROV model, creating a new
representation named DNNProv-Df [Pina et al. 2021] shown in Fig. 2. This aims at representing
training-specific data from DL experiments. Using the DNNProv-Df representation, it is possible to
(i) track epochs, learning rate, accuracy, loss function values, processing time, etc. from different

3Keras - https://keras.io/
4MonetDB - https://www.monetdb.org/
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configurations of the DL experiment, (ii) find out which preprocessing methods were used on the
data before training the model, (iii) monitor the training process and fine-tune the hyperparameters,
(iv) discover which files were generated in the different execution steps, and (v) interpret the results
generated. The data_dependency class allows for tracking the data derivation path and relates in-
put data with the output data of the task execution. When mapped to a relational schema, this
allows for recursive queries that trace back the execution. The dataflow_execution class allows for
grouping information of different trials of the experiments. The ds_itraining class represents input
data for training with different configurations and the ds_otraining represents output data captured
as performance metrics by epoch. These classes help track and compare the different configurations
trials.

Fig. 1. Keras-Prov architecture adapted from [Pina et al. 2021]

Fig. 2. Keras-Prov Provenance Schema

When the DL experiment is executed, all provenance data is stored in the Provenance Database,
following a relational schema mapping from DNNProv-Df. Then the Provenance Exporter can query
the database and sends the query results to the Provenance Viewer, which generates a visual repre-
sentation of the provenance graph for hyperparameter analysis, and it allows for visual analysis (using
visualization tools, such as Kibana) for performance analysis, such as loss function values per epoch,
etc. In addition, PROV-compliant traces can be generated with help of the Prov Python library.
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Capturing Provenance from Deep Learning Applications Using Keras-Prov and Colab: a Practical Approach · 517

Fig. 3. W3C PROV graph of a DNN training with Keras-Prov

Fig. 4. Keras-Prov query interface

Then, using Graphviz, the user can generate the diagram presented in Fig. 3, which represents activ-
ities such as Training and Testing of the DNN training process with Keras-Prov, following the W3C
notation proposed by Missier et al. [2013]. The orange pentagon represents the Agent concept, yellow
ovals represent Entity and blue rectangles represent Activity. When the user has several provenance
traces under this same representation, this helps to identify patterns and execution behavior.

Fig. 4 shows the query interface of the Analysis Layer that allows for accessing provenance data
captured by Keras-Prov. This interface allows for querying the database without using SQL. For
example, Fig. 4 shows the composition of the query “What are the accuracy, loss, and validation loss
for each epoch when the validation loss is less than 0.5?”. On the left side, it shows the provenance
graph representation of the dataflow to be queried. The graph contains the names of entities (data)
represented as vertices and the names of transformations, represented by directed edges that associate
the entities used as input of the transformation to the output data. This representation helps the user
to define queries with filters so that the corresponding SQL is generated automatically. The right side
of Fig. 4 shows the panel that the user can use to submit queries without using SQL. One can select
an entity from the graph and the panel shows its attributes, and add filters such as val_loss<0.5 as
typed on the Conditions box, in this interface is also possible to make joins between datasets.

Journal of Information and Data Management, Vol. 13, No. 5, October 2022.
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3. INTEGRATING KERAS-PROV AND GOOGLE COLAB

In this section, we present how Keras-Prov is integrated with Google Colab to foster Keras-Prov usage
in GPUs and evaluate its experiment’s provenance data analysis. Google Colab is a tool that allows
the user to integrate Python source code with text (usually in markdown). This type of environment
is commonly called a “Notebook”. The advantage of notebooks is that they provide a collaborative
environment with zero configuration effort and access to several types of resources. Although there
are some disadvantages of using Colab for some ML experiments (e.g., a series of automatic settings
are not suitable for ML experiments), the integration of Keras-Prov and Colab seems to be promising,
especially because Colab provides access to several generations of GPUs. This type of hardware is not
easily available in commodity machines. By the time this article was written, the GPU configuration
provided at Google Colab was based on a Tesla T4, which implements the Turing architecture and is
targeted at Deep Learning model inference acceleration5. By using these GPUs, the time required for
each training epoch reduces from 3 minutes (using a CPU) to 2 seconds. This decrease allows for the
exploration of more models and hyperparameter values by the user.

To integrate Keras-Prov with Google Colab, an external environment had to be set. Although
it is possible (and easier) to deploy both - the provenance system and the ML application - on the
same machine, this is not recommended by Google Colab. The reason is that when using Colab, the
execution depends on the user’s active session (which has a timeout), and data persistence may last for
more time than the set timeout. In addition, it is not recommended to install third-party components
that depend on a Database Management System (DBMS), e.g., MonetDB, and to execute Java Web
Application (e.g., query interface). A cloud solution was chosen to host both DfAnalyzer (i.e., the
provenance system) and MonetDB. DigitalOcean6 was elected because it offers resources with low
financial cost and simplicity, providing easy installation of containers. MonetDB and DfAnalyzer,
which are deployed as a single container, were installed in a private virtual machine and their services
were configured to be accessible from Google Colab through a public IP address.

Fig. 5 presents the architecture that integrates Keras-Prov with Google Colab and DigitalOcean
(i.e., external environment). Although there is a communication overhead between both virtual
machines (in Colab and DigitalOcean), this configuration has the benefit of separating ML experi-
mentation and provenance infrastructure. Inside an enterprise, for example, there are different ex-
pertise and responsibilities: the production team would support the provenance system hosted in an
appropriate infrastructure - on-premise or cloud-based - while the data science team would be end-
users, training new applications and submitting provenance queries using Python notebooks trans-
parently. For training and evaluating the models trained using Keras-Prov, it is necessary to import
libraries Keras-Prov and dfa-lib-python within the Colab notebook, before training the models. A
model.provenance(parameters) directive has to be added to the source code while configuring the
ML application.

4. EXPERIMENTAL EVALUATION

In this section, we evaluate the integration of Keras-Prov and Google Colab with two real DL exper-
iments. The first experiment uses AlexNet to evaluate aspects of data monitoring and queries when
using Google Colab and to analyze the limitations of deploying the MonetDB DBMS, as the Keras-
Prov provenance persistent system, to the Colab notebook. The second experiment used DenseNet to
explore data analytical issues.

5GPU Architecture in Google Colab - https://colab.research.google.com/github/d2l-ai/d2l-tvm-colab/blob/
master/chapter_gpu_schedules/arch.ipynb
6DigitalOcean - https://www.digitalocean.com/
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Fig. 5. Architecture that integrates Google Colab with Keras-Prov libraries and services

4.1 AlexNet and DenseNet Case Studies

AlexNet is a convolutional neural network (CNN) architecture developed by [Krizhevsky et al. 2012] for
computer vision tasks. AlexNet has eight layers, where the first five are convolutional layers, and the
last three are fully connected layers. AlexNet uses a non-saturating ReLU activation function, which
presents better performance when compared to activation functions such as tanh and sigmoid. In our
experiments, we use AlexNet with the Oxford Flower [Nilsback and Zisserman 2006] dataset, which
is composed of 17 species of flowers with 80 images for each class. The flower categories represented
in Oxford Flower are chosen to present ambiguities, e.g., some classes cannot be distinguished only
by analyzing their colors, such as dandelions and buttercups, others cannot be distinguished only by
analyzing shapes, such as daffodils and wild windflowers. The Alexnet dataflow is composed of the
following activities: (i) Training, (ii) Adaptation, and (iii) Testing. The dataflow consumes (used) the
following hyperparameters: the optimizer, the learning rate, the number of epochs, and the number
of layers.

Differently from AlexNet, Dense Convolutional Networks (i.e., DenseNet) [Huang et al. 2017] con-
nect each layer of the neural network to every other layer in a feed-forward way. This way, DenseNet
presents L(L+1)/2 connections, which is different from the L connections found in most neural net-
works. The use of DenseNets in many problems presents several advantages, e.g., they foster feature
propagation and (possibly the most important advantage) reduce the number of parameters. In our
experiments, a pre-trained DenseNet model with the ImageNet dataset is used as a base layer with
fixed parameters. We add, on top of this pre-trained model, a trainable dense layer with dropout,
batch normalization, and max-pooling, and a last dense layer with softmax activation.

4.2 Environment Setup

Although the integration of Keras-Prov and Colab is promising and opens room for many refinements,
it presents a drawback regarding resource reservation. Since Colab provides free computational re-
sources, it automatically adjusts the hardware availability at runtime (e.g., during the training process
of a neural network). This is a behavior already found in many cloud providers, e.g., the AWS Spot
market [Portella et al. 2019]. Although Colab offers ways to provide on-demand virtual machines that
guarantee performance, this type of resource was not used in the experiments presented in this article.
Colab also offers many types of GPUs to use, however, the types of GPUs that are available vary over
time. By the time the experiments were executed, the GPU configuration provided by Colab is based
on a Tesla T4 (which implements the Turing architecture). In addition, it is not guaranteed that the
experiments are executed on a dedicated card. The amount of memory in Colab virtual machines also
varies from 12GB to 25GB over time, but the amount of memory does not vary during the life cycle
of a specific virtual machine.

Journal of Information and Data Management, Vol. 13, No. 5, October 2022.
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4.3 Experiment Setup

The AlexNet network is trained using Keras-Prov in Google Colab, for classifying flowers using the
Oxford Flower dataset. Similar to most DL experiments, we need to vary a set of hyperparameters
to get the best results possible. For AlexNet, we have chosen to evaluate the impact of the activation
function choice. Seven different activation functions are explored, i.e., Rectified Linear Activation
(ReLU) [Nair and Hinton 2010], Logistic (Sigmoid), Softmax [Goodfellow et al. 2016b], Softplus [Glo-
rot et al. 2011], Softsign [Goodfellow et al. 2016b], Hyperbolic Tangent (Tanh) and Scaled exponential
linear unit (SELU) [Klambauer et al. 2017]. The hyperparameter settings for AlexNet are presented
in Table I. The type of optimizer, the learning rate, the number of epochs, and the dropout value are
fixed, and the activation function of the internal layers of the AlexNet network is varied. Thus, exper-
iments are performed for each of the aforementioned activation functions. All these hyperparameters
are automatically captured by Keras-Prov.

Table I. AlexNet Hyperparameter Configuration.
Fixed Parameters Varied Parameters

Optimizer Learning Epochs Dropout Activation Function
Rate Rate

Adam 0.0001 100 0.4 ReLU, Sigmoid, Softmax, Softplus, Softsign, Tanh, SELU

With DenseNet, two experiments are performed. In the first, different activation functions are
evaluated in the dense layer of the network, as presented in Table II. While in AlexNet the activation
functions are related to multiple layers, in this experiment the activation function that is varied is
the one at the dense layer (except for the final dense layer) used on top of the pre-trained layers. In
the second experiment, different learning rates and dropout rates are evaluated, while the number of
epochs, the optimizer, and the activation function are fixed, as presented in Table III.

Table II. DenseNet Hyperparameter Configuration - Experiment 1.
Fixed Parameters Varied Parameters

Optimizer Learning Epochs Dropout Activation Function
Rate Rate

Adam 0.0001 100 0.4 ReLU, Sigmoid, Softmax, Softplus, Softsign, Tanh, SELU

Table III. DenseNet Hyperparameter Configuration - Experiment 2.
Fixed Parameters Varied Parameters

Optimizer Activation Epochs Dropout Learning Rate
Function Rate

Adam Softplus 10 0.2, 0.4, 0.6, 0.8 0.001, 0.01, 0.1

It is worth noticing that the volume of data used in the experiments is relatively small, and no
cross-validation techniques were used. Thus, many of the analyses on the accuracy of the models
may be the result of random oscillations and, therefore, should not be seen as effective conclusions
about the overall performance of the models. The experiments presented are data collected including
all executions in which the environment had to be set up. We used the free version of Colab, the
computational environment was shared among many users altering computational performance and
measurements. Also, using two environments generated the additional cost of sending external calls to
the Provenance System. It is noteworthy that, despite this, there is no harm to the goals of this article,
which are to explore the use of the Keras-Prov integrated with Google Colab and not to evaluate the
effectiveness of the models.

4.4 Results Discussion

AlexNet. As aforementioned, all collected provenance data is stored in the Provenance Database
in MonetDB. In the Colab notebook, pymonetdb is used to retrieve the provenance data stored by
Keras-Prov. A series of queries can be submitted using pymonetdb. The combination of such features,
especially Keras-Prov, made the results analysis of hyperparameter variations easier and faster. In this
experiment, the SQL-like query "SELECT * FROM all_100epoc.ds_otrainingmodel" is submitted to
retrieve the accuracy and the loss for each evaluated activation function. Based on this provenance
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query result, Fig. 6 presents accuracy and the loss charts generated with Matplotlib. By analyzing
the results in Fig. 6, one can state that the activation function that obtained the best accuracy
and lowest loss is the Softplus activation function. This network configuration presents a maximum
accuracy of 76% and a minimum loss of 1.19, and both values occurred at epoch 50. The performance
of the accuracy and loss of other functions over the epochs can be seen in Fig. 6.

Fig. 6. Accuracy and Loss over the epochs for the different activation functions used in AlexNet.

DenseNet. To further explore the capabilities and limitations of Keras-Prov, two experiments were
carried out with DenseNet. The DenseNet model was pre-trained with the ImageNet dataset, and we
use this pre-trained model as a base layer with fixed parameters, while on top of this model we add
a trainable dense layer. In the first experiment with DenseNet, we analyze which activation function
presents the best accuracy and loss. While in the AlexNet experiment the activation functions are
related to multiple layers of AlexNet, in this experiment the activation function that is changed is the
one at the only trainable dense layer used on top of the pre-trained DenseNet. Table IV shows the two
epochs that present the best accuracy and loss, in both of them, Softplus is the activation function.
Thus, the Softplus activation function is the choice for the second experiment with DenseNet.

Table IV. The best accuracy among all explored activation functions for DenseNet
Model Activation Learning Dropout Epoch Validation Validation Processing

Function Rate Rate Accuracy Loss Time
DenseNet Softplus 0.01 0.4 17 0.863 0.529 13.77
DenseNet Softplus 0.01 0.4 18 0.863 0.527 13.79

Having the same database schema helped us to compare results from AlexNet and DenseNet. Also,
the fact that Keras-Prov follows a public recommendation helps coupling applications to analyze and
manage the data in the way that is best for the user, and with no pre-processing. Keras-Prov associates
performance execution data to the provenance data, like the execution time of each (or set of) epoch
and the total training time. Table V presents the average processing time (i.e., x) in seconds with
AlexNet and DenseNet for each network configuration. DenseNet presents a more complex architecture
when compared to AlexNet, so it requires higher processing times. In the experiments, both networks
consider learning rate 0.0001, dropout 0.4, 100 epochs, and the following activation functions: ReLU,
Sigmoid, Softmax, Softplus, Softsign, Tanh, SELU.

Finally, in the second experiment with DenseNet, the activation function (i.e., Softplus), the Opti-
mizer (i.e., Adam) and the number of epochs (i.e., 10) are fixed. We varied the dropout rate (0.2, 0.4,
0.6, and 0.8) and the learning rate (0.001, 0.001, and 0.1) to evaluate the accuracy and the loss for
each combination. Fig. 7 and Fig. 8 present the accuracy and loss for each combination, respectively.
This type of analysis is fundamental for the user to set the proper number of epochs for a specific
experiment. In many cases, adding more epochs does not help much in improving the accuracy of the
model.
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Table V. Comparison of the average processing time of epochs of each optimizer for different networks
Activation Alexnet+Keras-Prov DenseNet+Keras-Prov

ReLU 3.107 13.833
Sigmoid 3.121 13.839
Softmax 3.772 13.848
Softplus 3.217 13.834
Softsign 3.207 13.850
Tanh 3.204 13.863
SELU 3.839 13.351

x 3.352 13.77

Fig. 7. Accuracy rates obtained for training and validation of each combination of parameters with DenseNet.

Fig. 8. Loss rates obtained for training and validation of each combination of parameters in Experiment 2 with DenseNet
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4.5 Limitations

The original version of Keras-Prov has its container to help with deployment, but it was not compatible
with Google Colab. Most Keras-Prov services are not dependent on the Keras version, however, the
provenance capturing accesses the Keras internal methods, which limits its usage with newer Keras
versions. It is worth mentioning that this limitation is also found in many ML services provided
by Tensorflow and Colab, e.g., new versions of Tensorflow may not be entirely compatible. Despite
the containerized version of Keras-Prov, the deployment at Colab required "manual" (and non-trivial)
configurations. Another issue is related to the provenance schema of Keras-Prov. Having a provenance
schema allows for richer queries than CSV files or the ML environment support. Although Keras-Prov
data representation (Fig. 2) specializes PROV with ML classes, there are other PROV specializations
for ML that could be used. There is no consensus on that issue in the provenance community, and our
evaluation suggests that the provenance representation in Keras-Prov must be continuously improved,
incorporating features and characteristics of other proposed models.

5. CONCLUSION

In this article, we have shown Keras-Prov being used in Google Colab to generate provenance traces
of DL experiments in different computational environments. Keras-Prov captures provenance from
Keras executions automatically, and allows querying through a graphical interface and integration
with various analysis tools (e.g., Pandas, ElasticSearch, Kibana). Hence, this provenance database
approach does not replace, but rather complements typical DL data visualization and allows for
more specific visualizations, taking advantage of sophisticated query results, which can, for example,
make use of aggregations. Due to following the W3C PROV recommendation, its database adopts
a standard data structure, which provides uniform DL training representation and comparisons with
other PROV-compliant data. Also, using Keras-Prov with Colab has shown the possibility of executing
Keras-Prov with a popular notebook solution, and GPUs in different environments to collect and
analyze provenance. We have shown two case studies, DenseNet and AlexNet, to solve the same
learning task and compared them at different training stages using data collected through Keras-
Prov. Some provenance database queries presented in our experiments show the power of comparing
these experiments, like presenting the average epoch’s processing time for the same optimizer in the
two networks. This approach avoids having to run the DL training under a specific framework to
make some similar comparisons or the need to organize CSV files in directories and write scripts to
compare them. Despite defining configurations on small scale, having so many variations to compare
and evaluate has evidenced the value of having a provenance database that organizes and persists
these data. Using W3C PROV allowed to produce provenance traces in a standard notation. These
provenance data analyses evidenced the benefits of having database community techniques coupled
with ML solutions.

As future work, we plan to make Keras-Prov services more platform-independent and easier to be
deployed to different DL systems. Our main goal is not to provide a provenance solution on its own,
but rather to offer provenance services to the main DL system developers so that they can incorporate
our provenance services to offer as part of their DL releases.
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