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Abstract Metric trees are efficient indexing structures for multidimensional objects defined in terms of a metric
space. One possible application is for string similarity search, using the edit distance as the metric function. A
previous work proposes clustering objects under leaf nodes and using the bag distance as a filtering step before the
edit distance is computed. Cost predictions estimate that the filtering compensates in practical scenarios. The work
has important implications when data resides on secondary storage, where nodes have a fixed size that aligns with
page disks. In this paper, we expand the discussion by using the bag distance filtering step for in-memory metric
trees, where the clusters have no size constraints. We adjust existing metric trees to support leaf nodes with arbitrary
cluster sizes and incorporate parameters based on size and density to decide when a leaf node should be subdivided.
Experiments show that cluster size can have a substantial impact during both index construction and search. We
report the gains achieved in terms of processing cost and the number of distance computations when using the most

suited values for the cluster size and density parameters.
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1 Introduction

The similarity search problem focuses on finding objects sim-
ilar to a query object. It is an integral part of many corre-
lated areas, such as pattern recognition, computational biol-
ogy, and spell-checking.

If the similarity is inferred by a distance function, and the
function is a metric, the metric space formed by the set of ob-
jects can be indexed based on the relative distance of the ob-
jects. According to a recent study Chen et al. [2017], metric
trees serve as effective indexing structures when the objects
can be stored within the computer’s primary memory. In a
pivot-based metric tree, pivot nodes lead to regions of the
space that contain objects whose distances satisfy a lower or
upper bound.

Traditionally, the edit distance(a.k.a the Levenshtein Dis-
tance) is used as a metric function for string similarity
search Traina Jr et al. [2007]; Deng et al. [2016]; Chen et al.
[2017]. It computes the distance between two strings as the
minimum number of edit operations needed to transform one
string into another. The more edit operations, the less similar
they are Levenshtein [1966].

The edit distance can be used along with other functions
as well. In Traina et al. [2002]; Bartolini et al. [2002], the
cheaper bag distance is used as a filtering step. The general
idea is to cluster strings inside leaf nodes. During a search,
once a leaf node is accessed, the edit distance between the
query and a clustered string only needs to be computed if the
string qualifies in terms of the bag distance. One work in
particular shows that the filtering usually pays off using cost
predictions based on the general distribution of objects Bar-
tolini et al. [2002].

The bag distance filtering step was applied over secondary
storage metric trees, where nodes have a size that aligns

with page disks. Consequently, leaf nodes have a fixed clus-
ter size. We argue that the filtering is also possible for in-
memory metric trees, where there are no restrictions on the
size of the clusters. This opens an opportunity to verify how
the usage of variable sizes affects index construction and
search.

The size of the clusters is important for metric spaces
based on edit distance. This metric presents a normal-like
pairwise distance distribution with a very steep curve, espe-
cially when considering regions of the space where objects
are closer to each other. It means that, when indexing a dense
enough region, objects may become equidistant, which can
potentially jeopardize the pursuit of building balanced search
trees.

We propose an unbalanced index construction method that
stops subdividing the space if one of two conditions is satis-
fied: the cluster is considered small enough or dense enough.
During construction, two parameters are defined to control
the desired size and density. Our evaluation demonstrates
that the combination of properly unbalanced indexes with
the bag-distance filtering step has the potential to reduce the
elapsed time of range and top-k queries.

This paper is organized as follows: in Section 2 we present
the theoretical background regarding metric space search and
bag distance filtering. In Section 3, we reason that defining
clusters based on size and density can reduce search process-
ing. We also propose extensions to well-known metric trees
to properly evaluate indexes whose cluster size varies accord-
ing to the data being indexed, regardless of the size. Section
4 evaluates the extended trees with the clustering parameters
for the problem of similarity search over a dictionary. Final
remarks are given in Section 5.
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2 Background

Let a metric space M = {d, U} be defined as a data domain
U and a distance functiond : U x U — R™T, where d needs
to be a metric. The distance d(z, y) measures how far objects
x and y are from each other. It is a metric if, for any z, y, 2z
€ U, four properties are satisfied:

o Symmetry: d(z,y) = d(y, x).

* Non-negativity: d(z,y) >=0

* Identity: d(z,y) =0iff X =Y

* Triangular Inequality: d(z,y) < d(z, z) + d(y, 2)

Objects of a metric space can be indexed according to their
relative distance from each other. In Chen et al. [2017], in-
dexing methods are classified as compact-partitioning based
and pivot-based, according to the strategy used to divide the
space and the existence of precomputed distance between
pivots and objects. In this paper, we use the generic term
metric-tree as a reference to all methods that index objects
according to their distance to a selected set of pivots and
use a tree as a data structure. There is a diversity of met-
ric trees. Some are tailored for secondary storage, such as
M-trees, while others work with nodes fully allocated in the
main memory. The study of Chen et al. [2017] revealed
that metric trees have the best performance both in terms of
construction and search times, for data sets that can be fully
allocated in memory. The evaluation used the following data
structures: Vantage Point trees (vpT), Multiple Vantage Point
Trees (MvpT), and Burkhard-Keller trees (BKT).

VPT is a binary tree that puts in the left sub-tree the ob-
jects whose distance to the pivot (the vantage point) is not
greater than a radius. The remaining objects are put in the
right sub-tree. Objects in a sub-tree are further partitioned
into smaller sets. All indexed objects are clustered inside
leaf nodes, which are partitioned when the capacity is ex-
ceeded Yianilos [1993]. The tree is intended to be balanced.
The balancing is achieved by a careful selection of pivots and
their corresponding radius Zhu et al. [2022]. Better pivots
are chosen if all objects are known before index construc-
tion. Figure 1 shows an example, where the capacity of the
leaf node was set to two.

MVPT is a generalization of vpT that supports n-ary trees,
where a pivot has n — 1 radius. Objects whose distance to
the pivot is not greater than radius ¢ are put in sub-tree . Ob-
jects whose distance is greater than the last radius are put in
the right-most sub-tree. Objects are indexed according to the
first qualified radius. Higher n values lead to shorter trees,
and consequently, a reduced number of pivots Bozkaya and
Ozsoyoglu [1997].

BKT is an n-ary tree where each path connects child
nodes that share the same distance to the parent node (a
pivot) Burkhard and Keller [1973]. Unlike the above-
mentioned structures, it was designed for applications that
use a discrete metric function, such as the edit distance. Fig-
ure 2 shows an example. Observe that objects are not clus-
tered inside leaf nodes, and may appear as inner nodes as
well. There is also no care about balancing.

Queries over a metric space are basically posed in terms
of an object ¢ associated with a search radius  (a ball drawn
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around ¢). In range queries, the radius is fixed (the maxi-
mum allowed distance). In nearest neighbor queries (top-k),
the radius varies during the search according to the nearest
neighbors found so far.

During a search, triangle inequality helps discard unqual-
ified objects without computing their actual distance to q.
For instance, given the query object g, a pivot p, and an ob-
ject o, if d(g, p) and d(p, o) are known, we can compute the
lower and upper bounds of d(q, 0) as |d(g,p) — d(p, 0)| and
d(q,p) + d(p, 0), respectively. If the search radius is lower
or equal to the lower bound, the object o does not qualify. If
it is greater or equal to the upper bound, the object o directly
qualifies.

Similarly, several techniques use triangle inequality to
discard entire regions of a metric space accessible from a
pivotZezula et al. [2006]. For instance, considering that
d(g, 0) needs to be within 0 and the search radius r, the fol-
lowing holds: d(g,p) — r <= d(p,0) <= d(¢,p) + r.
In BKT, a child node is visited if its distance to the parent
falls within that range. In vpT, the left sub-tree of a pivot
is visited if the distance between the query and the pivot is
sufficiently small. One of two conditions must be satisfied:
d(q,p) <= radius, which puts the query object inside the
left sub-tree, or d(q, p) <= radius + r, meaning the search
radius overlaps with the left sub-tree. On the other hand, the
right sub-tree of a pivot is visited if the distance between the
query and the pivot is sufficiently large. One of two condi-
tions must be satisfied: d(q,p) > radius, which puts the
query inside the right sub-tree, or d(gq,p) > radius — r,
meaning the search radius overlaps with the right sub-tree.

In general, the processing of a search encompasses two
costs: Internal complexity and external complexity. The for-
mer refers to the cost of navigating through the pivot nodes
to find candidate objects. The latter refers to the costs of
checking which of the candidate objects qualify.

For typical BkT, the internal/external complexities are in-
distinguishable, since objects appear as non-leaf nodes also.
For ver/MvrT, the internal complexity tends to be lower than
the external complexity, considering that the number of pivot
nodes accessed is much lower than the number of leaf nodes.

2.1 The Bag Distance Filtering

The bag distance is a metric that compares objects repre-
sented as multi-sets. A multi-set X is defined as the set of
elements e € E, where F is the set of possible symbols and
X (e) gives the multiplicity of e in X.

To avoid confusion regarding multiplicity, we define the
semantics of some operations over multi-sets.

Definition 1 (Multi-Set Difference)
The difference of multi-sets X and Y, denoted as X — Y,
is defined as:

X(e) —=Y(e), ifX(e) > Y(e).
0, otherwise.

VeEE:(X—Y)(e):{
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Definition 2 (Multi-Set Cardinality)
The cardinality of a multi-set X, denoted as |X
defined as:

, IS

[ X| = 2Leer X(e)

To conclude, we present the definition of the Bag Dis-
tance:

Definition 3 (Bag Distance)
The Bag Distance between two multi-sets X and Y, is
defined as:

ds(X.,Y) = maz((|X - Y1,]Y - X|)

In essence, the bag distance is measured as the maximum
number of distinct elements between two multi-sets. This is
a general definition that encompasses every object that may
be identified by a multi-set.

This metric can be used to compare strings, by taking the
multi-sets of characters from the strings. To understand, Ta-
ble 1 presents the symbols used to represent strings and multi-
sets of characters. The notation clarifies how the bag distance
copes with the string domain.

For example, considering A contains characters from the
Latin alphabet, the strings ’bang’(s1) and “banana’(ss) from
the data domain S are represented as the multi-sets X3
= {’a’,’b’,’n’,’g’} and Xo={"a’,’a’,’a’,”,’b’,’n’,’n’}, respec-
tively. The bag semantic implies that characters may appear
multiple times (such as ’a’ and 'n’ in X5). In this particu-
lar case, the bag distance between ’bang’ and ’banana’ is 3,
since X5 has three distinct characters (’a’,’a’,’n’), while X;
has only one (’g’).

In Bartolini et al. [2002], the authors observed that the bag
distance dp is a lower-bound of the edit distance dp (dg =
dg), meaning that Vs, se : dg(s1,$2) < dg(s1,s2). In

distance

Figure 3. A hypothetical distribution considering the maximum distance
among objects.

other words, the distance computed by dp is never higher
than the distance computed by dg.

The authors used a bag distance filtering step to optimize
search operations in a secondary storage metric tree (M-TREE).
As some in-memory metric trees (such as vt and MvpT), the
leaf nodes of a M-TREE contain direct access to a group of
objects(a cluster). The difference is that the nodes are typ-
ically larger since they are mapped into disk pages. When a
leaf node is accessed, the bag distance is computed for every
candidate object inside the cluster. Given the lower bound
property, the edit distance only needs to be computed if the
corresponding bag distance is not greater than the search ra-
dius.

It takes linear time to find the bag distance between two
strings s; and s, Kahveci and Singh [2001], whereas the
edit distance uses a dynamic programming solution that has
a quadratic complexity (O(s1.52)) Needleman and Wunsch
[1970]. There are super-linear approaches Papamichail and
Papamichail [2009]; Li ef al. [2011], but they are not suited
for measuring distances between short strings, given they
have large constants of proportionality. Hence, the filtering
compensates as it trades the edit distance with a less expen-
sive function. However, the benefits depend on how selec-
tive the filtering is.

The authors provide cost predictions of the external com-
plexity based on the distribution of the objects. A typical dis-
tribution is depicted in Figure 3. Fy_ (r) represents the prob-
ability of the distance d, between two random strings be at
most 7. For instance, given a random object ¢ and the search
radius 8, 25% of the data set is within the search ball drawn
around ¢, using d g as the distance function (F,, (8) = 25%).

The estimation derives from the fact that the bag distance
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Symbol Meaning

S a string object

S the data domain for strings

X a multi-set object containing characters

A the alphabet of characters

c one character from the alphabet

dg(s1,s2) the edit distance between strings s1 and so

dp(s1,s2) the bag distance between the multi-sets formed by the characters taken from strings s; and sy

Table 1. Notations concerning strings and multi-sets of characters.

is required for all candidate objects, whereas the edit distance
is required for the subset that qualifies in terms of the bag
distance. Given that, and assuming cost g and costg are the
costs for the bag distance and the edit distance, respectively,
the savings S in search time of the bag distance filtering step
is estimated as indicated in Equation 1. In short, the over-
head increases as the bag distance becomes less selective and
the cost of finding the bag distance arises. For typical appli-
cations, which use a small search radius to retrieve a few ob-
jects per query, the overhead is small, and the filtering step
pays off.

S=1—Fuy(r)— 22

(M

costg

3 Changing the Cluster Formation

The work of Bartolini et al. [2002] explores the bag distance
filtering step in the context of secondary storage metric trees.
In this case, the IO costs prevail, so it is more important to
reduce the number of random page reads than meet any other
in-memory optimization. However, completely in-memory
indexes also have room for improvement.

Despite the unprecedented amount of available data,
where secondary storage indexes have become indispens-
able, new approaches to in-memory indexing remain rele-
vant. This is evidenced by recent studies focused on enhanc-
ing data retrieval relying solely on data structures that fit in
main memory Sprenger et al. [2019]; Jensen et al. [2021].

We argue that in-memory indexes can benefit from the
filtering step to improve search, and the improvement is
strongly related to the cluster size and the distribution of the
objects inside a cluster. In what follows we explore this issue
in greater detail. We also present extensions to well-known
metric trees that enable the clusters formation to be explored
more effectively.

3.1 Partitioning the Metric Space

To understand why cluster formation is important, at least
for in-memory trees, we rely on an example based on a vpT
(Figure 4). The goal of vpT is to divide the space into non-
overlapping regions. The space gets subdivided if the num-
ber of objects reached lies above a predefined capacity. In
the example, assume the number is eight. Two pivots were
defined: pl and p2. A pivot separates the objects into two
regions: an inner region consisting of objects whose distance
to the pivot is smaller than a specified radius, and an outer
region that encompasses the remaining objects, which are

farther away. The inner region of a pivot is defined by the
dashed circle surrounding the pivot. The dotted circle indi-
cates the objects that are not part of any inner region.

The Vantage-Point tree recursively connects pivot nodes
according to the inner and outer regions they map. Finally,
the regions accessible by leaf nodes form the clusters. A sim-
ilar structure applies to BKT, except that a pivot leads to a num-
ber of regions defined by concentric hyper-spheres drawn
around the pivot. In either case, as the space gets subdivided,
smaller and denser regions are created. Also, more pivots are
added, which increases the internal complexity of a search.

Ideally, the space should be divided into smaller and
denser regions up to a point where search performance is
maximized, by reducing the overall cost of the internal and
external complexities. The key part is knowing when to stop
partitioning.

To explore this issue, consider two alternative arrange-
ments:

+ a) a region composed by n objects forms a single clus-
ter. During a search, if the cluster is reached, all objects
need to be verified.

* b) instead of forming a single cluster, a pivot is selected
and the n objects are split into x sub-regions with the
same number of objects each. During a search, if the
cluster is reached, the distance between the pivot and
the query is computed. Based on the distance found,
all objects from the y qualifying sub-regions need to be
verified.

The number z refers to the degree of the pivot node (the
number of regions accessed by it). In a vpt, the degree is
two. MVPT supports a higher degree, as well as BKT. Here, we
assume a generic scenario where x can be greater than two.

Given a query, arrangement a takes n bag distance opera-
tions to find the candidate objects. Conversely, arrangement
b (with partitioning) requires one edit distance (for the pivot)
and n x £ bag distances, to find the candidate objects. Equa-
tion 2 estimates when the arrangement b compensates.

costg + costp X n X y < costp Xn
T

costg

Yy
<n><(1—;) @)

costp

costp
costp

(1=3)

There is a direct correspondence between the size of a clus-
ter and the ratio between the edit and the bag distance opera-
tions. The higher the cost g with respect to cost p, the larger

n >
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Figure 4. The distribution of objects according to a metric space using a Vantage Point Tree.

the cluster should be. Intuitively, as partitions get smaller,
the internal complexity becomes more significant when com-
pared to the external complexity. For a small enough cluster,
it is better to stop partitioning, as it is cheaper to compute
the bag distance to the inner objects than to compute the edit
distance to an additional pivot node that gives access to an
even smaller cluster.

Provided that the size of a cluster can affect a search, we
propose using a clustering rule based on size, as follows:

Partition Rule 1 During indexing, if a cluster has less than
a pre-defined number of objects cs (cluster size), the parti-
tioning stops.

This is already a natural partitioning rule of cluster-based
metric trees, such as vrT: if the number of clustered objects
overcomes a capacity (eight, in the example of 4), a new par-
titioning occurs. In this paper, we expand the discussion by
proposing a new partition rule, as discussed next.

According to Equation 2, the most suited size of a cluster
is inversely proportional to the number of regions that do not
qualify during a search(1 — ). The higher the number of
qualifying regions (£), the larger the cluster should be.

In other words, if a pivot fails to efficiently guide the
search towards a smaller area within the space, it is preferable
to maintain the objects clustered rather than attempting to
subdivide them. The pruning ability of a pivot is very query
dependent. A pivot is less capable of reducing the search
space if the query has a large search radius. We can infer that,
if the clustered objects are sparse (distant from each other),
the pivot tends to do a better job.

Provided that the proximity of the objects is valuable infor-
mation to this end, we propose using an additional clustering
rule based on distance, as follows:

Partition Rule 2 During indexing, the partitioning stops if
the clustered objects are closer to the pivot than a pre-defined
threshold dp(distance to pivot).

Figure 5 demonstrates the application of the partition rules.
The metric space A (on the left) is the same one presented
in Figure 4, where the objects are partitioned based solely
on Partition Rule 1 (clusters with more than 8 objects are
subdivided).

In contrast, the metric space B (on the right) requires the
validation of both partition rules to subdivide the space. In
this case, assume that the region outside p1 is not subdivided
because it breaks Partition Rule 2: the furthest object in that
region is close enough to the pivot pl (the distance is lower
than dp). As a result, we end up with fewer partitions, by
merging partitions where objects are closer.

We reason that, during a search, all objects from dense
regions tend to be accessed. In this case, the existence of
more partitions imposes an overhead of having to compute
the edit distance between the query and the additional pivots.

To exemplify, consider that the query ¢ is posed (as de-
scribed in Figure 5). The circle surrounding q determines the
search radius (the search ball). Given metric space B, when
the search reaches the outer region of p1, there is no need to
compute the edit distance between the query and a pivot, so
we can proceed directly to the filtering step, where the Bag
distance is computed.

On the other hand, given metric space A, the edit distance
between p2 and g has to be computed, so we can infer the
relative position of the search ball with respect to the two
regions mapped by p2. If the search ball overlaps with the
inner region, the objects that belong to the p2 cluster need to
be accessed. If the search ball overlaps with the outer region,
then the objects farther away from p2 need to be accessed.
The worst-case scenario happens when the search ball over-
laps the two regions (as the example illustrates) since this
requires the search to span across both regions. Therefore,
in both metric spaces, all objects in the outer region of pl
need to be accessed. However, in metric space A, there is an
overhead related to the edit distance computation.

Of course, this example, along with Equation 2, is a sim-
plification that makes a strong assumption about how the ob-
jects are distributed and queried. In real scenarios, objects
may be unevenly divided into sub-regions. Nevertheless, our
reasoning shows that the cluster’s size and density have the
potential to impact query efficiency, and should be chosen
carefully, as we demonstrate in the Experimental Results sec-
tion.
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Figure 5. Cluster formation and querying considering two settings: using only the cluster size to stop partitioning (Metric Space A) and using the cluster

size and distance to pivot to stop partitioning (Metric Space B)

3.2 BKT Extension

Among the well-known metric trees, the BKT has some unique
features: it was designed for discrete functions with short
ranges and it is unbalanced by nature. To a large extent, those
factors explain the common architectural designs behind this
data structure. Firstly, the trees have an unbounded arity
since allocating a sub-tree to each possible distance value
is affordable. Additionally, there is a lack of concern with
clustering objects into a single node. During insertion, typi-
cal implementations simply follow a path from the root to a
leaf node, where the object is inserted as a new sub-tree. As
a consequence, objects may appear as inner nodes.

To provide cluster support, two properties were added to
the BKT nodes:

* cluster: the set of objects clustered inside a leaf node.
« distance to pivot: the distance between each of the clus-
tered objects and the node’s pivot.

The pseudo-code in Algorithm 3.1 shows how insertion
handles the existence of clusters. Once a leaf node is found,
the new object o becomes part of the cluster. If the conditions
in line 3 are satisfied, the cluster is cleared and its objects are
added as sub-trees. If the size of the cluster lies below cs, the
partition stops (Partition Rule 1). The partition also stops if
the distance between the clustered objects and the pivot is
lesser than dp (Partition Rule 2). Observe that, with BkT, all
clustered objects share the same distance to their respective
pivot. The bkt add_node(o) function refers to the original
method that ends up creating a sub-tree to allocate the new
object o.

3.3 VPT Extension

Unlike BKT, clustering objects as single leaf nodes is part of
the vpT conception. A cluster is partitioned whenever its size
exceeds a predefined capacity. This behavior naturally satis-
fies (Partition Rule 1), which states that the partition should
stop if the cluster size lies below cs.

EXTENDED_ADD_NODE(0)

1: if current node is a leaf node then

2:  add o to the cluster

3:  if cluster size exceeds cs and distance to pivot > dp
then

4 for all objects o; in current_node.cluster do
5: remove o; from current_node.cluster

6: bkt add node(o;)

7 end for

8 current_node.clustered < false

9:  end if

10: else

11: bkt add node(o)

12: end if

Algorithm 3.1: Adding a node to a BKT

However, there is a caveat that generally passes unnoticed.
It is not possible to split a set when all objects are equidistant.
If that occurs, the partition routine enters an infinity loop fail-
ing to segregate the data even further. The problem can occur
when the capacity is shorter than the equilateral dimension
(the maximum number of equidistant elements) Blumenthal
[1954]. In a d-dimension Euclidean space, the equilateral
dimension is d + 1. In a space defined by the edit distance
function, it is directly proportional to both d and the alphabet
size.

Take for instance four-lettered words. In terms of edit dis-
tance, the equilateral dimension is not five. Instead, it is
bounded by the number of completely different words that
can be formed using four characters from the alphabet. The
number is definitely larger than five. Of course, those words
are separated during indexing. Still, some of them may fall
into the same cluster. If the cluster capacity is smaller than
the number of equidistant words, the partition will fail. veT
and mvpT usually chose a cluster size that bypasses the prob-
lem. Another approach is to remove the pivot from the leaf
level to prevent going into an infinite loop, which would form
a highly unbalanced sub-tree.




We propose a workaround that accepts clusters of any size.
The extension is useful for evaluating how a vpT behaves
when clusters are very small. The extension adds a rule that
stops the partitioning whenever the previous split put all ob-
jects into the same sub-tree. The pseudo-code is presented
in Algorithm 3.2. The function that recursively splits a sub-
tree is only called if both sub-trees are not empty (line 14).
The code can be easily incorporated into MvpT, by testing a
variant number of sub-trees instead of only two.

The code also shows how to locate the object that is further
away from the pivot vp(lines 8 and 11 find the object from the
left and right sub-trees, respectively). This found distance
is used to decide when the partitioning should stop (line 1),
according to (Partition Rule 2).

BUILD_vPT(maxDist)

1: if cluster size exceeds cs and maxDist > dp then

2:  vp < chooseVP(current_node.cluster)
3:  radius < findMedianDistance(current node.cluster,
vp)
4:  for all objects o in current_node.cluster do
5 remove o from current_node.cluster
6: if dg(o0,vp) < radius then
7: add o to the cluster of the left sub-tree
8 maz LDist < mazx(mazLDist,dg(o,vp)
9: else
10: add o to the cluster of the right_sub-tree
11: maxRDist < max(maxRDist, dg(o,vp)
12: end if
13:  end for
14:  if both subtrees are not empty then
15: left_subtree.build VPT(maxLDist)
16: right_subtree.build VPT(maxRDist)
17:  end if
18: end if

Algorithm 3.2: Adding a node to a VPT

4 Experimental Results

Our primary goal is to check how performance is affected
when varying the size and the density of the clusters. The pa-
rameters cs (cluster size) and dp(distance to pivot) are used to
control the cluster size and the density, respectively. Recall
that, during indexing, the partition stops if either the cluster
size is less than cs or the distance between all elements and
their corresponding pivot is lower than dp. A larger dp leads
to fewer partitions, since sparser clusters are accepted. When
dp = 0, only the cluster size is used as a partitioning factor.

The two extended metric trees were used: BKT and VPT. VPT
relies on a pivot selection strategy that best separates objects
in a metric space. The technique chooses, from a list of five
random candidates, the one whose distance to the other ob-
jects is maximized.

The data set was taken from the Moby project'. It con-
tains a list with 593.248 proper nouns, acronyms, and com-
pound words. This dictionary was used to demonstrate the

"https://en.wikipedia.org/wiki/Moby_Project
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efficiency of metric trees for in-memory indexing Chen ef al.
[2015, 2017]. The query set is composed of a sample of 100
objects taken from the data set. Similar results were found
using dictionaries of seven different languages taken from
the Metric Space Library projectFigueroa et al. [2007].

Two query strategies were used:

» Range-d Query: The purpose is to find the indexed ob-
jects that are within a maximum distance of d from the
query object.

» Top-k Query: The purpose is to find the k£ indexed ob-
jects that are closer to the query object.

The implementation of the top-k strategy is an extension of
the range-d strategy, where the maximum distance varies ac-
cording to the current closest object. Since the search radius
starts with a high value, and only reduces as closer objects
are found, the top-k strategy tends to access more regions of
the space, when compared to the range-d strategy which has
a fixed search radius.

The evaluation was held on an Intel Core i5-
3470@3.20GHz, with 8GB of RAM. Run-time results
were measured as the average of 30 executions, ignoring the
top and the bottom 10%. All code is in Java.

4.1 Construction Performance

Table 2 shows statistics regarding the metric trees when vary-
ing the defined cluster size cs from 2! to 219, For now, only
the cluster size is used as a partitioning factor. The impact
of the dp parameter is discussed later.

vpT and BKT are binary and n-ary trees, respectively, as the
table shows. The average arity of BKT increases as clusters
get larger. The reason is simple. In larger clusters, the in-
ner elements are more scattered around their corresponding
pivot, which increases the fan-out required to index every dis-
tance found. A higher arity implies that the height of the tree
is lower. It does not necessarily mean that search operations
are cheaper since a search can span across multiple branches,
as we discuss later.

The average cluster size naturally increases according to
the defined cluster size. The cs value is an upper bound of the
actual cluster size, as clusters larger than cs are necessarily
partitioned. Additionally, as the average size increases, the
number of clusters decreases. Observe that BKT has smaller
clusters than vpt, which has a direct correspondence to the
arity.

Figures 6 and 7 show the number of edit distance com-
putations and the time required to construct the metric trees,
respectively. In general, the performance of both search trees
increases as the clusters grow. There is an intuitive reason.
Once the objects in a specific region fit into a cluster, the
partition stops. Larger clusters lead to shorter trees and, con-
sequently, fewer edit distance computations.

The results show that BKT is better at index construction.
There is no concern regarding the production of a balanced
outcome, which considerably reduces the number of edit
distance computations when deciding which branch a node
should follow. It produces imbalanced trees as a downside,
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avg arity max height  avg clusters size  number of clusters

defined cluster size BKT VPT BKT VPT BKT VPT BKT VPT
2 3 2 23 35 1 1 75219 451,808
4 4 2 21 33 2 2 105,142 208,773

8 5 2 18 32 3 5 95,054 97,058
16 6 2 17 30 5 10 67,436 46,760
32 7 2 16 28 9 20 41,938 23,001
64 7 2 13 27 17 40 24,632 11,410
128 8 2 10 24 31 79 13,945 5,727
256 8 2 9 21 57 157 7,756 2,878
512 9 2 8 18 106 315 4,210 1,435
1,024 9 2 6 15 196 635 2,289 711

Table 2. Anatomy of BKT and VPT
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Figure 6. Edit distance computations of BKT and VPT during Index Con-
struction
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Figure 7. Run-time of BKT and VPT during Index Construction
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unlike vpT. However, as we’ll see below, the search perfor-
mance cannot be measured solely based on internal complex-

ity.

4.2 Pairwise Data Distribution

As described in Section 2.1, the importance of the filtering
step depends upon both the selectivity of the bag distance and
its proportional cost with respect to the edit distance. In this
section, we demonstrate that the filtering step indeed com-
pensates, by analyzing the pairwise data distribution among
objects when using both distances.

Figure 8 shows the results found. The curve is similar to
the ones shown in Section 2.1(Figure 3). Observe that the
bag distance loses selectivity as the distance grows. This in-
dicates that it becomes less appealing when the search radius
is high.

We have also estimated the proportional cost of the bag
distance and the edit distance. For that, we computed the
bag and edit distances among objects from the query set and
the whole data set and compared the elapsed times. As a
result, the bag distance cost is approximately 0,1% of the
edit distance cost. It means that, even when working with a
higher search radius, the filtering step is still very likely to
provide a compensating trade-off.

4.3 Search Using a Fixed Search Radius

Similarity search demands a proper search radius. A high
radius ends up bringing irrelevant strings. On the other hand,
a small radius may be too narrow. In the context of string



search over dictionaries, normally a maximum radius of two
suffices for finding similar objects for most applications Lee
et al. [2007]. In what follows, we show performance when
the search radius varies from one to three.

Figure 9 shows the results achieved when answering range-
1 queries and using only the cluster size to determine whether
aregion should be subdivided during indexing. The right part
reports the number of distance computations required. As the
cluster size grows, the number of bag distance computations
naturally increases. There is also a reduction in the number of
edit distance computations. The reasons are twofold: i) there
are fewer pivots, which reduces the internal complexity and
i1) as the cluster size increases, the strings in a cluster become
farther apart from each other. In those cases, bag distance
filtering is more effective in pruning.

The left part of Figure 9 shows the time spent searching.
It is interesting to observe how the run-time first drops grad-
ually and then increases. The curves are a direct result of the
inverse proportionality between the number of bag distances
and edit distances computations. The best cluster size is 32,
for both BkT and vpr. This is the value whose summed cost
of the internal and external complexities is minimum. Addi-
tionally, vpT is approximately 25% more efficient than BKT.

We now compare the best results found with and without
the application of the filtering step ( Table 3), when perform-
ing range queries whose range varies from one to three.

When no filtering is used, BKT achieved its best result with
unclustered objects(cs = 1). The reason is simple. When
objects are grouped, the edit distance would have to be
computed against all clustered objects. If objects are sub-
partitioned, there is always a chance to prune sub-trees that
lead to non-qualifying regions. On the other hand, the un-
filtered vpT works best when objects are grouped into small
clusters. As opposed to BKT, our VPT implementation stores
all objects in leaf nodes. Consequently, some objects will
appear both as pivots as internal and external nodes. Dur-
ing a search, there may occur cases when the edit distance
has to be computed twice for the same duplicate object. By
reducing the internal complexity, we reduce the number of
duplicate computations. Observe that, when the filtering is
used, it is better to work with a higher cluster size, to reduce
the external complexity by performing fewer edit distance
computations for the clustered objects.

It is important to notice that the filtering step always led
to a reduced cost. Also, the improvement is more meaning-
ful as the search radius increases, as indicated by the savings
described in the last column. At first, this finding appears
dissonant with Equation 1, which states that the savings de-
cay as the Bag Distance becomes less selective. However,
range-3 queries are still selective enough. As these queries
reach a higher portion of the metric space, and considering
most of the objects reached are irrelevant, the filter is impor-
tant to reduce the number of edit distance computations to
those irrelevant objects.

Using the dp Partitioning Rule: The previous results
were based on indexes built without the usage of the dp par-
titioning rule. In what follows we analyze how this factor
affects the run-time. Recall that the dp parameter is used to
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stop partitioning if the cluster is considered dense enough. A
high value means that a sparser cluster is acceptable and the
partition can stop, regardless of the cs parameter. The value
zero means that only the cluster size is used as a partitioning
factor. Also, when cs is one, only dp is used as a partitioning
factor. Higher values for dp and/or cs lead to larger clusters.

Figure 10 analyzes the results found for range-1 queries.
For each cs value, the graph shows the dp value that achieved
the best performance. Observe that, when cs is small, a
higher dp is more suited, as a means to prevent the parti-
tioning of clusters that are already small. On the other hand,
when cs is too high, it is better to perform the partitioning,
regardless of the density (dp = 0). The best setting for both
BKT and VPT occurs when only the c¢s rule is applied (dp =0
and cs = 2%). Conversely, the settings where only the dp rule
is applied do not yield good performance (dp = {2 and 3} and
cs =29),

Table 4 reports the results achieved when using the best
cluster size (2°) and a variable dp. Observe that higher dp
values are indeed associated with larger clusters and, conse-
quently, fewer clusters. Also, the search cost is higher when
working with larger clusters. The results indicate that, for
searches with a small radius (like range-1), it is not benefi-
cial to stop partitioning based on the density within a cluster.

4.4 Search Using Top-k

Using a fixed search radius does not necessarily yield results.
If the purpose is to return the closest objects to a query, it
is better to use top-k queries, where & determines the exact
amount of objects to be returned.

Figure 11 shows the results achieved when answering top-
1 queries and using only the cluster size to determine whether
aregion should be subdivided. The first thing to notice is that
top-1 queries are much costlier than range-1 queries. The
best top-1 run-time is approximately 16 times more expan-
sive than the best range-1 run-time. This happens because
top-1 queries access a larger area of the metric space to find
the closest objects, which increases the number of edit dis-
tance operations that need to be performed.

In such a scenario, where a wider region of the space is
accessed, it is better to divide the space into larger clusters,
so that the number of pivots accessed (and consequently, the
internal complexity) is reduced. Indeed, the best results oc-
cur with a cluster size of 32 and do not change meaningfully
when working with even higher values.

It is also interesting to observe that BKT is better than vprT,
as opposed to the results found when working with range-1
queries. This indicates that BKT subdivides the space in a way
that favors queries with a high search radius.

We now compare the best results found with and without
the application of the filtering step ( Table 5), when perform-
ing top-k queries with k=1, k=5, and k=10.

The results resemble the ones found when working with
range queries: i) when no filter is applied, it is better to work
with a reduced cluster size; ii) the filtering step always leads
to a reduced run-time and iii) the savings of the filter does not
deteriorate when working with less-selective queries (except
for using vpT to answer top-10 queries).



time [ms]

800

700

600

500

400

Edit Distance Computations (solid lines)

21 22 23

24

25

26

27

Cluster Size

28

29

210

(@3

>

w

[\

Mergen 2024

Cluster Size

Figure 9. Performance of BKT and VPT answering range queries with d = 1 with variable cluster sizes

strategy filtering query cs bagdistances edit distances time[ms] savings
BKT with  range-1 32 1,091,679 145,414 479 39%
BKT without range-1 1 0 559,022 783

“ver with range-1 32 899332 95,555 360 7650/; ’
VPT without range-1 4 0 675,227 945

“BkT  with range2 128 9,878,579 398,423 3,047 7650/; ’
BKT without range-2 1 0 5,659,316 7,923

“ver with range2 64 9,880,634 < 416,718 3,073 77370/; ’
VPT without  range-2 8 0 8,091,596 11,328

“BkT  with range-3 256 19,668,196 1,025,333 6,392 76;0/; ’
BKT without range-3 1 0 14,046,396 19,665

“ver  with range-3 128 21,912,599 1,000,368 6,922 77570/; ’
VPT without range-3 16 0 19,684,548 27,558

Table 3. The run-time implications of using the Bag Distance Filtering for searches with varying ranges.
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20
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edit distances

BKT
145,414
145,411
141,749
131,102
113,895
96,781
72,509
48,064
28,126
18,318
12,737

VPT
95,555
95,547
92,463
82,422
66,653
54,272
40,713
28,485
19,377
13,412

9,316

bag distances

BKT
1,091,679
1,091,694
1,126,023
1,338,622
1,915,367
3,159,870
4,852,233
6,661,166
8,641,524

10,031,150

10,867,343

VPT
899,332
899,368
93,7199

1,205,645
1,826,782
2,886,307
6,603,336
8,094,252
17,732,148
19,855,847
21,204,969

time to search[ms]

BKT
479
479
482
521
642
932

1,324

1,746

2,217

2,553

2,756

VPT
360
360
366
419
554
803

1,721

2,080

4,496

5,022

5,357

Table 4. Performance of BKT and VPT answering range-1 queries with 2° as the cluster size and a variable sparsity parameter (dp).
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strategy filtering  query cs bagdistances edit distances time[ms] savings
BKT with  top-1 512 22,501,551 428,206 6,270 65%
BKT without  top-1 1 0 12904916 18067

“ver with  top-1 128 25,980,943 1,018,298 7973 ;7:, A; ’
VPT without  top-1 32 0 25,182,564 35,256

“BkT with  top-5 512 33,779,608 ¢ 988,092 9,896 89; A: ’
BKT without  top-5 1 0 22,845,512 31,984

“ver with  top-5 256 32,061,814 1,898,893 10,738 ; 5; /(: ’
VPT without  top-5 32 0 30234898 42,329

“BkT  with  top-10 1024 36,536,033 1,200,562 10888 89; A: ’
BKT without  top-10 1 0 25,432,347 35,605

“ver with  top-10 256 33,798,410 2,647,826 12,224 £3; A; ’
VPT without  top-10 32 0 32,086,578 44,921

Table 5. The Run-time Implications of the Bag Distance Filtering for Searches with a Varying Top-k.
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Figure 10. Performance of BKT and VPT answering range-1 queries with a
variable cluster size. The label over the marks indicates the best dp value.

Using the dp partitioning rule: Figure 12 analyzes how
the usage of the dp parameter affects the run-time. For each
cluster size, the graph shows the dp value that achieves the
best performance. Recall that this parameter acts as a way to
prevent over-partitioning the space.

The figure suggests that top-1 queries benefit from larger
clusters when compared to the results found when using
range-1 queries. In other words, queries with a high search
radius (like top-1 queries) are more efficient in settings where
the partitions are not too small, and a higher dp value helps
achieve a more suited arrangement, especially for BKT.

It is also worth noting that the best vpT results do not ben-
efit from the clusters density (dp = 0). On the other hand,
BKT relies on the dp factor to achieve higher efficiency for
all defined cluster sizes. This happens because BKT clusters
are smaller than the vpT clusters (as presented in Section 4.1).
Hence, the dp parameter is more important as a partitioning
stopper to BKT than it is to veT. However, it works best when
used along with a proper cs value.

Figure 13 reports the results achieved when using the best
cluster size for Bk1(2°), vp1(27) and a variable distance to
pivot. Corroborating our findings, the vpT does not benefit
from the dp factor. On the other hand, the density is impor-
tant to stop partitioning the space when using BKT. The results
show that there is an optional dp value (4). The run-time is
approximately 10% lower than the BT solution that does not
use the dp value and approximately 30% lower than the best

VPT solution.

To summarize the importance of the dp parameter for BKT
when answering top-k queries, Table 6 compares the best set-
tings with the density value (dp > 0) and without the density
value (dp = 0). Observe that the usage of the density param-
eter to partition the space represent savings in the elapsed
time when compared to settings that do partition based on
dp.

When analyzing the strategies that rely on dp, it is also im-
portant to notice that, as k grows, it is better to use a higher
dp value, which leads to larger clusters. Curiously, when
compared to top-1, the top-5, and top-10 queries use smaller
clusters. This demonstrates that the density is also an impor-
tant feature when defining the clusters formation. The higher
external complexity of working with a lower cluster size is
counterbalanced by the lower internal complexity of work-
ing with denser clusters. This translates into a more efficient
setting, at least for top-k queries.

5 Concluding Remarks

This paper investigates how the density and size of clusters
impact the performance of string similarity search when bag
distance filtering is used over in-memory metric trees.

To enable a consistent evaluation, two metric trees were
extended: BkT and vpT. Our extended vpT brought stability to
the index construction when the cluster size is small. This is
an important fix since it enabled a more consistent compari-
son that includes very small clusters. On the other hand, our
extended BkT allows clusters to be formed, contrasting with
the original solution that supports a single object per node.
This proves to be beneficial both in index construction and
search.

Two types of queries were tested: fixed-range queries and
top-k queries. The latter tends to be more expensive, since
the search radius necessarily starts with a high value, leading
the search to access more objects.

Our evaluation confirmed the expectations that clusters
have a direct impact on performance. Also, the best clus-
ter formation is highly dependent on the search radius. The
performance of the fixed search radius deteriorates when cs
is greater than 32. On the other hand, top-1 queries are more
resilient concerning larger cluster sizes. Since more objects
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Figure 11. Performance of BKT and VPT answering top-1 queries with variable cluster sizes.
strategy  dp cs average cluster size bag distances edit distances time[ms] savings
top-1 0 512 106 22501551 428206 6270 8.50%
Jfopl 4 512 114 20609031 388072 5737 T
top-5 0 512 106 33779608 988092 9896 9.98%
Jfops 5 26 __ 68_ 20621981 1031166 8908 777
top-10 0 1024 196 36536033 1200562 10888 9.63%
top-10 5 256 68 31160065 1419318 9839 20
Table 6. The Implications of the dp Partitioning Rule for Searches with Varying Top-k using BKT
.10% end up being accessed, the larger clusters reduce the internal
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Figure 12. Performance of BKT and VPT answering top-1 queries with
variable cluster sizes. The label over the mark indicates the dp value that
achieved the best results.
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Figure 13. Performance of BKT and VPT answering top-1 queries with a
variable distance to pivot (dp).

complexity cost.

We have seen that the density (measured by the distance
of the objects to their respective pivot) becomes valuable in-
formation for top-k queries. The usage of a proper dp value
helps to stop clusters to be over-partitioned. The benefit ap-
pears for BKT since VpT trees tend to form larger clusters by na-
ture. The results show that BT is approximately 10% faster
when dp is used. This is a significant result, considering that
top-k queries tend to be more expansive than fixed-range
queries. We would like to highlight the existence of opti-
mized strategies designed for executing top-k queries, which
function effectively under certain assumptions. One such as-
sumption is the ability to return results as they are discovered,
which is particularly valuable for partial sorts Hjaltason and
Samet [1999]. In future work, we plan to investigate and
delve deeper into these specific scenarios.

To conclude, the experiments suggest that the filtering is
more suited to in-memory metric trees than to secondary stor-
age since the size can be set to a proper value, unlike non-
volatile mechanisms that must conform to a fixed size. This
conclusion was drawn from experiments conducted in the
string domain. However, our findings can prove beneficial
for other domains too. This possibility arises when there are
available cost-effective functions that serve as lower bounds
for the distance metric used to construct the metric space.

We also note that the bag distance is by itself a metric Deza
and Deza [2009]. Hence, instead of using the bag distance
just for filtering, we can create a metric space defined in
terms of the bag distance, and leave the edit distance just
for the validation phase. The possible impact of the metric
space transformation on string similarity search is a question



that deserves further investigation.
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