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Abstract The popularization of sensoring and connectivity technologies like 5G and IoT are boosting the generation
of data streams. Such kinds of data are one of the last frontiers of data mining applications. However, data streams
are massive and unbounded sequences of non-stationary data objects that are continuously generated at rapid rates.
To deal with these challenges, the learning algorithms should analyze the data just once and update their classifiers
to handle the concept drifts. The literature presents some algorithms to deal with the classification of multiclass
data streams. However, most of them have high processing time. Therefore, this work proposes a XGBoost-based
classifier called AFXGB-MC to fast classify non-stationary data streams with multiple classes. We compared it
with the six state-of-the-art algorithms for multiclass classification found in the literature. The results pointed out
that AFXGB-MC presents similar accuracy performance, but with faster processing time, being twice faster than
the second fastest algorithm from the literature, and having fast drift recovery time.
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1 Introduction

The generation of digital data streams is getting more com-
mon at the same pace as the sensoring and connectivity tech-
nologies are becoming widely applied. This phenomenon
is especially driven by technologies like smart devices (e.g.
smartphones), IoT (Internet of Things) and 5G. In the con-
temporary world, the possibility of making appropriate busi-
ness decisions on the basis of knowledge hidden in large
amounts of data is one of the critical success factors for or-
ganizations [Krawczyk et al., 2017]. Considering the large
amount of available data, Data Streams are one of the last
frontiers to mining data in order to take more appropriate de-
cisions.
Some scenarios of application of data streams mining in-

clude data generated by sensor networks, meteorological sta-
tions, stock markets, computer networks, traffic control sys-
tems, ubiquitous computing, GPS and mobile device track-
ing, user’s click log and sentiment [Krawczyk et al., 2017;
Silva et al., 2013]. However, data streams have special
characteristics that distinguish them from other ordinary
datasets. They are massive and unbounded sequences of
non-stationary data objects that are continuously generated
at rapid rates [Aggarwal, 2006; Gama and Gaber, 2007]. The
non-stationary phenomenon, also known as concept drift,
means that the concept about each data may shift from time
to time, each time after some minimum permanence[Silva
et al., 2013].
In order to deal with the concept drift manifestation, the

models need to be trained in an online fashion by pro-
cessing data sequentially when they arrive, incorporating
their knowledge into the model through continuous updates
[Fields et al., 2019]. In machine learning, model is the name

given to the result of the training process. The model gener-
alizes the patterns contained in the training dataset and thus
it can be used to predict the output pattern of new instances
of data. To the multiclass classification, the pattern is the
instance class. However, to obtain the maximum precision
in the shortest time possible, the models have to be rapidly
updated as soon as the data arrive through the stream [Bifet
et al., 2018; Gomes et al., 2017]. By doing so, the models
are ready to handle the drifts once they appear, keeping high
precision in the prediction process.
The literature presents some state-of-the-art algorithms for

data stream analysis that handle concept drift. Some ex-
amples are: Adaptive Random Forest (ARF)[Gomes et al.,
2017], Hoeffding Adaptive Trees (HAT) [Bifet and Gavalda,
2009], Leveraging Bagging (LbHT) [Bifet et al., 2010], Oza
Bagging (ObHT) [Oza and Russell, 2001], Self Adjusting
Memory KNN (SAMKNN) [Losing et al., 2016a], and Im-
proved Online Ensembles (IOE) [Vafaie et al., 2020].
However, despite they present quite suitable precision,

most of them consume a considerable amount of process-
ing time. This happens because either they create ensemble
learners, such as ARF, LbHT, ObHT and IOE, or have high
computational complexity, like in the SAM-kNN, which is
based on the KNN approach [Deng et al., 2016].
In contrast to the aforementioned algorithms, eXtreme

Gradient Boosting (XGBoost) is a boosting-based algorithm
that uses decision trees as weak learners, creating each in-
dividual tree in parallel, thus decreasing the overall ensem-
ble training time and, hence, improving its time performance
[Santhanam et al., 2016; Chen andGuestrin, 2016]. Boosting
algorithms are iterative processes that evaluate the models’
prediction and increase the weight of samples with predictive
error in order to improve the learning on them in the creation
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of the next weak learner, improving the final prediction result
[Schapire, 1999; Ferreira and Figueiredo, 2012]. Despite its
fast processing characteristic, XGBoost was not conceived to
deal with data stream. By nature, it does not have the ability
of online updating its models during data stream processing.
As consequence, it is not prepared to treat concept drift.
However, in [Montiel et al., 2020] it was developed a

method called AXGB that creates an ensemble of XGBoost
which updates the model by replacing one of them by a new
one whenever a data stream chunk is processed. The data
streams are consumed using an adaptative sliding windows
mechanism. To actively deal with the concept drift, the au-
thors propose to use the ADWIN mechanism. The main
drawbacks of this work are that it uses an ensemble of ensem-
bles, as XGBoost is already an ensemble, which increased
quite a lot its processing time, and it works only to predict
binary classification. Classification is the machine learning
task devoted to assigning a discrete/categorical label to a new
unlabeled instance based on the prediction of a model created
with past labeled instances, called training set. Based on the
work of [Montiel et al., 2020], in [Baldo et al., 2022] it was
proposed a method called AFXGB that trains a new weak
learner of an existing XGBoost for each incoming chunk of
data, until it consumes a certain amount of computational re-
sources and, then, substitutes the existing XGBoost model
to a new one that started to be trained in the last processed
chunks. The AFXGB has the advantage to process the data
stream considerably faster than AXGB, but it is also limited
to performing binary classification and does not actively treat
the concept drift. It means that it does not use any active
mechanism such as ADWIN, for instance.
In this work, we propose an extension of the method pro-

posed by [Baldo et al., 2022], called Adaptive Fast XGBoost
for Multiclass Classification (AFXGB-MC), to classify non-
stationary data streams with multiple classes. To do so, it
is proposed to substitute the learning objective function and
refactor the algorithm entirely to support multiclass classifi-
cation processing. Also, to deal with concept drift, it is ap-
plied an active drift detection algorithm, which implements
a reset mechanism to reduce the size of the sliding window.
This reset forces the method to intensify the learning process
when a concept drift is detected. The proposed method was
compared with other algorithms presented in the literature to
access its accuracy and processing time performance.
The next sections are organized as follows. Section 2

presents the state-of-the-art learning methods to multiclass
classification. Section 3 details the proposed method and
its main characteristics. Section 4 assesses the results ob-
tained by the experiments performed over synthetic and real
datasets. Finally, section 5, presents the conclusion and fu-
ture works.

2 Related Works
This section presents an overview of the state-of-the-art pre-
sented in the literature concerning multiclass classification
algorithms of data streams, highlighting their benefits and
drawbacks. It also presents a comprehensive review of the
existing approaches to actively deal with concept drift.

The review starts detailing the algorithms proposed to
perform multiclass classification of data streams. The first
one analyzed is Hoeffding Adaptive Trees (HAT) [Bifet and
Gavalda, 2009]. It was developed to improve the Hoeffding
Tree by allowing it to adaptively learn from data streams that
change over time, without requiring a fixed sliding window
size. Additionally, it eliminates the necessity of storing the
samples of the current sliding window, which reduces mem-
ory consumption. Finally, it uses the ADWIN as drift active
detection mechanism.
Another important algorithm is the Adaptive Random

Forests (ARF) [Gomes et al., 2017]. It is an online boot-
strap aggregating algorithm based onRandomForests, which
limits each leaf split decision to a subset of features from
the data stream. Random Forests, introduced by [Breiman,
2001], is a popular ensemble learning algorithm that creates
a tree for each pass through the data using a bootstrap ag-
gregating and a random feature selection approach to avoid
overfitting. ARF uses ADWIN and Page Hinkley Test as ac-
tive drift detection mechanisms.
Leveraging Bagging (LbHT) [Bifet et al., 2010] also aims

at creating multiple models, each one trained on a different
random subset of the training data. Similar to the Random
Forest, the idea behind bagging is to reduce the variance of
the final prediction by training multiple models on differ-
ent subsets of the data, and then combining their predictions.
LbHT deals with concept drift using the ADWINmechanism.
It can be parallelized, making it suitable for use with large
datasets or in distributed computing environments.
Besides that, Oza Bagging (ObHT) [Oza and Russell,

2001] is a variant of the traditional bagging ensemble in
which new models are trained online as new data become
available. Therefore, in ObHT new data is continually added
to the training set and used to update the ensemble of models.
This allows the ensemble to adapt to changes in the underly-
ing data distribution and improve its performance over time.
It does not use any active drift detection mechanism.
Self Adjusting Memory KNN (SAM-KNN) [Losing et al.,

2016b] uses a Short-Term Memory (STM) and a Long-Term
Memory (LTM) to separate current and past knowledge into
dedicated memories with different conservation spans. It
combines dedicated models for the current and past concepts
to maximize prediction accuracy. It uses k-nearest neighbors
(KNN) and assumes that new data is more relevant for cur-
rent predictions, thus removing conflicting information from
past concepts while preserving the rest in a compressed for-
mat. It does not use any active drift detection mechanism.
Improved Online Ensembles (IOE) [Vafaie et al., 2020] is

a multiclass online ensemble algorithm that uses sampling
with replacement, while dynamically increasing the weights
of underrepresented classes based on recall, to produce mod-
els that benefit all classes. It identifies if there is a change in
the distribution of the confidence scores, then a flag of drift
is set and a new model is trained based on new data. It uses
ADWIN as the active drift detection mechanism.
Adaptive eXtreme Gradient Boosting (AXGB) [Montiel

et al., 2020] performs only binary classification. It creates a
new XGBoost model and adds it to the ensemble whenever
the dynamic sliding window of data reaches its maximum
size. The maximum number of XGBoost classifiers is fixed
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and the older classifiers are substituted for new ones when
the ensemble is full. It uses ADWIN to reset the sliding win-
dow to its minimum size when a drift is detected to speed up
the ensemble update. Its main shortcoming is the processing
time since it implements an ensemble of XGBoost, which
makes the AXGB quite time-consuming.
Adaptive Fast XGBoost for Binary Classification

(AFXGB) [Baldo et al., 2022] is an algorithm inspired in
the AXGB [Montiel et al., 2020]. Its main difference is the
utilization of only one XGBoost classifier that is updated
with new weak learners trained with the data from the
stream, and which is replaced by a new XGBoost whenever
the former achieves a certain amount of computational
resources consumption. It does not use any active drift
detection mechanism. It considerably reduces the process-
ing time when compared to the AXGB, keeping the same
average accuracy. Its main shortcoming is the reduction
in the accuracy when the XGBoost is substituted and the
limitation of only performing binary classification.
Regarding concept drift detection mechanisms, ADWIN

is one of the most utilized. It divides the data stream into a
sequence of sliding windows and looks for a difference be-
tween two cuts higher than a threshold [Bifet and Gavaldà,
2007]. When this happens, a drift is detected and a new
model is trained based on new data [Lu et al., 2019]. The
difference is detected by comparing the mean and standard
deviation between the two cuts.
KSWIN is a method for detecting concept drift based

on the statistical test of Kolmogorov-Smirnov (KS) [Lopes
et al., 2007]. KSWIN adds the arrived data in a sliding win-
dow that has a fixed size, removing the old data when the slid-
ing window is full, and executes the change function, which
informs whether the drift is detected or not [Togbe et al.,
2021]. KSWIN has a constraint to be a one-dimensional
method. However, data streams can be multidimensional, so
it is important to use a method that supports N-Dimensions
data.
Drift Detection Method (DDM) assumes that when the

data distribution is stable the model error decreases during
the time and vice-versa [Abbaszadeh et al., 2015]. It has two
stages of detection: the warning level and the change level
[Krawczyk et al., 2017]. When it detects that the error rate
within the window has reached the warning level, it starts
building a new learner, but continues using the old learner. If
the change reached the concept change level, the old learner
is replaced by the new learner [Lu et al., 2019].
The Page-Hinckley detector (PHT) is a memoryless, cu-

mulative approach to monitoring learner performance over
time. PHT is an adaptation of the detection of abrupt change
in the average of a Gaussian signal. It works by accumu-
lating the difference between the observed values and their
average until the current moment. Whenever the average ex-
ceeds a threshold defined as a parameter, a deviation is sig-
naled [Barddal, 2019].
Regarding the literature review, it is perceived that most

of the learning algorithms use ADWIN as the drift detec-
tion mechanism. This can be partially explained by the fact
that ADWIN, unlike other window-based drift detection al-
gorithms, does not require the window size to be defined as
a hyperparameter. This makes ADWIN potentially less sen-

sitive to changes in class imbalance [Vafaie et al., 2020].
Table 1 summarizes the main aspects of the related works.

For each reviewed algorithm, it is presented its underlying ar-
chitecture (single or ensemble) and the active drift detection
mechanism applied.

Table 1. Underlying architecture of all algorithms considered in the
study
Algorithm Base learner Drift detection
HAT Single ADWIN
ARF Ensemble ADWIN and Page Hinkley
LBHT Ensemble ADWIN
OBHT Ensemble –
SAMKNN Single –
IOE Ensemble ADWIN
AXGB Ensemble ADWIN
AFXGB Ensemble –

In the reviewed works, there are quite a few ones that
address multiclass classification for data streams. Besides
that, most of them are based on ensemble models, which are
more time-consuming than single learners. However, [Baldo
et al., 2022] proposed an algorithm based on the ensemble
XGBoost to speed up the binary data stream classification.
XGBoost is a prominent ensemble algorithm to be applied
due to its fast processing time. Considering the concept drift
detection, most of them utilize ADWIN. Therefore, in this
work we adapt and extend the AFXGB [Baldo et al., 2022]
to support multiclass classification, maintaining competitive
accuracy with considerably lower processing time.

3 Proposed Method
The proposed method, called AFXGB-MC, explores the ben-
efit of XGBoost concerning fast model induction to perform
multiclass classification of data streams. As it can be seen in
Figure 1, AFXGB-MC uses a similar approach as in AFXGB
[Baldo et al., 2022] of replacing the current XGBoost model
after a certain period, preventing it from consuming more
computational resources than expected, and becoming slow
and even overfitted. However, besides that, AFXGB-MC in-
cludes a mechanism that resets the size of the sliding window
to its minimum when the current model is replaced. This ac-
celerates the model’s update, because as shorter as the win-
dow is more often themodel is updated, which can contribute
to keep or even increase its accuracy, since the stream is not
stationary and thus can present concept drift. This behavior
is presented by arrow numbers 1 and 3 of Figure 1.
Besides that, in order to improve drift detection the pro-

posed method added the ADWIN mechanism. Therefore,
AFXGB-MC can actively detect when drifts occur in the
non-stationary data stream. When ADWIN detects a con-
cept drift, the size of the sliding window is also reset to its
minimum size. By doing this, the algorithm accelerates the
model’s update, leading to a faster assimilation of the new
data distribution. This behavior is presented by arrow num-
ber 2 of Figure 1.
Moreover, unlike AFXGB [Baldo et al., 2022] that trains

a new weak learner once the sliding window is full, AFXGB-
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MC updates all the weak learners already trained and belong-
ing to the XGBoost ensemble. With the introduction of this
feature not only the last trained weak learner will be aware
of the characteristics of the newest data, but also the older
weak learners will partially incorporate the characteristics of
the newest data.
Finally, to perform the multiclass classification as pro-

posed, the objective function of the XGBoost was changed
from binary logistic to multi softmax. Besides that, the eval-
uation metric was switched from logloss to mlogloss and the
hyperparameter number of classes from the data stream was
included.
The proposed algorithm does not deal with outliers detec-

tion. Indeed, this is a limitation of tree-based learning algo-
rithms, because this class of machine learning algorithms is
not tolerant to outliers presented in the training dataset.

3.1 Implementation

Algorithm 1 presents the pseudo-code of the proposed
method depicted in Figure 1. It starts adding into the slid-
ing window W the instances that are arriving from the data
stream (line 1). Then, it checks if the window has reached its
capacity w (line 3). If so, then it is made a copy of the first
w instances from window W to window W ′ (line 4), and the
current and next Models are loaded (lines 5 and 6).
After that, it is checked if there is a classifier already

built (line 7). If not (line 29), a new XGBoost classifier is
trained and saved for later updates (line 30 and 31). How-
ever, if there is already a trained XGBoost classifier, if
model_update is True (line 25) the existing weak learners
are updated (line 26), a new weak learner is trained and the
XGBoost classifier is saved for later updates (lines 27 and
28).
Depending on howmany windows are processed, it is nec-

essary to start training a new classifier to substitute the cur-
rent classifier later on. Therefore, when the time of training
the current XGBoost classifier overpasses a predefined pe-
riod of time (line 8), a new XGBoost classifier needs to be
trained. If a new XGBoost classifier already exists (line 10),
if model_update is True (line 11) the existing weak learners
are updated (line 12), a new weak learner is trained and the
XGBoost (lines 13) and the new XGBoost classifier is saved
for later updates (line 14). Otherwise, a new XGBoost clas-
sifier is trained and saved for later updates (lines 16 and 17).
However, if the current classifier reaches its lifetime (line

18), it is replaced by the new classifier (line 20) and the pro-
cessed sliding window counter is reset (line 22). If the active
reset is True (line 23), then the size w of the window is reset
to its minimum value (line 24).
Also, for each processed sliding window, if the concept

drift detection is on (line 32), the ADWIN verifies if a drift
is detected (lines 33 to 35) and then the sizew of the window
is reset to its minimum value (line 36).
Finally, the sliding window is shifted (line 37), the counter

count of processed sliding window is increased (line 38) and
the size w is increased if there was not reached the max win-
dow size (lines 39 and 40).

Algorithm 1: Adaptative Fast XGBoost for Multi-
class Classification – AFXGB-MC
Input: (x, y) ϵ Data Stream
Data: max_w = max window size, W = sliding

window, lifetime = lifetime of each classifier,
training_time = training time of each classifier,
count = count how many sliding window was
consumed

1 Adds (x, y) to window (W );
2 count← 0;
3 if |W | > w then
4 W ′ ← copy the first wth data from W ;
5 load_previous_M_model(M); # M can not exist

and be NULL
6 load_previous_nextM_model(nextM ); # nextM

can not exist and be NULL
7 if M ̸= NULL then
8 if training_time ≥ (lifetime - count) then
9 # Check if it is inside the training time of

next classifier
10 if nextM ̸= NULL then
11 if model_update = True then
12 nextM← update_nextM(W ′);
13 nextM←

train_new_tree_nextM(W ′);
14 save_nextM(nextM); # Saves nextM

model updated;
15 else
16 nextM← train_new_classifier(W ′);
17 save_nextM(nextM); # Save new

nextM model recently trained;
18 else if count ≥ lifetime then
19 # Reset count and start to use the new

classifier
20 M← nextM;
21 nextM← NULL;
22 count← 0;
23 if active_reset = True then
24 w← 0;
25 if model_update = True then
26 M← update_M(W ′);
27 M← train_new_tree_M(W ′);
28 save_M(M); # Saves M model updated;
29 else
30 M← train_new_classifier(W ′);
31 save_M(M); #Save new M model recently

trained
32 if detect_drift = True then
33 incorrect_class← not(M.predict(X) = y);
34 ADWIN.add(incorrect_class);
35 if ADWIN.drift_detection = True then
36 w ← 0;
37 W ←W −W ′;
38 count← count + 1; # Increase the number of

processed sliding window
39 if w < max_w then
40 w ← w + 1;
41 returns M ;
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Figure 1. Alternating classifiers method. Dynamic window size is represented by mini-batches and change of color represents concept drift. Arrows 1 and
3 highlight the window size reset caused by the model replacing and arrow 2 highlights the window size reset caused by drift detection.

3.2 Hyperparameters
The proposed algorithm presents some hyperparameters that
need to be fine-tuned. A short description of them is pre-
sented below.

• Learning Rate (eta): A value between 0 and 1 that
states how fast the model will learn from the processed
data when a new weak learner is induced.

• Maximum depth (max_depth): The maximum depth
of a weak learner tree can reach. This value uses to
range from 2 to 10.

• Maximum window size (max_window_size): An inte-
ger value that defines the maximum size of the sliding
window that stores the data arrived from the stream.

• Classifier lifetime (lifetime): An integer value that de-
fines the lifetime of the current XGBoost model before
being substituted.

• Training time (training_time): An integer value that
defines the training time of each auxiliary classifier.
This value uses to range from 60% to 80% of the cur-
rent XGBoost model’s lifetime.

• Concept drift (detect_drift): A boolean value that de-
termines whether the ADWIN is used.

• Number of classes (num_classes): An integer value
that determines howmany classes are in the data stream.

4 Results Assessment
This section describes the results of the experiments per-
formed using AFXGB-MC. The proposed method was com-
pared with the algorithms state-of-the-art stated in the liter-
ature and presented in section 2. This section is organized
as follows. Subsection 4.1 outlines the methodology used to
perform the experiments, subsection 4.2 details used datasets,
subsection 4.3 shows the assessment results of the different
flavors of AFXGB-MC and, finally, subsection 4.4 presents
the assessment comparison regarding accuracy and process-
ing time between the algorithm proposed in this work and the
state-of-the-art algorithms from the literature.

4.1 Assessment Methodology
The assessment of accuracy and processing time between
AFXGB-MC and the algorithms from the literature wants to
identify if the proposed algorithm can create accurate classi-
fiers with lower processing time. However, first, it is neces-
sary to select a comprehensible and robust bunch of bench-
mark datasets to perform the assessments. We selected some

of the most utilized datasets in the literature revised in sec-
tion 2. More details about the selected datasets can be found
in subsection 4.2.
AFXGB-MC algorithm has some features that can be

switched on or off and which impact its performance. There-
fore, it is necessary to identify the most suitable configu-
ration of AFXGB-MC algorithm to use in the comparison
tests. This analysis was performed with the same benchmark
datasets selected previously. This assessment is detailed in
subsection 4.3.
Having the most suitable AFXGB-MC configuration de-

fined, it is performed the accuracy and processing time
assessment between AFXGB-MC and the state-of-the-art
algorithms in the literature. AFXGB-MC was compared
with other six multiclass classification algorithms for data
streams, which are: ARF [Gomes et al., 2017], IOE [Vafaie
et al., 2020], HAT [Bifet and Gavalda, 2009], LBHT [Bifet
et al., 2010], OBHT [Oza and Russell, 2001] and SAMKNN
[Losing et al., 2016a]. This comparison analysis is presented
in subsection 4.4.
The evaluation method selected is the Prequential Evalua-

tion, where the data are analyzed sequentially as they arrive
through the stream. The experiments were executed 5 times
for each algorithm and dataset to obtain the average accuracy
and processing time. The hyper-parameters chosen for ARF,
IOE, HAT, LBHT, OBHT and SAMKNN were set based on
the recommendations of the respective literature. The hyper-
parameters of AFXGB-MC were defined after a broad set
of empirical experiments which presented the following val-
ues: Number of Estimators = 30, Learning Rate = 0.3, Max
Window Size = 10000, Max Tree Depth = 6, Lifetime = 25,
Training time = 15.
The experiments with all the assessed algorithms were

executed in the following environment: Intel® Core™ i7-
11700 (8 cores, 16MB cache, up to 4.9GHz); with 32GB (2
of 16GB) of memory (DDR4, UDIMM, non-ECC memory);
with 512 GB of M.2 Class 40 SSD storage; running Ubuntu
20.04.4 LTS (CLI Server); Linux 5.4.0-113-generic. The
AFXGB-MC algorithm was implemented in Python 3, the
IOE implementation was obtained with the authors [Vafaie
et al., 2020] and the implementation of the other assessed
algorithms are available in the Scikit-Multiflow library of
Python [Scikit-Multiflow, 2020a].

4.2 Datasets
To perform the experiments, we select a broad set of syn-
thetic and real datasets. The usage of synthetic datasets in-
tends to execute controlled experiments concerning the as-
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sessment of concept drift detection and recovery. On the
other hand, the usage of real datasets aims to assess the per-
formance of the proposed algorithm in real-case scenarios.
The synthetic datasets were created using stream generators
available in the Scikit-Multiflow library of Python [Scikit-
Multiflow, 2020b]. The real datasets were extracted from
UCI Machine Learning Repository [Dua and Graff, 2017].
Table 2 summarizes the datasets selected to execute the ex-

periments. The synthetic datasets used are generated with the
following functions: LED, Random RBF and SEA. For each
generation function were created two synthetic datasets, one
with gradual concept drift and another with abrupt concept
drift. The drifts were positioned every 100.000 instances.
The real datasets used are the following: Gas Sensor, Poker
Hand, KDD Cup 1999, Covertype and Winnipeg [Dua and
Graff, 2017]. Both synthetic and real datasets were selected
due to their wide application in the experiments of the liter-
ature reviewed. The execution of the experiments over the
selected datasets was run 5 times because the whole bunch
of 5 executions with 7 algorithms in 11 datasets spent more
than 14 days.

Table 2. Datasets used on the experiments. Concept drifts: Abrupt
(A) and Gradual (G).
Dataset Instances Attributes Classes Real
LED_A 500000 24 3 no
LED_G 500000 24 3 no
RBF_A 500000 10 3 no
RBF_G 500000 10 3 no
SEA_A 500000 3 2 no
SEA_G 500000 3 2 no
GAS 13910 128 6 yes
POKER 1000000 11 10 yes
KDDCUP99 311029 41 23 yes
COVERTYPE 581012 54 7 yes
WINNIPEG 325834 175 7 yes

4.3 AFXGB-MC Sensitivity Analysis

AFXGB-MC algorithm has two features that can be switched
on or off and may bring benefits in certain data stream pro-
cessing scenarios. These features are the Drift Detection (D-
act./D-inact), which determines if the ADWIN is executed to
identify a concept drift, and the Model’s Update (U-act./U-
inact.), which determines if the weak learners inside the XG-
Boost classifier are updated with the new data coming from
the stream when active.
Considering that there are two features with two possible

states, we have four different AFXGB-MC setup options to
analyze. Therefore, to assess which is the most competitive
setup among the four possible ones, we perform a sensitivity
analysis of them using the 11 datasets shown in Table 2.
Table 3 presents the average accuracy for 5 executions

of the four different setups. The highest accuracy for each
dataset is highlighted, and the algorithm’s corresponding
ranking is placed next to its accuracy. The ranking is cal-
culated by ordering the accuracy values of all algorithms for
a given dataset, where rank 1 represents the algorithm with
the highest accuracy and rank 4 with the lowest one.

To ensure whether there is a statistically significant dif-
ference in the results presented by the assessed setups of
AFXGB-MC algorithm, we performed the Friedman Test.
Considering a significance value of 95%, the Friedman test
presented a p-value of 0.0065, which rejects the null hypoth-
esis. This means that the differences in the accuracies pro-
duced in the experiments are statistically significant. How-
ever, to determine if there is a significant difference among
the rankings we applied the Nemenyi post-hoc pair-wise sta-
tistical test. Nemenyi calculates the CD (Critical Difference),
which indicates that whether two algorithms have a rank-
ing difference greater than the CD, it can be assumed that
they have different rankings. For the ranks presented in Ta-
ble 3, the Nemenyi test resulted in a CD of 0.63. The pair-
wise comparisons among the four setups of AFXGB-MC are
shown in Figure 2.

Figure 2. Nemenyi test of the four AFXGB-MC flavors

As can be seen in Figure 2, the Nemenyi calculated with
the ranking of the four AFXGB-MC setups indicates that
AFXGB-MC with Active Drift Detection (D-act.) and Ac-
tive Model’s Update (U-act.) has the best ranking, with a
significant difference. AFXGB-MC with Active Drift De-
tection (D-act.) and Inactive Model’s Update (U-inact.),
and with Inactive Drift Detection (D-inact.) and Active
Model’s Update (U-act.) did not present significant differ-
ences. Finally, AFXGB-MC with Inactive Drift Detection
(D-inact.) and Inactive Model’s Update (U-inact.) presented
the worst performance, with a significant difference. There-
fore, AFXGB-MC with D-act. and U-act. is the selected
setup to be used in the comparison with the algorithms from
the literature.

4.4 Algorithms Comparative Analysis
This section presents the comparison analysis performed be-
tween AFXGB-MC and the state-of-the-art algorithms for
multiclass classification encountered in the literature. The
selected flavor of AFXGB-MC was with D-act. and U-act.
It was compared with six different algorithms, which are the
state-of-the-art concerning multiclass classification of data
stream. Section 4.4.1 presents the accuracy analysis and sec-
tion 4.4.2 presents the processing time analysis of such com-
parison.

4.4.1 Accuracy Analysis

Table 4 presents the average accuracy for 5 executions of
each algorithm assessed algorithm over the 11 datasets se-
lected. Next to the accuracy value, it is presented inside
parenthesis the algorithm’s ranking for each dataset. The
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Table 3. Average accuracies and rankings of the four AFXGB-MC flavors over the 11 datasets
Dataset D-act. and U-act. D-act. and U-inact. D-inact. and U-act. D-inact. and U-inact.
RBF_A 0.8883 (2) 0.8894 (1) 0.8558 (3 0.7725 (4)

RBD_G 0.8797 (2) 0.8819 (1) 0.8627 (3) 0.7753 (4)

SEA_A 0.9904 (1) 0.9898 (2) 0.9793 (3) 0.9406 (4)

SEA_G 0.9859 (1) 0.9845 (2) 0.9788 (3) 0.9613 (4)

LED_A 0.3592 (2) 0.3215 (3) 0.3602 (1) 0.3186 (4)

LED_G 0.3581 (2) 0.3215 (3) 0.3609 (1) 0.3188 (4)

GAS 0.7260 (1) 0.6827 (2) 0.4658 (4) 0.5820 (3)

POKER 0.6142 (3) 0.5792 (4) 0.6419 (1) 0.6324 (2)

KDDCUP99 0.9872 (1) 0.9834 (2) 0.8391 (3) 0.2139 (4)

COVERTYPE 0.8246 (1) 0.7908 (2) 0.7324 (3) 0.6130 (4)

WINNIPEG 0.9867 (2) 0.9842 (4) 0.9857 (3) 0.9870 (1)

Avg. acc. 0.7818 0.7644 0.7330 0.6469
Avg. rank 1.6 2.3 2.5 3.4

Figure 3. Nemenyi test of the algorithms average rankings

rank ranges from 1 to 7, where 1 represents the algorithm
with the highest accuracy and 7 with the lowest.
The Friedman test considering a significance value of

95%, presented a p-value of 6.85 × 10−7, which rejects the
null hypothesis and ensure that the experiments are statisti-
cally significant. However, to identify if there are significant
differences regarding the average accuracy of the algorithms,
it was applied the Nemenyi test over the algorithms’ average
ranking, resulting in a CD of 1.21. The pair-wise comparison
among the algorithms is shown in Figure 3.
The Nemenyi test presented in Figure 3 shows that LBHT,

ARF, AFXGB-MC and SAMKNN did not present a statisti-
cally significant difference in their accuracy ranking because
their distances are smaller than the CD. However, they pre-
sented a better accuracy ranking than HAT, IOE and OBHT.
This result means that AFXGB-MC can achieve similar re-
sults as the more accurate algorithms presented in the litera-
ture. Therefore, AFXGB-MC can substitute any of the 6 as-
sessed algorithms keeping competitive performance in terms
of accuracy.
When analyzing in detail the average accuracies presented

in Figure 3, it can be seen that LBHT andARF had almost the
same average accuracy and average raking. However, LBHT
had two best accuracies while ARF had just one. AFXGB-
MC had also two best accuracies. Nevertheless, SAMKNN
had four best accuracy performances, being the algorithm
with more best accuracies among them.

Also analyzing Figure 3, concerning only the synthetic
datasets, LBHT, SAMKNN and HAT had two best accura-
cies, which means that they are more suitable to process such
kind of dataset. However, when it is considered the real
datasets, AFXGB-MC and SAMKNN had two best accura-
cies, while ARF had one and LBHT had none. This means
that AFXGB-MC and SAMKNN are more suitable to pro-
cess real data streams, which is a competitive difference, as
processing real data is more useful in practice.

4.4.2 Processing Time Analysis

Table 5 presents the average processing time in seconds of
the 5 executions of each algorithm in processing all the 11
datasets. This table presents the training and the testing times
separately and then sums up both to present the total process-
ing time. The separation of training and testing time aims to
provide a more detailed analysis because it is possible to see
in which part of the process the algorithm is spending more
time.
Figure 4 graphically presents the average processing time

of the 7 algorithms in a cumulative bar chart, where in blue
is shown the average training time and in red the average
testing time. As can be seen, AFXGB-MC had the shortest
average total time of all algorithms. When compared with
SAMKNN, which had the second shortest processing time,
AFXGB-MC is 2.3 times faster. If compared with LBHT,
the algorithm with the best accuracy rank, AFXGB-MC is
51.5 times faster. When compared with ARF, the second best
accuracy algorithm, AFXGB-MC is 22 times faster.
AFXGB-MC spends around 25% of the processing time

with testing, similar to SAMKNN and IOE, which spend
around 23% and 25% of the time doing tests. However, the
algorithm that spends more time in testing is OBHT, taking
around 39% of the time in testing. ARF spends the lowest
testing time, (8%), followed by LBHT (9%) and HAT (16%).
Therefore, concerning processing time, AFXGB-MC is

the fastest algorithm, just having as competitor with similar
accuracy the SAMKNN. Even though, SAMKNN is around
twice slower than AFXGB-MC. The other algorithms with
similar accuracy had processing times too much slower than
AFXGB-MC, which can difficult their utilization in data
stream scenarios where the data arriving rate is too fast.
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Table 4. Average accuracies and rankings for the 7 algorithms assessed over the 11 datasets
Dataset LBHT ARF AFXGB-MC SAMKNN HAT IOE OBHT
RBF_A 0.8957 (2) 0.8556 (5) 0.8883 (3) 0.9289 (1) 0.7675 (7) 0.8812 (4) 0.8475 (6)

RBD_G 0.8934 (2) 0.8521 (5) 0.8797 (3) 0.9266 (1) 0.7809 (7) 0.8790 (4) 0.8436 (6)

SEA_A 0.9951 (1) 0.9941 (2) 0.9904 (3) 0.9819 (5) 0.9867 (4) 0.9657 (6) 0.9545 (7)

SEA_G 0.9903 (1) 0.9889 (2) 0.9859 (3) 0.9771 (5) 0.9832 (4) 0.9609 (6) 0.9519 (7)

LED_A 0.3364 (5) 0.3480 (3) 0.3592 (2) 0.1964 (7) 0.3638 (1) 0.2973 (6) 0.3410 (4)

LED_G 0.3318 (5) 0.3443 (3) 0.3581 (2) 0.1939 (7) 0.3581 (1) 0.2975 (6) 0.3402 (4)

GAS 0.8793 (3) 0.9697 (2) 0.7260 (5) 0.9710 (1) 0.5555 (7) 0.7785 (4) 0.5580 (6)

POKER 0.5854 (2) 0.5373 (3) 0.6142 (1) 0.4928 (6) 0.5195 (5) 0.3474 (7) 0.5308 (4)

KDDCUP99 0.9989 (3) 0.9992 (1) 0.9872 (7) 0.9990 (2) 0.9964 (5) 0.9939 (6) 0.9980 (4)

COVERTYPE 0.9290 (3) 0.9406 (2) 0.8246 (7) 0.9513 (1) 0.8276 (6) 0.9027 (4) 0.8740 (5)

WINNIPEG 0.9813 (2) 0.9813 (2) 0.9867 (1) 0.5991 (6) 0.9572 (5) 0.9765 (3) 0.9611 (4)

Avg. acc. 0.8015 0.8010 0.7818 0.7471 0.7360 0.7528 0.7455
Avg. rank 2.5 2.6 3.2 3.7 4.7 5 5.1

Figure 4. Average training and testing time of all algorithms (in Seconds).

Table 5. Average algorithms’ processing time.
Time (seconds)

Algorithm Avg. training Avg. testing Avg. total
LBHT 95349.84 10303.51 105653.35
ARF 41342.81 3804.15 45146.96
AFXGB-MC 1533.67 516.90 2050.57
SAMKNN 3594.41 1085.42 4679.83
HAT 5488.29 1120.28 6608.57
IOE 39675.44 13588.36 53263.8
OBHT 18184.37 11796.92 29981.29

4.4.3 Concept Drift Recovery Analysis

To assess the ability of the models to recover from concept
drift, we conducted an analysis of their accuracy recovery af-
ter each drift. Figure 5a shows the current accuracy of the
models at the valuation of each arrived instance for the simu-
lation of the RBF_A dataset. Therefore, axis X presents the
number of analyzed instances and axis Y the accumulated ac-
curacy values of the models. As can be observed, AFXGB-
MC demonstrates a fast recovery in accuracy, being the sec-
ond faster algorithm to be recovered in the four simulated
abrupt drifts, losing only to SAMKNN. This can be seen in

more detail in Figures 5b and 5c, which highlight the second
and fourth drifts, respectively.
Table 6 shows the accuracy of all models in four data

points related to the second concept drift of the RBF_A
dataset. Before the drift, at 200k all models have their highest
accuracy. After the drift, at 200.2k there is a significant de-
crease in accuracy of all, where SAMKNN was the one with
less decrement. LBHT, ARF, AFXGB-MC and SAMKNN
were almost fully recovered at 201.4k. At 201.6k, LBHT,
ARF, AFXGB-MC and SAMKNN were recovered, unlike
HAT, IOE and OBHTwhich were still trying to be recovered.
Besides that, AFXGB-MC had a slightly better recovery than
SAMKNN.

Table 6. Accuracy of models before and after the 2nd concept drift
of RBF_A dataset.
Data LBHT ARF AFXGB-MC SAMKNN HAT IOE OBHT
200k 0.93 0.915 0.915 0.935 0.845 0.915 0.92
200.2k 0.245 0.34 0.225 0.63 0.325 0.27 0.17
201.4k 0.815 0.78 0.86 0.92 0.61 0.715 0.445
201.6k 0.83 0.815 0.905 0.91 0.59 0.705 0.46

In contrast, Table 7 displays the accuracy of all models
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Figure 5. In a) accuracy over time for all models on the RBF_A dataset. In b) and c) accuracies of 2nd and 4th concept drifts.

in four data points related to the fourth concept drift of the
RBF_A dataset. Again, all models have their maximum ac-
curacy before the drift at 400k. At 400.2k they presented
a significant loss of accuracy due to the occurrence of drift,
having SAMKNN with the least decrement. SAMKNN has
already recovered from the drift by 402.2k, while AFXGB-
MC recovered from the drift at 403.4k, and the other algo-
rithms are still recovering. In this scenario again AFXGB-
MC was the second fastest model to recover from the drift.

Table 7. Accuracy of models before and after the 4th concept drift
of RBF_A dataset.
Data LBHT ARF AFXGB-MC SAMKNN HAT IOE OBHT
400k 0.95 0.89 0.92 0.935 0.875 0.91 0.915
400.2k 0.3 0.445 0.2 0.6 0.2 0.29 0.22
402.2k 0.81 0.84 0.89 0.925 0.54 0.7 0.57
403.4k 0.77 0.855 0.925 0.94 0.635 0.78 0.58

5 Conclusion
The analysis of data streams is getting even more attention
with the augment of 5G and IoT usage. However, processing
such kinds of data is not a trivial task, especially when con-
sidering that they are continuous, endless and non-stationary.
To deal with these challenges, learning algorithms should
analyze the data just once, discarding them after, update
their classifiers to handle the non-stationary behavior of the
stream, and also detect when a concept drift occurs.
The literature presents some algorithms that can deal with

the classification of multiclass data streams. However, most
of them are slow, prejudicing their utilization in the process-
ing of fast data streams. Therefore, this work proposed the
AFXGB-MC to fast classify non-stationary data streamswith
multiple classes. It uses XGBoost as basis classifier, extend-
ing the approach proposed by [Baldo et al., 2022] to support

multiclass classification. Additionally, the ADWIN drift de-
tection algorithm is used to reset the sliding window size
to intensify the learning process when a concept drift is de-
tected.
To assess the proposed algorithm, we compared it with

the six state-of-the-art algorithms for multiclass classifica-
tion found in the literature. The results pointed out that
AFXGB-MC has similar accuracy to the best three assessed
algorithms, which are LBHT, ARF and SAMKNN, with sta-
tistical significance. Also, it presented a low processing time,
being 2.3 times faster than SAMKNN, 22 times faster than
ARF and 51.5 times faster than LBHT. Finally, it is the sec-
ond fastest algorithm to recover from an abrupt concept drift.
Therefore, as can be seen, AFXGB-MC presents similar

results when considering accuracy performance, compared
with the six most suitable algorithms found in the literature.
However, it is quite faster than those algorithms, present-
ing at least a processing time twice faster than the second
fastest algorithm, and with fast drift recovery time. There-
fore, in scenarios with fast data generation, such as in sensing
networks, with milliseconds of collecting period, algorithms
like AFXGB-MC can provide competitive advantages
As future works, it is possible to improve even more the

learning approach by avoiding substituting the current classi-
fier by applying a slicing in the classifier to exclude the older
weak learners and thus limiting its growth. Besides that, it is
planned to adapt this algorithm to the analysis of data stream
regression.
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