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Abstract This paper presents TRUMiner (Temporal RUles Miner), an algorithm to mine temporal rules from mul-
tivariate time series considering pairs of variables. It provides extended multivariate temporal rules that point the
occurrence of the mined patterns in the original time series. Furthermore, TRUMiner can be used with any dis-
cretization method and deals with missing data and heterogeneous time series datasets, including different number
of variables per time series and distinct number of observations per variable. We evaluated the algorithm on interna-
tional trade multivariate data from several sources. Results show the relevance of extended rules and the algorithm
applicability to heterogeneous time series, simplifying data integration and pre-processing.
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1 Introduction

Data mining is a relevant field, with tens of thousands of
related papers published last year in IEEE only. Its rele-
vance is given by the capacity to discover knowledge from
several sources of massive data. In this context, associa-
tion rules mining presents great interest due to its simplicity,
high explanation potential, and prediction abilities. It pro-
vides valuable knowledge as rules represent causality rela-
tionships between antecedent and consequent [Agrawal et al.,
1993]. Seeking additional information related to the uncov-
ered knowledge, new studies incorporate a temporal feature
to the rules, allowing an understanding of events’ order and
time of occurrence [Segura-Delgado et al., 2020].
Temporal rules mining is commonly applied to time series,

a type of data inherent in various domains such as economy,
health, biology, and geography. Therefore, mining temporal
rules is an efficient means to obtain useful information from
these massive data sources [Han et al., 2011]. An example of
a temporal rule on the economic scenario is “one year after
a rise in import, the country’s GDP also rises with 69% of
confidence”.
Real multivariate time series datasets may come from dis-

tinct sources and havemissing observations andmissing vari-
ables. Therefore, well-known approaches to mine temporal
rules usually require data integration and pre-processing [Ro-
mani et al., 2010; Zhao and Zhang, 2017]. Moreover, most of
them focus on univariate time series [Das et al., 1998; Harms
andDeogun, 2004; Schlüter andConrad, 2011] with some op-
timizations to reduce time complexity [Shokoohi-Yekta et al.,
2015; Xue et al., 2016; Buaton et al., 2021]. We thus propose
TRUMiner (Temporal RUles Miner), previously introduced
in Karasawa and Sousa [2022], to cope with these issues. In
this paper, we include background and problem formaliza-

tion, explore more details about the algorithm and present
additional experimental analysis.
TRUMiner mines multivariate time series from several

data sources. It can handle heterogeneous time series with
missing observations and also missing variables. The algo-
rithm can run with different discretization methods, allowing
the user to choose an adequate discretization for the analy-
sis purposes. TRUMiner returns multivariate temporal rules,
considering pairs of variables, in short and extended format,
with antecedent, consequent, and temporal feature in both
cases. In the extended one, it adds all occurrences of the rule
and the corresponding time intervals in every time series.
This paper is organized as follows: Section 2 summarizes

background concepts of multivariate temporal rule mining
and presents the main symbols we use throughout this arti-
cle (Table 1). Section 3 integrates related work, while the
TRUMiner algorithm is detailed in Section 4 with the pre-
sentation of each process step. Section 5 describes datasets,
results, and analysis of TRUMiner execution over economic
trade data. Finally, in Section 6, we present our conclusion
and directions for future work.

2 Background

Association rules mining seeks to explain and predict data
behavior. It is an implication A ⇒ C where A is the rule
antecedent, and C is its consequent. A and C are itemsets
from transactions in a database, and both belong to a set of
items I such that A∩C = ∅ and A, C ̸= ∅. As a particular
case of association rules, temporal rules are defined as a pair
(A⇒ C, ∆t), where ∆t is a characteristic of the rule named
the temporal feature of A⇒ C [Chen and Petrounias, 2000].
In our approach, the temporal feature describes the exact time
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difference between A and C.
Temporal rules mining can be applied to time series, a set

of observations sorted in time [Box et al., 2015], often real
measurements with variation in regular time intervals [Mitsa,
2010]. A discrete multivariate time series s in a dataset S is

s = obs1, . . . , obsn

with obsi being the i-th δ-dimensional observation, i ∈
[1, ..., n]. We define δ as the number of variables compris-
ing the multivariate time series in S.
Data pre-processing is commonly applied in time se-

ries to obtain understandable association patterns more effi-
ciently [Han et al., 2011], with data discretization as a typ-
ical method. Discretization over a univariate time series
s[varX ] = obsX

1 , . . . , obsX
n of variable X generates a dis-

cretized time series s′[varX ] = αX
t1,tf

, . . . , αX
ti,tn

with L
quantized symbols.
Each symbol α has its beginning and ending time repre-

sented here as a subscript pair ti, tf , respectively. The quan-
tized symbol can represent from a fraction of an observation
up to multiple observations that underwent discretization. In
multivariate time series, the discretization process is applied
to each variable individually.
The quantized symbols of distinct variables from one time

series are combined to obtain the transactions in the multi-
variate scenario. Therefore, a transaction is

([varX , αX
i ], . . . , [varY , αY

j ], . . . ), ∆t,

with each element containing a variable (e.g. varX standing
for variable X) and its respective quantized symbol without
ti and tf (e.g. αX

i where i represents the symbol position
on the discretized time series). The transaction also has the
temporal feature ∆t that indicates the exact time interval be-
tween the element with the first beginning time and the one
with the last beginning time. The temporal feature can be
delimited by a threshold w that indicates its maximum time
span.
From the transactions, a multivariate temporal rule is

([varX , αX
i ], . . . )⇒ ([varY , αY

j ], . . . ), ∆t

where ([varX , αX
i ], . . . ) is the rule’s antecedent and the con-

sequent is ([varY , αY
j ], . . . ). Antecedent and consequent are

from a single transaction and can add up to δ variables. The
beginning time of the consequent symbols cannot be before
the beginning time of the antecedent. The temporal feature
∆t of the rule comes from the transaction temporal feature.
Quality measures from association rules mining, such as

support and confidence, can be extended to evaluate multi-
variate temporal rules by integrating the temporal feature and
the multivariate characteristic. Support is the frequency of
a rule in the whole transactions’ set. Equation 1 presents
multivariate temporal support used in this work, based on
Romani et al. [2010]. The dividend is the frequency of the
rule ([varX , αX

i ], · · · ⇒ [varY , αY
j ], . . . , ∆t) and T is the

number of transactions obtained from the dataset.

sup =
freq([varX , αX

i ], · · · ⇒ [varY , αY
j ], . . . , ∆t)

T
(1)

The rule’s precision is measured by confidence, given by
the frequency of the rule over the frequency of all transac-
tions that generate rules with the same antecedent and tem-
poral feature. Based on Romani et al. [2010], theEquation 2
measures the confidence in multivariate temporal rules.

conf =
freq([varX , αX

i ], · · · ⇒ [varY , αY
j ], . . . , ∆t)

freq([varX , αX
i ], . . . , ∆t)

(2)
Although evaluation measures for multivariate temporal

rules are extensions of association rules measures, values of
support are inherently lower due to the transaction generation
method in the multivariate approach.

Table 1. Table of symbols.

Symbol Description
A Rule antecedent
C Rule consequent
∆t Temporal feature
A⇒ C, ∆t Temporal rule
S Dataset with N multivariate time series
N Number of multivariate time series in S

s Discrete multivariate time series
δ Number of variables in the dataset S

obsX
i

i-th observation of variable X from time
series s

s[varX ] Discrete univariate time series of variable
X

s′[varX ] Discretized univariate time series from
s[varX ]

αX
ti,tf

Quantized symbol from variable X with
beginning time ti and ending time tf

L
Number of quantized symbols in
s′[varX ]

w Maximum time span of rules
sup Support of a temporal rule
conf Confidence of a temporal rule

3 Related Work
There have been several research work on temporal rules
mining, but there is no consensus on standard terminology
or temporal feature usage in the mining process. Here, we
list some of the main contributions involving time series.
In Das et al. [1998], the authors propose the discretiza-

tion of time series by forming subsequences using sliding
windows and grouping. The temporal feature of the rule
is obtained from the number of existing elements between
antecedent and consequent. The MOWCATL algorithm
[Harms and Deogun, 2004] performs rule mining from prede-
termined elements of interest and a fixed or maximum time
window between antecedent and consequent.
Clearminer [Romani et al., 2010] finds association rules in

multivariate series, with antecedent and consequent coming
from different variables. The algorithm allows delimiting the
maximum timewindow to generate rules and returns detailed
rules, containing a sample of the initial, intermediate, and
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final observation of the antecedent and consequent and their
initial and final times.
Schlüter and Conrad [2011] introduced a prototype to

mine temporal rules from univariate time series. Three dis-
cretization methods are evaluated: SAX [Lin et al., 2003]
and two variations of a clustering-based method.
The algorithm proposed by Zhao and Zhang [2017] mines

temporal rules from multivariate series with min-max nor-
malization and groups the obtained patterns in clusters to re-
duce generated patterns. TRiER [Amaral and Sousa, 2019]
extracts temporal exception rules from multivariate series
aiming for the maximum number of variables for each item.
In de Oliveira et al. [2017], the focus is association rule min-
ing in graphs.
Our temporal rule mining solution, the TRUMiner, is

based on the Clearminer approach [Romani et al., 2010], but
we added multiple built-in discretization methods and allow
easy integration of other ones, as desired in Schlüter and Con-
rad [2011], to enable various types of analysis for one dataset.
The extended rules returned are also complete, indicating ev-
ery exact rule occurrence in each original time series. As
with Zhao and Zhang [2017], the TRUMiner discovers mul-
tivariate temporal rules but with no need to group patterns in
the process. Finally, TRUMiner can handle heterogeneous
datasets, with missing observations and missing variables.

4 TRUMiner
The TRUMiner (Temporal RUles Miner) aims to discover
multivariate temporal rules from multivariate time series.
Due to the high growth in time and memory complexity for
each variable added to the rule, in this work we consider pairs
of variables. Given a dataset

S = s1, . . . , sN

with N multivariate time series (s as defined in Section 2),
we describe a transaction from a discretized time series s′ as
a pair of time ordered elements ([varX , αX

i ], [varY , αY
j ]),

with temporal feature ∆t. Each element is composed of a
variable and its quantized symbol, so each variable appears
only in one transaction element. From the generated transac-
tions, a multivariate temporal rule is

[varX , αX
i ]⇒ [varY , αY

j ], ∆t

where the antecedent of the rule ([varX , αX
i ]) is composed

of quantized symbol αX
i in the variable X (varX ), and the

consequent ([varY , αY
j ]) consists of symbol αY

j in varY .
Antecedent and consequent have each a beginning time ti

and an ending time tf , and the temporal feature ∆t is the dif-
ference between the ti of the consequent and the antecedent.
The temporal feature fully integrates the multivariate tem-

poral rule and is therefore considered for rule evaluation.
Support and confidence are straightforwardly computed for
a pair of elements as presented in Equations 1 and 2, re-
spectively.
Typically, two elements combined in a rule have maxi-

mum support of 100%. However, TRUMiner can generate
up to 2 ∗ (w + 1) transactions for each specific element from

a pair of variables, where w is the maximum temporal fea-
ture threshold to obtain rules. Figure 1 exemplifies transac-
tions with an element sample [varX , χ] where χ is a specific
quantized symbol. As each transaction comprises only a pair
of elements, it can be either the first or the second element
in the pair. In each case, [varX , χ] can be involved in up to
(w+1) transactions with distinct temporal feature, totalizing
2 ∗ (w + 1) transactions for this specific element. Thus, mul-
tivariate temporal rules from pair of variables often present
low support compared to association rules.

Figure 1. Transactions for a specific element - [varX , χ].

The rules mined represent relationships between pairs of
variables from multivariate time series. The antecedent and
consequent are from distinct variables, and the temporal fea-
ture is the elapsed time between the antecedent’s beginning
and the consequent’s beginning. Figure 2 shows an overview
of TRUMiner and Algorithm 1 summarizes its main opera-
tions. The process can be split into three major steps: dis-
cretization, transactions generation, and rules evaluation.
The input dataset is composed of distinct sets of univariate

time series, one set for each variable (e.g. a csv file), possi-
bly coming from different sources. The only requirement is
to identify each time series consistently, regardless of the or-
der of the collected data. For instance, we always use “bra”
to refer to Brazil variables. Thus, TRUMiner eases the in-
tegration of variables from multiple data sources into multi-
variate time series. Moreover, as detailed in Section 4.1, our
algorithm can deal with missing variables and observations,
and variable-length time series, thus simplifying the neces-
sary pre-processing.

4.1 Discretization
Figure 2 (a) illustrates the discretization process that trans-
forms the observations of time series si variable X (denoted
by si[varX ]) into a series of quantized symbols (s′

i[varX ])
where si is a multivariate time series from a dataset S with
i ∈ [1, ..., N ] and N being the number of series. The quan-
tized symbols’ type and corresponding time span depend on
the discretization method.
TRUMiner deals with missing observations and variable

length series by storing ti and tf (respectively, the beginning
and ending time of the symbol), allowing quantized symbols
with distinct time span. When the series has missing obser-
vations, the algorithm is able to generate transactions with
existing quantized symbols since it has only to verify if the
beginning and ending time of each symbol to compose the
transaction satisfy the criteria of maximum time span and
minimum beginning time. Thus, the beginning and ending
time of the symbols are used to generate coherent rules, al-
lowing to use heterogeneous datasets.
The TRUMiner approach allows any discretization

method to be used (Algorithm 1 lines 1 - 3), including ones
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Conseq
(s, ti, tf)

Antec
(s, ti, tf)

Temporal Rule

si,0,i1si,0,i1
[varX,I]Þ[varY,D], ∆t = 0
sup, conf si,i1,i2si,i1,i2

......

si,i1,i2si,0, i1[varX,I]Þ[varY,D], ∆t = i1
sup’, conf’ ……

VAR X
arqX.csv

VAR Y
arqY.csv

VAR Z
arqZ.csv

...

Dataset S

Rules
Evaluation

(c)

Example of Extracted Rules

Short version
Extended version

Transactions
Generation(b)

w = i2

si’[varX] I ...
ti = 0
tf = i1

ti = i1
tf = i2

ti = i2
tf = i3

ti = ik
tf = m

I D S

si’[varY] D ...
ti = 0
tf = i1

ti = i1
tf = i2

ti = i2
tf = i3

ti = il-1
tf = il

D S I

(a) Discretization

si’[varX] I ...
ti = 0
tf = i1

ti = i1
tf = i2

ti = i2
tf = i3

ti = ik
tf = m

I D Ssi[varX] obs1 ...
t3 = 2t1 = 0 t2 = 1 tn = m

obs2 obs3 obsn

([varX,I], [varY,D]), ∆t = 0

([varX,I], [varY,D]), ∆t = i1
([varX,I], [varY,S]), ∆t = i2
([varX,I], [varY,S]), ∆t = i2- i1

Figure 2. TRUMiner overview and running example.

with normalization. In this work, we implemented and eval-
uated decis, quartis, SAX, and a variation-based discretiza-
tion. Decis and quartis allow a greater detailing of the obser-
vations behavior, informing the increase or decrease percent-
age from the previous observation. The SAX method [Lin
et al., 2003] is a well-known approach applied in several do-
mains, including economy.
The variation-based discretization generates symbols

from the variation between two or more successive observa-
tions. The symbols can be increase (I), decrease (D), and
stability (S), defined according to user parameters: the max-
imum number of observations to generate exactly one sym-
bol, the maximum difference between two observations to
indicate stability symbol, the minimum number of observa-
tions to be discretized in a stability symbol, and the mini-
mum variation between two symbols of increase or decrease
to maintain both symbols. The last two thresholds select only
relevant behavior in the time series.
Figure 2 (a) shows the variation-based discretization,

where a symbol (e.g. I) can represent up to a set of suc-
cessive observations (e.g. obs1, obs2) with beginning time
ti (e.g. ti = 0) and ending tf (e.g. tf = i1 with i1 an ar-
bitrary time). The beginning time of the following symbol
(e.g. another I) coincides with the ending time of the pre-
vious symbol (e.g. ti = i1), but it is not an obligation and
does not necessarily have the same time span as the previ-
ous symbol. So the values m, ik, il−1, il are arbitrary times,
and they may or may not be coincident, but the value tf of a
symbol must always be equal or bigger than its ti. The decis
and quartis discretizations are suitable for analysis since they
allow a better understanding of variation-based results.

4.2 Transactions Generation

Figure 2 (b) illustrates the transactions generation process
carried by TRUMiner between varX and varY of the dis-

cretized time series s′
i. The value w = i2 sets as i2 the max-

imum beginning time of the second symbol after the begin-
ning of the first symbol. The first transaction generated in the
example is ([varX , I], [varY , D]), ∆t = 0 with the first ele-
ment from the first symbol in s′

i[varX ], the second element
is the first symbol from s′

i[varY ], and the temporal feature is
the difference between ti = 0 of the first element and ti = 0
of the second element.
Given the pair of variables, for each series that contains

both variables, each quantized symbol generated by the dis-
cretization process is combined to each quantized symbol
from the other variable. In this process, it is verified if
tY
i ≥ tX

i and tY
i ≤ (tX

i + w) where tX
i is the beginning

time of the first symbol and tY
i is the beginning time of the

second symbol. For instance, the last symbol of s′
i[varY ] has

ti ≥ i2, so the transaction ([varX , I], [varY , I], ∆t = il−1)
with the first symbol from time series s′

i[varX ] with ti = 0
will not be generated.
After reaching ∆t = i2, no new transaction is accounted

for the first symbol I from varX , so the following sym-
bol in varX (e.g. I) is evaluated. It is relevant to high-
light that the frequency of a transaction with a fixed first el-
ement considers the related temporal feature. For example,
given the transaction ([varX , I], [varY , D]), ∆t = i1, the
freq([varX , I], ∆t = i1) is accounted for each I in varX

that composes a transaction of type [(varX , I), ()] with tem-
poral feature ∆t = i1. The transaction generation step is ex-
ecuted for the pair (varX , varY ) and also for (varY , varX).
Algorithm details are presented in Algorithm 1: lines 4 - 17.

4.3 Support and Confidence

TRUMiner obtains the rules directly from the transactions
generated. The rule’s antecedent is the first element of the
transaction, while the consequent is the second. Multivari-
ate temporal rules are evaluated through adapted support
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and confidence, as detailed in Section 2 (Equations 1 and
2). A rule’s frequency is the number of rules generated
with the same antecedent, consequent, and temporal feature
(Algorithm 1: lines 18 - 20).
The rules are returned above a minimum support (supmin)

and a minimum confidence (confmin). TRUMiner returns
rules ordered by support and confidence, with the antecedent
variable and its symbol, the consequent variable and symbol,
and the temporal feature between antecedent and consequent
(e.g. ([varX , I] ⇒ [varY , D], ∆t = 0) in Figure 2 (c)
Short version). The extended rules include the time series
identifiers (s) in which each rule is verified, as well as the be-
ginning and ending time of each antecedent and consequent
occurrences (e.g. ([varX , I] ⇒ [varY , D], ∆t = 0), series
si, antecedent and consequent ti = 0 and tf = i1 in Figure 2
(c) Extended version) (Algorithm 1: lines 21 - 28).

Algorithm 1 TRUMiner Algorithm
Input: Dataset S, Discretization method disc, Array of pair
of variables p, Temporal threshold w, Minimum Support
minsup, Minimum Confidence minconf

Output: Temporal rules (short or extended) ordered above
minsup and minconf

1: for each variable v in S do
2: Discretizate in disc each time series si[v] in s′

i[v]
3: end for
4: for each pair of variables varX , varY in p do
5: for each discretized time series s′

i do
6: for each symbol αX

tj
i
,tj

f

in varX do

7: for each symbol αY
tk

i
,tk

f

in varY do

8: if (tk
i < tj

i ) or (tk
f > (tj

f + w)) then
9: Break
10: end if
11: ∆t← (tk

i − tj
i )

12: Generate transaction with αX
tj

i
,tj

f

, αY
tk

i
,tk

f

13: Increase number of total transactions T
14: end for
15: end for
16: Repeat process for varY , varX

17: end for
18: for each transaction tr do
19: Generate rule r
20: Evaluate sup and conf
21: Keeps rules sup≥minsup and conf ≥minconf

22: end for
23: Sort rules by sup and conf
24: for each rule r do
25: for each discretized time series s′

i do
26: Evaluate variables varX , varY if r occurs
27: end for
28: end for
29: end for

4.4 Final Remarks
TRUMiner was written in C++ using the concept of classes.
The low-level language allows better memory usage, avoid-

ing the lack of main memory, which is fundamental for rule
mining. The use of classes makes code easier to understand,
reuse and upgrade. The overall algorithm memory complex-
ity varies according to the rule’s format (extended or short).
However, the constant usage is δ.N.n + δ.n + N for data,
with δ.N.n to store observations, δ.n to maintain the time of
each observation in each variable, and N to store the time
series identifiers (Figure 3 (a) Data). The quantized data is
illustrated in Figure 3 (b) Quantized Data where the mem-
ory usage is given by δ.(3.N.L) for all quantized data, with
the constant three from the storage of the quantized observa-
tion (e.g. I), the beginning time (e.g. 0) and the ending time
(e.g. i1).

Conseq
(s, ti, tf)

Antec
(s, ti, tf)

Temporal Rule

si,0,i1si,0,i1
[varX,I]Þ[varY,D], ∆t = 0
sup, conf si,i1,i2si,i1,i2

......

si,i1,i2si,0, i1[varX,I]Þ[varY,D], ∆t = i1
sup’, conf’ ……

VAR X
arqX.csv

VAR Y
arqY.csv

VAR Z
arqZ.csv

...

Dataset S

𝛿
variables

... sN[varX]

N 
time series

s1[varX]

...

t1 = 0 tn = m

obs1 obsn

n
observations

(a)  Data

si’[varX] I ...
ti = 0
tf = i1

ti = i1
tf = i2

ti = ik
tf = m

I S

L 
quantized observations

(b)  Quantized Data

Example of Extracted Rules

Short version
Extended version

(c)  Rules

Q2.w 
distinct rules

N.L.w
occurrences

Figure 3. Memory complexity.

For the rules, the memory complexity can be visualized in
Figure 3 (c) Rules, directly related to the number of distinct
quantized symbols and the number of pairs of variables to
mine. Considering Q the number of distinct quantized sym-
bols, the algorithm could generate up to Q2.w distinct rules,
so in the short format, the maximum memory usage to mine
all possible pairs of variables is 7/2.δ.(δ − 1).Q2.w, with
δ.(δ − 1)/2 being the number of pairs of variables, and the
constant seven from the storage of the variables and quan-
tized observations of antecedent and consequent, temporal
feature, support and confidence. In the extended format,
is also needed to store the rules occurrences for antecedent
and consequent for each pair of variables, so we have up to
7/2.δ.(δ−1).Q2.w +N.δ.(δ−1).L.w where the last term is
the memory to store the occurrences. Simplifying, we have
δ2.w.Q2 for short and δ2.w.(Q2 + N.L) for extended rules.
Since the algorithm works for each pair of variables
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(present in the series), the worst-case scenario is all series
with all the variables and no missing observations mining
for all pair of variables possible. The transaction is gener-
ated through all quantized symbols (denoted by L) in one
variable while combining with quantized symbols of another
variable in maximum w of time span. So, the complexity of
TRUMiner can be up toN.δ.(δ−1).L.w, and the transaction
generation is the most costly process, as expected.
The TRUMiner is capable of mining temporal rules from

multivariate time series and can handle missing observations,
missing variables and data from multiple sources. Multiple
discretizationmethods are already implemented, and it is pos-
sible to include new ones.
However, TRUMiner is designed to mine rules from each

time series and not between series, requiring an adaptation
for that purpose. Also, as the algorithm works for pairs of
variables, patterns between more than two variables can not
be discovered. Finally, although TRUMiner uses a temporal
threshold w to directly regulate the algorithm’s running time,
it is still close to a brute force approach.

5 Experimental Analysis
To evaluate TRUMiner, we performed experiments on a real
dataset of economic data, integrated intomultivariate time se-
ries with missing observations and missing variables. In the
following sections, we present more details about the dataset
and results obtained by TRUMiner.

5.1 Dataset
The experimental analysis carried out explores international
economic trade data, with the following indices per country:
import and export values1, Gross Domestic Product (GDP)2,
and Economic Complexity Index (ECI)3 which characterizes
the country’s technological production capacity.

Table 2. Missing data for each variable in dataset.

Variable Number of series Number of M.O.
Import 19 (8.33%) 167
Export 19 (8.33%) 166
GDP 42 (21.43%) 146
ECI 4 (3.01%) 21

The dataset consists of annual series with four variables:
import (IMP) and export (EXP), both containing observa-
tions of 228 countries from 1996 to 2020, GDPwith the same
interval coverage and observations from 196 countries, and
ECI with observations from 133 countries from 1996 to 2019.
This dataset presents missing observations (M.O.) and miss-
ing variables as shown in Table 2. The percentual of series
with nomissing observation in each variable varies from 80%
to 90% of the series total.

1BACII (CEPII) http://www.cepii.fr/CEPII/en/bdd_modele/
bdd\_modele_item.asp?id=37

2GDP (IMF) https://www.imf.org/en/Publications/WEO/
weo-database/2022/April

3ECI (Harvard) https://atlas.cid.harvard.edu/rankings

The analysis of this dataset allows a better understanding
of the relationship between economic variables and may aid
in the prediction of economic behavior. Also, mining mul-
tivariate temporal rules from a heterogeneous dataset is an
improvement on existing related algorithms.

5.2 Results
This section presents the results obtained from TRUMiner
over an economic trade multivariate dataset. In all exper-
iments, the temporal threshold (w) to generate the transac-
tions was 5 years, which is the approximated time of an
economic cycle4 [Zarnowitz and Ozyildirim, 2006]. Rules
with temporal feature above the economic cycle may have
reduced significance and low acceptance in the economic
field. We present the experiments performed and its main
objectives as follows.

• Experiment 1: Discretization methods evaluation.
• Experiment 2: Evaluation of variation-based dis-
cretization results.

• Experiment 3: Impact analysis of missing data.
• Experiment 4: Analysis of extended rules.
• Experiment 5: Support cut evaluation.
• Experiment 6: Discussion on specific countries rules
mining.

The Experiment 1 aims to evaluate the discretization
methods in the heterogeneous dataset. For experiments to
evaluate discretization methods, minsup and minconf were
set to 0. Regarding discretization parameters, the variation-
based method used 0.1 for maximum to classify as stable,
0.0001 for minimum variation to consider for quantization,
0 for maximum value to be a stability symbol, and 0 for min-
imum variation to generate a symbol. The alphabet size of
SAX discretization was set to 3.
A summary of results obtained for the dataset without any

data pre-processing for all discretization methods we tested
is shown in Table 3. While the number of distinct rules in
variation-based and SAX discretizations is limited due to the
number of distinct symbols allowed, for decis and quartis,
the observed number of distinct rules is in a higher magni-
tude order. The confidence in Table 3 is from the rule with
maximum support in each method.
Temporal rules ofmultivariate series with the temporal fea-

ture fully participating have low support due to their com-
binatorial nature. For each pair of variables the average of
rules reaches 30,000. The most frequent and confident rule
on the pair (GDP, EXP) is ([EXP, I]⇒ [GDP, I], ∆t = 0),
sup = 4.29, and conf = 81.44. This rule indicates that
worldwide, 81% of the times that a country’s exports rise, its
GDP also rises in the same period. Despite the low support,
the rule has high reliability due to its high confidence.
The support distribution of all rules for each discretization

method is presented in Figure 4. While variation-based has
temporal rules with support up to 5, indicating its usefulness,
the decis discretization has less than ten temporal rules with

4EABCN https://eabcn.org/dc/
chronology-euro-area-business-cycles,
NBER https://www.nber.org/research/data/
us-business-cycle-expansions-and-contractions

http://www.cepii.fr/CEPII/en/bdd_modele/bdd\ _modele_item.asp?id=37
http://www.cepii.fr/CEPII/en/bdd_modele/bdd\ _modele_item.asp?id=37
https://www.imf.org/en/Publications/WEO/weo-database/2022/April
https://www.imf.org/en/Publications/WEO/weo-database/2022/April
https://atlas.cid.harvard.edu/rankings
https://eabcn.org/dc/chronology-euro-area-business-cycles
https://eabcn.org/dc/chronology-euro-area-business-cycles
https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions
https://www.nber.org/research/data/us-business-cycle-expansions-and-contractions


Mining Temporal Rules from Heterogeneous Multivariate Time Series Karasawa and Sousa 2023

Table 3. Main results for each discretization.

Discretization Method Distinct Rules Maximum Support Confidence
Variation-based 648 4.43 81.94

Decis 24,630 1.20 59.02
Quartis 10,203 3.64 80.22
SAX 648 3.32 91.34

Figure 4. Support distribution of rules in each discretization method.

support greater than 1. Tens of thousands of distinct rules
with low support are verified in decis due to its low granular-
ity for discretization. The exaggerated generation of quan-
tized symbols leads to high quantities of distinct rules, all
having low occurrence, and possibly without meaning.

Figure 5. Confidence distribution of rules in each discretization method.

Figure 5 shows the confidence distribution for discretiza-
tionmethods in TRUMiner. While variation-based and SAX
discretization have the expected behavior, with a decreasing
tendency from 0 to 100, decis and quartis have a peak in
the higher 20% of confidence. Usually, this occurs for low-
frequency transactions, with most occurrences as a natural
data oscillation.

The pair (IMP, GDP) generates the rule with the highest
support (main rule) of all pairs of variables in each discretiza-
tion. Table 4 presents this rule, its support and confidence
for each case. The symbol I1 in decis and quartis discretiza-
tions means an increase of one decis or quartis, respectively.
While the rule in decis discretization implies that an increase
up to 10% of import is followed by an increase up to 10% in
GDP in the same year, the values of increase in quartis dis-
cretization are up to 25%. In SAX discretization, the symbol
a indicates that the observationsmean is the lowest portion of
the observations distribution in the variable. This SAX rule
implies that in the same period, when the mean observations
of import are the lowest, the GDP is also its lowest.

Table 4. Main rule from (IMP, GDP) for each discretization.

Discretization Temporal Rule

Variation-based (IMP, I)⇒ (GDP, I), ∆t = 0
sup = 4.43, conf = 81.94

Decis (IMP, I1)⇒ (GDP, I1), ∆t = 0
sup = 1.20, conf = 59.02

Quartis (IMP, I1)⇒ (GDP, I1), ∆t = 0
sup = 3.64, conf = 80.22

SAX (IMP, a)⇒ (GDP, a), ∆t = 0
sup = 3.32, conf = 91.34

In variation-based, decis and quartis discretization, the
rules imply that an increase in import leads to an increase in
GDP. Also, in all the rules presented in Table 4, the conse-
quent occurs in the same year of the antecedent. The tempo-
ral features equal to 0 is expected since it is the time interval
with the highest number of transactions. Furthermore, the
quartil rulemay imply that the observed increase in variation-
based discretization rule is usually up to an increase of 25%
in antecedent and consequent.
In Experiment 2, we evaluate the variation-based dis-

cretization, which showed better results for the analyzed
dataset, with stronger rules, i.e., the highest support and high
confidence. Hereafter we present further results from TRU-
Miner with variation-based discretization.
Table 5 shows the main rule for each pair of variables

using variation-based discretization. All those rules have
the symbol I (increase) in antecedent and consequent, in ac-
cordance with the crescent tendency of the economic series.
They also have temporal feature equal to 0, as expected. For
rules with temporal feature ∆t = 0, the antecedent and con-
sequent could be interchangeable, but we presented the case
with higher confidence which could indicates the most rele-
vant of the two rules.
Experiment 3 evaluates TRUMiner ability to handle miss-

ing observations. We executed one analysis focusing on
Brazil’s series and another on multiple countries. In the anal-
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Table 5. Main rules for variation-based discretization.

Pair of variable Temporal Rule

IMP, EXP (EXP, I)⇒ (IMP, I), ∆t = 0
sup = 3.83, conf = 75.33

IMP, ECI (ECI, I)⇒ (IMP, I), ∆t = 0
sup = 2.55, conf = 62.10

IMP, GDP (IMP, I)⇒ (GDP, I), ∆t = 0
sup = 4.43, conf = 81.94

EXP, ECI (ECI, I)⇒ (EXP, I), ∆t = 0
sup = 2.45, conf = 59.81

EXP, GDP (EXP, I)⇒ (GDP, I), ∆t = 0
sup = 4.29, conf = 81.44

ECI, GDP (ECI, I)⇒ (GDP, I), ∆t = 0
sup = 2.64, conf = 64.61

ysis of the Brazil series, we used the variables GDP and IMP,
with 0 to 4 observations (16%) randomly removed from im-
port. The ten most frequent rules found in the case without
missing observations match at least 60% of the ten most fre-
quent rules in all of the cases withmissing observations. This
result indicates robustness against missing observations and
the possibility of mining without pre-processing.
For deeper evaluation, a subset of the original dataset (de-

scribed in Section 5.1) was assembled with no missing vari-
ables or missing observations. The new dataset is composed
of over 100 series from 1996 to 2019 comprising IMP, EXP,
ECI, and GDP. We mined the rules with variation-based dis-
cretization and then removed 5% of the dataset before a new
run of TRUMiner.

Figure 6. Support variation in missing observation analysis.

To evaluate the impact of missing data on overall results,
the rules mined from the datasets with and without miss-
ing observations were matched and computed their variation
of support and confidence. Figure 6 shows support varia-
tion for coincident rules. All the rules were found in both
datasets. The maximum support measured in the original
dataset is 4.99 and the maximum variation of 0.15 represents
only around 3% of discrepancy.
The confidence variation for the matching rule is shown

in Figure 7. The data distribution is a Gaussian with 0 as the
peak, indicating that most rules present the same confidence
measure. These results reinforce the TRUMiner’s capacity to

handle missing observations. Regarding missing variables,
since the rules are generated given the pair of variables, if
one of the two is missing in one specific multivariate time
series, TRUMiner does not generate any rules for this series.
The other series that compose the dataset and have at least
one observation for each variable for the analyzed pair (con-
sidering the temporal feature) have rules generated from.

Figure 7. Confidence variation in missing observation analysis.

In Experiment 4, we focused on the extended rules re-
turned by TRUMiner. This format allows to easily locate
the rule in the time series where it happened and relate
the observation(s) to the quantized symbol. For example,
([EXP, D] ⇒ [GDP, I], ∆t = 2) indicates that GDP in-
creases two years after exports decrease with evaluation mea-
sures of sup = 1.45 and conf = 72.72.

Figure 8. Multivariate temporal rules of Brazil, USA and China.

Figure 8 illustrates some occurrences of this rule in the
annual time series of Brazil, USA, and China from 1996 to
2020 for EXP and GDP. For better visualization, we normal-
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ized the plotted variables with z-score. The arrows represent
the rule occurrences, connecting observations (small circles)
related to the antecedent and the consequent of the rule, re-
spectively. It takes place as follows: Brazil in (2009, 2011),
(2015, 2017), United States in (2002, 2004), (2009, 2011),
(2016, 2018), and China in (2009, 2011), (2016, 2018).
The details provided by the extended rules also demon-

strate that TRUMiner can handle varying-length time series.
For instance, despite the shorter coverage period for ECI
(1996-2019), rule ([ECI, D] ⇒ [GDP, D], ∆t = 1) has
an occurrence in Brazil between 2019 (ECI) and 2020 (GDP),
which can only be detected by algorithms with this capability.
In the semantic analysis, this rule indicates that a decrease in
ECI is followed by a decrease in GDP after one year.
In Experiment 5, we evaluated the TRUMiner response

to a support cut. Figure 9 shows the confidence distribution
of rules from variation-based discretization with no support
cut and supmin from 1 to 4. With higher cut, more low confi-
dence rules are discarded since the transactions that generate
these rules have low occurrence in the dataset. Some higher
confidence rules are also removed, but their exclusion pre-
sumably implies data randomness detected by the algorithm.

Figure 9. Confidence distribution of rules with support cut.

A supmin = 2 for variation-based discretization is the
minimum value for this dataset that considerably reduces the
number of the rules with low confidence, where the min-
imum confidence verified in Figure 9 is 40%. It is also
the value that preserves the maximum number of rules with
higher confidence, returning more than 100 distinct rules.
Experiment 6 provides further results focused on Brazil,

United States and China. We divided the original dataset into
three periods with 8 years each, respectively: 1996 to 2003,
2004 to 2011, and 2012 to 2019. FromFigure 10, we observe
three world economic crises: a slight decrease in 1998-1999
and two major variations in 2009 and 2015. It is also pos-
sible to see COVID-19 reflexes in 2020, with a stagnation
in China’s growth and negative growth in economic indexes
from Brazil and USA.
Analyzing the rules from 2012 to 2019 in Brazil, United

States and China, we verified frequent rules involving a de-
crease in import, export, or ECI, such as ([EXP, D] ⇒

Figure 10. Normalized time series of Brazil, USA and China.

[IMP, D], ∆t = 0) with sup = 3.63 and conf = 70.00.
This rule indicates a possible decrease in import values at
the same time which a decrease is verified in export.

Figure 11. Occurrence distribution of rules in Brazil for 3 distinct periods.

From the rules with support above 2 we selected those oc-
curring in Brazil and counted every event. Figure 11 shows
the distribution of rules for the three periods. While the last
period has generated 111 distinct strong rules, the first and
the second periods reach only 80% of this quantity, indicat-
ing a worldwide diffuse behavior of the economic indexes in
the last decade. It is also from 2012 to 2019 that all the strong
rules with the most occurrences are related to a decrease in
the economic indexes, mainly in import, export, and ECI.

6 Conclusion
Multivariate time series mining is a promising area due to the
ability to obtain new and relevant information indexed to its
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time interval. The temporal rules allow a better explanation
of the patterns found and the possibility of making predic-
tions about the data. Existing methods are often limited to
univariate datasets and analysis, and require extensive series
pre-processing.
TRUMiner algorithm aims to simplify the temporal rule

mining process, as it can deal with data from multiple
sources, time series of varying lengths, andwithmissing vari-
ables and observations. The multivariate temporal rules re-
turned can be analyzed in short and extended formats, with
the latter presenting the rules’ occurrences in the time series
and their time interval. Although the nature of the problem
implies low support values, the results are promising for the
analysis of heterogeneous multivariate time series.
The next step of our research is to generate multivari-

ate temporal rules with three or more distinct variables effi-
ciently. Another possible work is to optimize the TRUMiner
with the use of big data techniques to treat bulky datasets.
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