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Abstract The Serverless Computing paradigm has become a reality, with various public cloud environments of-
fering serverless infrastructure and functionalities for general use. One of the main advantages of deploying appli-
cations in serverless architectures is that developers can focus on implementing the application and business logic
while avoiding the complexities of deployment. However, despite these advantages, there are still challenges to
consider, such as the delay in building the architecture of the distributed application. In this article, we introduce a
lightweight framework designed for deploying big data applications in a serverless architecture, specifically follow-
ing the Function-as-a-Service (FaaS) model. The proposed framework uses open-source tools and was thoroughly
evaluated through the implementation of two practical applications for Crime Hot Spot Analysis and Rainfall Analy-
sis in theMicrosoft Azure cloud. The results of our evaluation demonstrated the potential of the proposed framework
in streamlining the deployment process with acceptable overhead.
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1 Introduction
The world has observed a massive increase in data produc-
tion and availability in the last decade [Sznaier et al., 2014;
Nandury and Begum, 2016]. Data are produced by several
applications ranging from social networks to IoT devices,
such as rainfall stations [Nascimento et al., 2022] and wear-
ables [Marchioro et al., 2022] and are gathered in many for-
mats, i.e., structured, semi-structured, or unstructured [Liu,
2021]. While this data volume opens room for many com-
mercial and academic development opportunities, it also in-
cludes new research challenges. One of those challenges is
how to improve the accessing, querying, and processing of
those evergrowing big data repositories.
Different solutions have been proposed to foster the de-

velopment of applications that process and extract useful
information from big data, which include big data frame-
works with in-memory processing (e.g., Apache Spark [Za-
haria et al., 2016]), NoSQL Database Management Sys-
tems, and middlewares with in-memory capabilities (e.g.,
DuckDB [Raasveldt and Mühleisen, 2019], Redis/Redis++
[Zhang et al., 2018], Tarantool1), and query engines (e.g.,
Apache Calcite [Begoli et al., 2018]). This myriad of so-
lutions has created a complex software ecosystem that the
application developer must somehow traverse for each new
project. Although cloud providers [González et al., 2009]
have simplified some of the setup steps by supplying the

1https://github.com/tarantool/tarantool

virtual machine with pre-installed big data frameworks, the
configuration and maintenance of the entire development
stack still require expressive human effort due to the number
of optimization parameters and continuous software evolu-
tion [de Oliveira et al., 2021]. The serverless paradigm has
emerged to soften the complexity of developing and deploy-
ing distributed, particularly big data, applications [Heller-
stein et al., 2019]. Serverless is an alternative to the tradi-
tional cloud application deployment process, where develop-
ers are no longer responsible for managing the servers that
execute the programs.
Therefore, the paradigm contrasts with the classical cloud

computing model2 by allowing users to focus only on the
development while delegating issues, e.g., scalability and
fault tolerance [Hassan et al., 2021], to the cloud provider.
Most cloud providers offer serverless mechanisms based on
“serverless containers”, which refers to technologies that al-
low cloud users to execute containerized applications with-
out the need to manage the underlying servers or computing
infrastructure on which the containers are executed. Deploy-
ing containers at scale in a production environment may be
far from trivial. Solutions like Kubernetes [Thurgood and
Lennon, 2019] play an important role in this regard. How-
ever, two open issues are still encountered in practice: the
configuration of the cluster of containers that includes the ap-

2The Serverless Computing paradigm also follows the idea of pay-as-
you-go [de Oliveira et al., 2010], i.e., the developer only pays for the quan-
tum of time the application executes.
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Figure 1. Cloud Infrastructure with IaaS, PaaS, and Serverless (Adapted
from https://1024.page/2019/web/about-Serverless)

plication, e.g., using Kubernetes, and the portability between
different Serverless environments, e.g., Lambda from AWS
and Azure Functions from MS Azure [Sousa, 2020].
This article presents ORBITER (framewOrk forR BIg data

dEployment on seRveless mechanisms), which tackles those
open issues by assisting the developer in the deployment of
the cluster of containers with a dozen of the required software
to execute an application. ORBITER is built as a lightweight
framework that provides continuous data processing and sup-
ports the automatic deploying of big data applications in
a serverless environment, which can be hosted by distinct
cloud providers. We show the ORBITER viability and poten-
tial through the execution of applications designed to analyze
crime hot spots in large urban centers [Sá et al., 2022] and to
analyze rainfall data in the city of Niterói [Nascimento et al.,
2022]. Those results, a revised and improved background,
and a broader comparison with related work provide new em-
pirical shreds of evidence regarding the ORBITER capabilities
in practice, extending the conference paper that introduced
our framework [Loureiro and de Oliveira, 2022].
The remainder of the article is organized as follows. Sec-

tion 2 discusses the serverless paradigm, while Section 3
presents the ORBITER architecture and its implementation.
Section 4 shows the ORBITER evaluation with a real-world
application. Finally, Section 5 addresses related work and
Section 6 concludes the study.

2 Serverless Computing in a Nutshell

The serverless computing paradigm can be implemented fol-
lowing two different architectures [Mampage et al., 2021]:
(i) Backend as a service (BaaS) and (ii) Function as a Ser-
vice (FaaS). In BaaS, besides the application itself, develop-
ers can access third-party services through specific APIs, e.g.,
authentication, and database services. On the other hand,
FaaS relies on local (in the cluster) services so that develop-
ers are responsible for creating the application logic on the
server side, whereas the application executes over contain-
ers (e.g., Docker [Miell and Sayers, 2019] and Singularity
[Godlove, 2019]), which are managed by the cloud provider.
Notice that containers are stateless, which implies applica-
tions in need of data persistence may face some difficulty
in this architecture (the solution being using DBMSs as func-
tions). Although FaaS containers are ephemeral (in the sense
they are designed to execute in a small time window), the
majority of cloud providers already offer FaaS architecture,
e.g., Azure Functions (MS Azure), and Lambda (AWS). The
ORBITER framework follows the FaaS architecture.

However, unlike in IaaS (Infrastructure as a Service) en-
vironments, developers are not required to create a virtual
machine in FaaS or even configure/maintain it (e.g., apply-
ing security patches). Cloud servers become an abstraction
during the application development process, easing the oper-
ation. Figure 1 presents the components of the software stack
that have to be managed by the developer in IaaS, PaaS (Plat-
form as a Service), and Serverless architectures (shadow-
gray background). On the other hand, in serverless architec-
tures, the developer can skip this configuration stage and start
with the packaging of the application code (i.e., function) de-
veloped in containers and deploy them in the serverless en-
vironment. Consequently, the financial cost of development
operations can be reduced with FaaS adoption compared to
IaaS and PaaS in some scenarios, e.g., a few requests in time.
Another major gain of FaaS is deployment time. Both vir-

tual machines and containers take longer to run the initial
setup than functions in the Serverless architectures, as you
need to configure the infrastructure a priori. On the other
hand, functions typically take a few milliseconds to be de-
ployed because they require no invocation of such an initial
setup. Thus far, the great disadvantage of serverless architec-
tures is the complexity of deployment and portability since it
is still challenging to configure the serverless services in mul-
tiple cloud providers. That is due to the fact that serverless
solutions are still quite specific in terms of applied technol-
ogy, hardening both service and provider portability.

3 The ORBITER Approach
ORBITER is a lightweight framework that aims to ease the
deployment of big data applications following the serverless
paradigm. It is worth noting that ORBITER is more than just
a serverless service; it is a comprehensive framework that
configures the environment for deploying container-based
services. ORBITER is a “lightweight” solution because it
presents minimal impacts to the application being deployed
as a service, which means requiring few code changes in the
application compared to other frameworks. The ORBITER ar-
chitecture is presented in Figure 2 and includes three major
layers: (i) Initialization, (ii) Ingestion/Storage, and (iii) Data
Processing.
The Initialization Layer is responsible for creating the con-

tainer cluster where the application will execute. Notice
while the deployed services may be called multiple times,
the configuration of the container cluster is performed only
once. The main component of this layer is the Infrastruc-
ture Manager. In the current implementation, ORBITER uses
Terraform3 [de Carvalho and de Araújo, 2020] to implement
this function. Terraform is a cloud-based framework that en-
ables infrastructure automation for provisioning and manag-
ing clouds, data centers, and services. It enables deploying
(Figure 2 – Step 2 ) the Kubernetes cluster (container or-
chestration system) on multi-cloud environments, i.e., Ama-
zon Web Service (AWS), Google Cloud Platform (GCP) and
Microsoft Azure, based on declarative configuration files de-
fined by the developer (Figure 2 – Step 1 ). ORBITER gains
the ability to deploy services in awide range of existing cloud

3https://www.terraform.io/
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Figure 2. The ORBITER architecture.

environments by adopting Terraform. The Infrastructure
Manager also provides the setup for the Kubernetes version
that will be used and the configuration of nodes that are part
of the cluster. The Infrastructure Manager also feeds from
the ArgoCD4, a declarative GitOps delivery tool for Kuber-
netes. In the context of ORBITER, ArgoCD is used to arrange
the components in both Ingestion/Storage and Data Process-
ing layers. In ORBITER, Kubernetes is used combined with
the Helm package manager5, which enables the setup of the
execution order of components in the Kubernetes cluster for
the packed application. Thus, each part of the application is
a Helm Chart, allowing the framework to manage resources
such as CPU, memory, and disk.
The Ingestion/Storage Layer is responsible for receiving

data from external sources (Figure 2 – Step 3 ) and storing
it in the cluster of containers previously created (Figure 2
– Step 4 ). The ingestion layer must present scalable and
fault-tolerant features. It also must load data efficiently to
enable real-time and batch processing. Such features are car-
ried out by the Streaming Manager. In the current ORBITER
implementation, the Streaming Manager is built on top of
Apache Kafka6, which is a distributed real-time event plat-
form in which events run on producer threads to be captured
by one or more consumers through API requests. We also
use Kafka Connect, which creates custom producers and con-
sumers for a user-provided tool and environment, e.g., Post-
greSQL, MySQL, or Amazon S3. Finally, ORBITER relies
on a Data Lakehouse [Behm et al., 2022] to store the result-
ing data. The idea behind a Data Lakehouse is to provide a
data repository for large volumes and different data formats
while ensuring ACID properties for transactions. ORBITER
uses the Delta Lake7 [Armbrust et al., 2020] for deploying
the Data Lakehouse, which integrates data processing and
data exploration tools. Behind the data lake, ORBITER relies
on Minio8, which is a multi-cloud object storage that com-
municates using the Amazon S3 protocol.

4https://argoproj.github.io/cd/
5https://helm.sh/
6https://kafka.apache.org/
7https://github.com/delta-io
8https://min.io/

The last ORBITER component is the Processing Layer. It
is responsible for sanitizing and manipulating the data within
the Data Lakehouse. In this layer, containers are config-
ured by the Container Image Manager component, which
provides multiple functions for the application being devel-
oped/deployed (Figure 2 – Step 6 ), including (i) task or-
chestration (e.g., Apache Airflow), (ii) distributed process-
ing (e.g., Apache Spark [Zaharia, 2013]), (iii) data queries
(e.g., Apache Hive [Camacho-Rodríguez et al., 2019]), and
(iv) visualization (e.g., Apache Superset). The Container
Image Manager follows the concept of GitOps [Beetz and
Harrer, 2022] to access the image catalog (Figure 2 – Step
5 ). The idea behind GitOps is to have a Git entry con-
taining the declarative descriptions of the infrastructure and
one automated process to make the production environment
match the state described in the repository. In the current
ORBITER implementation, the Container Image Manager is
implemented on top of ArgoCD, which is a tool for GitOps
on Kubernetes. Accordingly, the containers are instantiated
to execute the application from the Container Image Man-
ager. The source code for ORBITER is being constantly up-
dated in the open source repository https://github.com/
UFFeScience/orbiter.

4 Experimental Evaluation
In this section, we present ORBITER evaluation. We examine
our proposal with two real-world applications (analysis of
crime hot spots and rainfall analysis) and then introduce the
setup of the empirical evaluation. Finally, we present the
performance results and discuss the experimental findings.

4.1 Analysis of Crime Hot Spots
The first real-world application we have chosen to showcase
ORBITER is the analysis of Crime Hot Spots. A Crime Hot
Spot can be described as a cluster of crime events distributed
across a geographical area [Kikuchi et al., 2012]. This type
of application provides data-driven observations that enable
the identification of geographical regions with high crime

https://argoproj.github.io/cd/
https://helm.sh/
https://kafka.apache.org/
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(daily)
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Figure 3. Crime occurrences in “Sapopemba” in November/2019.

rates and promote predictive policing strategies. In the large
urban areas of South America, such as São Paulo, Rio de
Janeiro, or Buenos Aires city, the analysis and decision-
making on Crime Hot Spots are far from trivial due to the
cities’ massive area, number of inhabitants, or the frequent
lack of human resources [Lourenço et al., 2018].
For example, let us consider the “Sapopemba” region of

São Paulo, Brazil. Sapopemba is a district located in the east
part of the city, and it presented high crime rates during the
year 2019, which ranges from theft to violent crimes9. Fig-
ure 3 presents an accumulated heat map for street crimes as
of November/2019. The color ranges from dark red (very
frequent) to white (non-occurrences). Data presented in Fig-
ure 3 summarize the counting of crime events during 2019.
Furthermore, we emphasize that the scope of this case study
does not extend to any conclusive inference regarding crimi-
nal hot spots/patterns to be used by law enforcement officers.
The primary focus of the case study presented in this section
(and the remaining experiments) is to demonstrate the viabil-
ity of ORBITER and its potential application in a serverless
architecture instead of providing either detailed crime analy-
sis or actionable insights for law enforcement purposes.
Notice although the heat map provides an overall picture

of the region, the identification of hot spots depends on ag-
gregating crime data by space and time, i.e., street segments,
and period/hour of the year. Such a refined analysis would
provide police officers with more accurate data so that they
can define optimized police patrol routes as well as iden-
tify strategic locations for outposts. Accordingly, we eval-
uate two fictitious, highly-volume queries that would be ex-
ecuted within the Hot Spot analysis. They involve aggregat-
ing crime events by street segments (each approximately 100
meters-long) and by time (daily/per hour) and filtering by dis-
tance, i.e., radius in kilometers.
Experimental data were downloaded from the Department

of Public Safety of the São Paulo State10. We pre-process
data to filter crimes that occurred during the year 2019. To re-
duce the number of crime events, we also filtered the crimes
labeled by the Safety Department as femicide, car theft, car
robbery, cellphone theft, cellphone robbery, theft, armed rob-
bery, and homicide. We also discarded the crime events that
went registered without georeferences as they are insufficient

9https://www1.folha.uol.com.br/fsp/especial/
fj2501200438.htm and https://www.estadao.com.br/brasil/
avenida-sapopemba-e-a-mais-perigosa-de-sp/

10https://www.ssp.sp.gov.br/
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Figure 4. Number of crime events in the downloaded dataset.

to associate with street segments. The dataset after aggre-
gating the crime events by segment can be downloaded at
https://osf.io/mxrgu/. Figure 4 summarizes the total
number of crime events in the city loaded in the experimen-
tal evaluation (accumulated occurrences in log10 scale). The
downloaded dataset has approximately 1GB size.

4.1.1 Environment Setup

For this first experiment, we have deployed ORBITER on the
Microsoft Azure cloud11. Microsoft Azure is one of the top
players in the cloud market and provides different types of
virtual machines to be deployed on demand. A Kubernetes
cluster was configured with a Master instance with 2 vCPUs
and 4 GB RAM and a Worker instance (common node) with
2 vCPUs and 16 GB RAM. Each instance was configured
with a 30GB disk. We also set up a public IP and URLs to
access the services.

4.1.2 ORBITER Setup

We deployed the Crime Hot Spot application using ORBITER
with the downloaded crime dataset. The first execution step
was to load external data into ORBITER through proxy. We
use Kafka Connect with S3 connectors to ingest data into
the Data Lakehouse in the Parquet file format with Snappy
compression12 (this compression library does not ensure
maximum compression rate, but provides high compression
speed). The Apache Airflow service executes a scheduled
task that invokes Apache Spark after data is loaded into the
Data Lakehouse. Then, Spark transforms the data into Delta
Lake tables format. Finally, data become available for query-
ing and browsing at runtime. The application uses Trino (a
query mechanism for distributed analytical queries), whose
results can be presented in a dashboard generated by Apache
Superset.
The following customized container images are required

for the application to be executed using ORBITER: (i) An im-
11https://azure.microsoft.com/pt-br/
12http://google.github.io/snappy/
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age containing Kafka Connect and the JAR files connectors
for the file system and S3; (ii) An image containing Apache
Airflow and Kubernetes so that Airflow can communicate
with theKubernetes cluster andApache Spark; (iii)An image
containing the Apache Spark application (the application’s
PySpark code) and the Delta-Spark library, which ensures
the application can write data in the proper Delta Lake for-
mat; and (iv) An image containing the Apache Superset for
data visualization and the sqlalchemy-trino library for Super-
set to retrieve data through Trino.

4.1.3 Discussion for the case study

We deployed the Crime Hot Spot application and executed
two queries commonly-to-be submitted by this application.
The first query (Q1) processes the downloaded crime dataset
for November/2019 and aggregates the total number of
crimes for each street segment in São Paulo city. The second
query (Q2) aggregates the total number of crime events by
segments within a radius r (in kilometers) of a given point in
the city (as presented in Figure 5). Both queries were defined
together with a police officer expert, following real-world
setups for data-driven decision-making. Therefore, Q2 has
to process fewer data in comparison to the first query (Q1),
but the search presents a costlier spatial component. We
measured the overall performance by considering both the
elapsed time in ORBITER and the financial cost involved in
the execution. The total elapsed time using ORBITER de-
pends on a pipeline composed of three activities: (i) de-
ployment of the Kubernetes cluster by the cloud provider,
(ii) deployment of all services in the Kubernetes cluster (e.g.,
Apache Kafka and Apache Airflow), and (iii) the queries exe-
cution. Figure 6 presents the average elapsed time for ten ex-
ecutions (in seconds) for each activity of the pipeline. Clus-
ter Deployment presented an average elapsed time of 620.53
seconds, while Service Deployment showed a mean elapsed
time of 322.12 seconds.
These execution times align with our initial expectations,

considering that the environment setup requires a sequence
of actions within the cloud provider. For instance, when de-
ploying in the Azure cloud, several crucial steps must be
performed, such as defining the resource group, creating a
node pool, configuring IP ranges, etc. These actions are vi-
tal for establishing the required infrastructure to support the
deployment of services. Finally, the execution of query Q1
presented an average elapsed time of 205.22 seconds and the
execution of query Q2 presented an average elapsed time of
45.74 considering the spatial-based query scenario.

In total, all activities of the aforementioned pipeline de-
manded less than 20 minutes to execute. Notice the deploy-
ment of the Kubernetes cluster (as well as that of services) is
executed only once (excluding service updates), but queries
Q1 andQ2 can be submitted several times after that (since the
environment is already configured). Thus, when police ex-
perts need to perform new hot spot analyses, the total elapsed
time will be (much) lower than 205.22 seconds since the clus-
ter deployment and service deployment steps will not be ex-
ecuted. Regarding the financial cost, the entire execution of
the ORBITER queries over our particular cloud setup has cost
nearly 0.81 USD (deployment of images plus ten executions

Figure 5. Range query with radius r in the “Sapopemba” region.
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Figure 6. Execution time for deploying and executing the crime hot spot
analysis application in ORBITER.

of each query), which was reported as financially viable by
police experts.

4.2 Rainfall Analysis
The second real-world application we have chosen as a case
study is the rainfall analysis of Niterói city, as previously pro-
posed by Nascimento et al. [2022]. We defined the queries
for this case study by profiling the TEMPO tool [Nascimento
et al., 2021], whose goal is to capture multi-source rainfall
data with different granularities and integrate them into a sin-
gle database to allow interactive visual analyses.
Over the past decade, there has been a growing recogni-

tion of the importance of data-driven climate studies, pri-
marily because of the escalating number of extreme weather
events [Mizutori and Guha-Sapir, 2020]. In cities, due to un-
controlled urbanization, there is a lack of sufficient green ar-
eas, leading to rapid runoff of rainwater into rivers that may
not have the capacity to accommodate such high volumes,
resulting in flooding [Thorndahl and Willems, 2008].
Consequently, the effective monitoring of rainfall plays

a critical role in avoiding these floods. Numerous rain-
fall stations equipped with sensor-based data acquisition sys-
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tems have been strategically installed across several cities
in Brazil to facilitate comprehensive monitoring. Data from
Niterói City, where our campus is located, was picked for the
analysis presented in this section. The data obtained from
Niterói city rainfall stations serve as a valuable resource but
come from different sources.
Thus, all data employed in our evaluation are obtained

from an existing Data Warehouse (DW) [Kimball and Ross,
2002], which, in its current version, adheres to the ROLAP
(Relational OLAP) model and operates on a PostgreSQL Re-
lational Database Management System. Notably, this DW
contains a substantial dataset amounting to 50GB of data,
which makes the entire DW a consolidated source for our
evaluation. Figure 7 illustrates the schema of the DW, which
follows the star schema and comprises one fact table and
four dimension tables. The fact table, named Fact_Rainfall,
encompasses essential attributes for analysis, including rain-
fall_index (the quantity of interest) and foreign keys to mul-
tiple dimensions: Dim_Source (data sources), Dim_Time
(time dimension),Dim_Locality (locality of the stations), and
Dim_Station (rainfall stations). Figure 8 summarizes the to-
tal number of tuples in each table of the DW (number of tu-
ples is presented in log10 scale).

Figure 7. The DW schema used as source for the rainfall analysis.

By profiling the user interactions within the TEMPO tool,
we have successfully identified a set of commonly executed
queries/patterns, as presented in Table 1. We have focused on
two of the most frequently submitted queries for this experi-
mental evaluation. Query Q1 calculates the average rainfall
for different time granularities (i.e., 15 minutes, 30 minutes,
1 hour, 1.5 hours, 12 hours, and complete 24 hours) for each
rainfall station. On the other hand, query Q2 returns the aver-
age rainfall with the same time granularity but for the whole
of Niterói City.
We highlight there are numerous queries submitted by

users during their analyses using the TEMPO tool, but we have
intentionally selected these specific two queries to showcase
due to their prevalence and significance. The decision to
limit the analysis in these two queries is because of the scope
of this article, since conducting a complete statistical summa-
rization of the entire TEMPO tool and all the queries it encom-
passes is a task that does not depend on ORBITER.

4.2.1 Environment Setup

For this second experiment, we also have deployed ORBITER
on theMicrosoft Azure cloud. AKubernetes cluster was con-
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Figure 8. Number of tuples in each table of the DW.

figured with aMaster instance with 2 vCPUs and 4 GBRAM
and three Worker instances with 4 vCPUs and 16 GB RAM.
Each instance was configured with a 30GB disk. We also set
up a public IP and URLs to access the services.

4.2.2 ORBITER Setup

The configuration of the ORBITER framework used in this
experiment is identical to the one presented in Subsection
4.1.2. The only difference lies in the nature of the data and
the queries involved, which are specifically tailored for rain-
fall analysis. This targeted adaptation ensures that the frame-
work efficiently processes and addresses the unique demands
of rainfall-related data and queries, enabling effective analy-
sis of the given dataset.

4.2.3 Discussion for the case study

We deployed and executed the Rainfal Analysis application
for performing both queries Q1 and Q2. The first query is
more time-consuming since it has to aggregate data for each
station, while the second aggregates data in a coarse-grain,
i.e., city-level. Similarly to the previous experiment, the to-
tal execution time using ORBITER depends on a pipeline com-
posed of three activities: (i) deployment of the Kubernetes
cluster by the cloud provider, (ii) deployment of all services
in the Kubernetes cluster, and (iii) the query execution.
Table 1 presents the average execution time for ten exe-

cutions (in seconds) for each query. The required time to de-
ploy theKubernetes cluster and the services did not vary com-
pared to the previous experiment. It was somewhat expected
since the deployed services were almost the same. The three
pipeline activities demanded less than twelve minutes to ex-
ecute Query Q1 and less than ten minutes for Query Q2 in
total. As in the other case study, while the deployment of the
Kubernetes cluster (as well as that of services) is performed
only once, queries can be submitted multiple times after the
complete environment is up.
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Table 1. Queries considered in the rainfall analysis experiment.

Query Description Execution Time (seconds)
Q1 Returns the average rainfall for the last 15 minutes, 30 min-

utes, 60 minutes, 90 minutes, 120 minutes, 12 hours, 24
hours for all the rainfall stations

697.01

Q2 Returns the average rainfall for the last 15 minutes, 30 min-
utes, 60 minutes, 90 minutes, 120 minutes, 12 hours, 24
hours per city

569.28

5 Related Work
There are some literature approaches that have been pro-
posed to help developers deploy their big data applications
following serverless architectures. In this article, we fol-
low their indications by adopting a simplified forward snow-
balling strategy [Wohlin, 2014] by considering some seed pa-
pers as input. The seed set comprises papers of an area.Then,
the papers that cite the seed papers and that meet specific cri-
teria are considered in a new snowballing round. Although
this process may repeat for several rounds or until no new pa-
pers are included in the next snowballing, in this article we
fixed the number of rounds as two since serverless comput-
ing has been popularized in the last few years, i.e., papers are
recent.
We relied on Google Scholar to get the seed set by search-

ing “Big Data Application Deployment in Serverless”. Since
we are analyzing papers that cite the chosen papers, we used
Google Scholar because it already accesses many reposito-
ries such as IEEExplore and ACM Digital Library. As in-
clusion criteria, we considered peer-reviewed papers, papers
published after 2018, and papers published in English. Any
paper that is not written in English or peer-reviewed was ex-
cluded from the snowballing process. We obtained 11 papers.
These papers were published in 2 distinct journals, and 9 con-
ferences or workshops. Table 2 presents the paper citation,
the conference or journal where the paper was published, and
the year of publication. Following we discuss each work.
Kuhlenkamp et al. [2019] propose an evaluation method

called SIEM to measure quality in different big data applica-
tion scenarios using serverless architectures. Although the
authors do not propose a framework for deploying such type
of application, they show used SIEM to evaluate a series of
FaaS providers and applications for big data processing.
Castellanos et al. [2019] propose an approach that follows

the DevOps and Domain Specific Model concepts to design,
deploy, and monitor the performance of serverless big data
applications. The authors explicitly describe the deployment
strategies that are used to configure the environment and the
application. The authors evaluated the proposed approach
with a real-world application for mid-air collision detection.

Wen et al. [2021] presents a study that aims to understand
the challenges of developing serverless-based applications.
Their study is based on questions obtained from Stack Over-
flow. The subjects of this study were application develop-
ers, researchers, and cloud providers. One of the challenges
identified by the authors is how to deploy applications in
serverless architectures, as discussed in this article. Bhat
et al. [2022] presents a study to evaluate serverless comput-
ing for performing large-scale data processing using cloud-

native primitives. One of those primitives is to deploy a con-
tainer in the cloud.

Bhasi et al. [2021] proposed Kraken, a workflow-oriented
resource management framework that minimizes the num-
ber of containers provisioned for deploying an application in
Serverless architectures. Although Kraken represents a step
forward in FaaS, it does not take into account data manage-
ment services, including storage and querying. An important
observation is that the cost model proposed by Kraken to es-
timate the necessary amount of containers can be applied to
ORBITER. Yussupov et al. [2022] proposed a method and a
framework to model and deploy Serverless functions orches-
trations.

It uses a Business Process Model and Notation (BPMN),
but the approach does not take into account data manage-
ment issues and assumes that there is a repository (or Data
Lake) where data are gathered and stored, i.e., the framework
does not support data management transparently. Similarly,
Sokolowski et al. [2021] proposed µs, a framework to or-
chestrate Serverless functions to implement an entire system.
They performed a study with 73 IT professionals who man-
ually orchestrated their functions due to the lack of existing
frameworks. The final framework, however, overviews data
management issues.

Another category of frameworks focuses on deployingMa-
chine Learning (ML) applications in Serverless architectures.
Suppa et al. [2021] proposed a framework to deploy BERT
(Bidirectional Encoder Representations from Transformers)
models using Amazon AWS Lambda. Since models are typ-
ically oversized for Serverless architectures, the approach
uses knowledge distillation to reduce their size. This ap-
proach is representative of ML applications but disregards
characteristics expected for other application types. Analo-
gously, the approach of Christidis et al. [2020] introduces a
series of techniques to convert ML codebase to functions in
a Serverless architecture, lacking efficient and modular sup-
port for data management.

On the flip side of the coin, other approaches specifi-
cally target data management, disregarding other function-
alities, such as service orchestration. For instance, Wang
et al. [2020] proposed a low latency ephemeral storage ser-
vice based on cache to support data persistence in Server-
less architectures, while Perron et al. [2020] proposed mech-
anisms for executing queries as functions to reduce latency
and the overhead of the Serverless paradigm. Despite ad-
vances, these approaches focus only on supporting data stor-
age and not the entire application development.
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Table 2. Published works on “Big Data Application Deployment in Serverless”, their publishing vehicle, where C stands for a conference,
J for Journal, and BC for Book Chapter.

Publication Journal/Conference Name Type Year
Kuhlenkamp et al. [2019] IEEE/ACM International Conference

on Utility and Cloud Computing
C 2019

Castellanos et al. [2019] 13th European Conference on Software
Architecture

C 2019

Christidis et al. [2020] IEEE Access J 2020
Wang et al. [2020] 18th USENIX Conference on File and

Storage Technologies
C 2020

Perron et al. [2020] ACM SIGMOD/PODS Conference C 2020
Sokolowski et al. [2021] ACM Joint Meeting on European Soft-

ware Engineering Conference and Sym-
posium on the Foundations of Software
Engineering

C 2021

Suppa et al. [2021] 2021 Conference of the North Ameri-
can Chapter of the Association for Com-
putational Linguistics

C 2021

Bhasi et al. [2021] ACM Symposium on Cloud Comput-
ing, SoCC ’21

C 2021

Wen et al. [2021] ACM Joint Meeting on European Soft-
ware Engineering Conference and Sym-
posium on the Foundations of Software
Engineering

C 2021

Bhat et al. [2022] IEEE/ACM 8th International Confer-
ence on Big Data Computing, Applica-
tions and Technologies

C 2022

Yussupov et al. [2022] Software Practice and Experience J 2022

6 Conclusions and Future Work
Despite gaining a lot of traction in recent years, the use of
the Serverless computing paradigm to process big data still
presents relevant challenges, such as the need to generate
container images for deployment and the lack of portability
between cloud providers. In this article, we tackled this porta-
bility gap by introducing ORBITER, a lightweight framework
that automatically deploys applications following the Server-
less model in multiple cloud providers.

ORBITER was evaluated with two case studies in differ-
ent domains (i.e., Crime Hot Spots Analysis and Rainfall
Analysis), showing acceptable computing performance with
promising results. As future work we plan to introduce a cost
model to define the best configurations for each service ac-
cording to user constraints (e.g., deadline, and budget). We
also plan to incorporate different tools and libraries in the
ORBITER ecosystem to replace Spark, etc. This future work
is important in order to offer options to the users to configure
their applications.
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