
Journal of Information and Data Management, 2023, 14:2, doi: 10.5753/jidm.2023.3283
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Set Similarity Joins on Heterogeneous Clusters
Larissa Ramos Marques Silva [Implanta IT Solutions LTDA | larissa.ramos@implantait.com.br]
Leonardo Andrade Ribeiro [Universidade Fderal de Goiás | laribeiro@inf.ufg.br]

 Instituto de Informática (INF), Universidade Federal de Goiás (UFG), Alameda Palmeiras, Quadra D, Câmpus
Samambaia, Goiânia, GO, Brazil.

Received: 27 March 2023 • Published: 22 December 2023
Abstract
Set similarity join (SSJ) is a fundamental operation widely used in many application scenarios, including data
discovery, cleaning, and integration. As this operation is computationally expensive, its runtime can be excessive on
large volumes of data. Previous research has focused on improving SSJ scalability using distributed computing or the
massive parallelism available in GPUs, but not both. Hence, these efforts cannot fully exploit the processing power
of increasingly heterogeneous computing architectures. In this article, we present an approach to evaluating SSJ
on a heterogeneous cluster of compute nodes equipped with CPU and GPU. We propose a cost model to distribute
the workload between these processors and apply this model to integrate two algorithms, one distributed and the
other parallel, in a coprocessing fashion. Experimental results show that our proposal is efficient, scalable, and
outperforms previous work.

Keywords: Advanced Query Processing, Distributed Computing, GPU, Heterogeneous Hardware, Set Similarity Join

1 Introduction

Similarity join finds all pairs of similar objects in a dataset.
Two objects are considered similar if the value returned by a
similarity function applied to these objects is not less than a
specified threshold. Similarity join is a fundamental opera-
tion in data discovery, cleaning, and integration [Chaudhuri
et al., 2006]. For example, similarity joins can be used for
entity matching, i.e., identifying data instances that refer to
the same real-world entity.
Set similarity join (SSJ) maps input objects to sets and as-

sesses the pairwise similarity between objects based on the
overlap of their corresponding sets [Chaudhuri et al., 2006].
This special type of similarity join is well-suited to sparse,
high-dimensional data; string is a prime example. Despite its
simplicity, SSJ is quite effective in many scenarios. For in-
stance, on datasets exhibiting syntactical perturbations, such
as those caused by typos, SSJ has shown accuracy compara-
ble to complex solutions adopting representations based on
large language models [Suri et al., 2021].
SSJ is a computationally expensive operation. The naive

solution evaluates the similarity function on every set pair,
clearly leading to a prohibitive runtime on large datasets.
There is a host of optimization techniques for SSJ, many
of them based on filters to reduce the comparison space
[Sarawagi and Kirpal, 2004; Chaudhuri et al., 2006; Bayardo
et al., 2007; Xiao et al., 2011; Ribeiro and Härder, 2011;
Mann et al., 2016; Fier and Freytag, 2022]. Nevertheless,
the runtime of SSJ queries still grows quadratically with in-
put size [Xiao et al., 2011; Ribeiro and Härder, 2011].
The massive parallelism available in modern graphic pro-

cessing units (GPUs) is attractive to accelerate the execu-
tion of SSJ queries. Indeed, prior work reported signifi-
cant speedups using GPUs as compared to purely CPU-based
solutions [Ribeiro-Júnior et al., 2016, 2017; Quirino et al.,
2017]. However, GPUs have limited onboard memory ca-

pacity, thereby restricting scalability to large data volumes.
Distributed computing is a natural way to attain scalability

in SSJ queries [Oliveira et al., 2017, 2018; Fier et al., 2018].
Load balancing and per-node efficiency are fundamental con-
cerns in this context. Unfortunately, distributed computing
platforms such as Apache Spark [Zaharia et al., 2012] only
consider data locality for allocating tasks to nodes [Xu et al.,
2018]. Underlying hardware capabilities are disregarded in
this context, leading to resource underutilization and subop-
timal performance.
In this article, we present a proposal to efficiently eval-

uate SSJ queries using distributed computing and massive
parallelism. Specifically, we consider a data processing en-
vironment based on a heterogeneous shared-nothing architec-
ture, with nodes equipped with CPU and GPU. Modern hard-
ware platforms for data-intensive operations increasingly use
GPUs as accelerators [Rosenfeld et al., 2022], and our work
aims at fully exploiting the computational power of such plat-
forms for SSJ query processing. To the best of our knowl-
edge, SSJ on heterogeneous clusters has not been previously
investigated in the research literature. The main technical
challenge in this context is to deal with the computing power
asymmetry among processors. We propose a cost model to
guide the workload distribution between CPU and GPU in a
coprocessing fashion. Further, we apply this model to incor-
porate a parallel algorithm into a distributed SSJ algorithm,
thereby enabling the effective use of GPU massive paral-
lelism. We conduct an extensive experimental study on pub-
licly available datasets. The results show that our cost model
precisely identifies the best workload assignment for differ-
ent configurations of computational resources. In particular,
our solution achieved expressive performance improvements
over a baseline, uniform workload distribution, and outper-
formed previous work.
This article is a significantly extended and revised version

of a previous conference paper [Silva and Ribeiro, 2022].

https://orcid.org/0009-0005-9651-427X
larissaramos@discente.ufg.br
https://orcid.org/0000-0002-3534-9232
mailto:laribeiro@inf.ufg.br

JIDM 2023 Silva and Ribeiro 2023

The present article addresses a broader spectrum of clus-
ter configurations, including the following new material: a
formal categorization of different cluster configurations by
their data processor heterogeneity (Section 3.1); a general-
ization of the previously proposed cost model seamlessly en-
compassing all categories of cluster configurations consid-
ered in this article (Section 3.2); an extended and more de-
tailed evaluation including new empirical experiments (Sec-
tion 4). Moreover, we introduce the concept of workload-
distribution table, present the algorithm for its construction,
and incorporate it into our SSJ algorithm to obtain a refined
workload splitting (Section 3.3). Besides these technical con-
tributions, we also include a thorough discussion on state-
of-the-art SSJ algorithms and how our work relates to CPU-
GPU heterogeneous computing techniques (Section 5).
The remainder of this article is organized as follows. In

Section 2, we provide background material. Our proposed
solution is presented in Section 3 and experimentally evalu-
ated in Section 4. We discuss relevant relatedwork in Section
5 before we wrap up the conclusions and outline of future
work in Section 6.

2 Background
In this section, we first formally define the SSJ problem.
Then, we review some important optimization techniques.
Finally, we briefly overview frameworks for distributed com-
puting and the architecture of GPUs.

2.1 Problem Definition
We consider the problem of efficiently answering SSJ queries
over a set collection. Set elements are referred to as tokens.
We call the process of mapping data objects to sets tokeniza-
tion. SSJ has a join condition formed by a similarity func-
tion and a user-defined threshold. The similarity function
receives two sets as input and returns a value in [0, 1] rep-
resenting their similarity; a larger value indicates a higher
similarity. SSJ computes all set pairs in the input collection
whose similarity is not less than the threshold.

Definition 1 (Set Similarity Join(SSJ)). Given a set collec-
tion C—each set in C contains distinct tokens sampled from
a finite universe U , a similarity function sim : P (U) ×
P (U) → [0, 1], and a threshold τ ∈ [0, 1], SSJ returns all
set pairs (r, s) ∈ C × C s.t. sim (r, s) ≥ τ .

SSJ can be applied to any data object that can be repre-
sented as a set of tokens, which covers a vast range of do-
mains, including query logs, click-streams, user preference
data, and social media information [Mann et al., 2016]. For
example, users can be represented by sets, where tokens are
their interests, friends, products purchased, movies watched,
albums rated, and so on. String data can be tokenized in sev-
eral ways. A well-known method is based on the concept of
q-grams, i.e., sub-strings of length q obtained by “sliding” a
window over the characters of the input string. To this end,
the string is (conceptually) extended by prefixing and suffix-
ing it with q − 1 occurrences of a special character “$”, so
all its characters participate in exact q q-grams. For example,

the string “similarity” can be mapped to the set of 3-grams
tokens {‘$$s’,‘$si’, ‘sim’, ‘imi’, ‘mil’, ‘ila’, ‘lar’, ‘ari’, ‘rit’,
‘ity’, ‘ty$’, ‘y$$’}. Finally, as the result of a tokenization
method can be a multiset, we further append the symbol of
a sequential ordinal number to each occurrence of a token to
convert multisets into sets, e.g, the multiset {a, b, b} is con-
verted to {a◦1, b◦1, b◦2}. In the following, we assume that
all data objects have already been mapped to sets of tokens.
Similarity functions for sets are based on the overlap,

which is normalized to account for the size difference be-
tween the two input sets. A popular similarity function is
the Jaccard similarity: given two sets r and s, the Jaccard
similarity between them is defined as J (r, s) = |r∩s|

|r∪s| . In
this article, we focus on the Jaccard similarity, but all the fol-
lowing techniques hold for other similarity functions, such
as Dice and Cosine [Ribeiro and Härder, 2011].

2.2 Optimizations
Predicates based on similarity functions can often be equiva-
lently represented in terms of an overlap bound [Chaudhuri
et al., 2006]. Thus, we have J (r, s) ≥ τ ⇐⇒ |r ∩ s| ≥
α = 1

1+τ × (|r|+ |s|). SSJ is then reduced to the problem of
finding set pairs whose overlap is not less than such bound.
The above set-overlap formulation enables the derivation

of filters to avoid bulky similarity evaluation for each pair of
sets. The prefix filter technique [Chaudhuri et al., 2006] al-
lows discarding set pairs that cannot meet the similarity pred-
icate by examining only a subset of them.

Lemma 1 (Prefix Filter Principle). Consider that the tokens
of all sets are sorted based on some total token order. Let
pref (x, p) be the subset of x containing its first p tokens.
Then, for any two sets r and s, the following holds: |x∩y| ≥
α =⇒ pref (x, α + 1) ∩ pref (y, α + 1) ̸= ∅.

We can safely prune set pairs sharing no prefix token as
they cannot meet the overlap bound. For the Jaccard similar-
ity and threshold τ , we can identify all candidate matches of
a given set r using pref (r, ⌊(1− τ)× |r|⌋+ 1). We denote
this prefix simply by pref (r). Finally, tokens are ordered by
increasing order of their frequency in C, which moves lower-
frequency tokens to prefix positions and, therefore, increases
filtering effectiveness.
Another popular optimization technique is the length filter

[Sarawagi and Kirpal, 2004]. Intuitively, the difference in
size between two similar sets cannot be too large. Thus, one
can promptly discard set pairs whose sizes differ enough.

Lemma 2 (Length Filter Principle). For any two sets r and s,
and a similarity threshold τ , the following holds: J (r, s) ≥
τ =⇒ min

(
|r|
|s| ,

|s|
|r|

)
≥ τ .

Example 1. Consider the set collection C = [r, s, t], where
r = {C, D, E, F, G}, s = {A, B, C, D, E, F, G}, and
t = {D, E, F, G, H, I, J, K}, and an SSJ operation with
similarity threshold τ = 0.7. We have pref (r) = {C, D},
pref (s) = {A, B, C}, and pref (s) = {D, E, F}. The
pair (s, t) can be discarded because pref (s) ∩ pref (t) = ∅.
Indeed, J (s, t) = 4

7+8−4 ≈ 0.36. The pair (r, t) passes
through the prefix filter because pref (r) ∩ pref (t) = {D},

JIDM 2023 Silva and Ribeiro 2023

Algorithm 1: SSJ (C, τ)
Input: Sorted set collection C, threshold τ
Output: All pairs (r, s) s.t. J (r, s) ≥ τ

1 I1, . . . I|U| ← ∅
2 foreach r ∈ C do
3 M ← an empty map from set to a similarity score
4 foreach tok ∈ pref (r) do // prefix filter
5 foreach s ∈ Itok do
6 if |s| < |r| × τ then // length filter
7 M [s]← −∞
8 else
9 M [s]←M [s] + 1

10 Itok ← Itok ∪ {r}
11 Output (Verify (x, M, τ))

but not the length filter because |r| = 5 < |s|×τ = 8×0.7 =
5.6. Indeed, J (r, t) = 4

5+8−4 ≈ 0.44. The pair (r, s)
passes through both filters, i.e., pref (r) ∩ pref (s) = {C}
and |r| = 5 ≥ |s| × τ = 7 × 0.7 = 4.9. Since we have
J (r, s) = 5

5+7−5 ≈ 0.71, (r, s) is the only pair returned by
the SSJ operation over C.

2.3 General SSJ Algorithm

Most current SSJ solutions adopt a filtering-verification
framework [Mann et al., 2016]. In the filtering phase, can-
didate pairs are collected using an inverted index, which is
built as the input set collection is processed. In the verifica-
tion phase, the overlap of each candidate pair is calculated,
and those pairs satisfying the similarity predicate are output.
SSJ executes as an index nested loop join, as described in
Algorithm 1. An inverted list Itok stores all sets containing a
token tok in their prefix (Line 1). For each set r in C, the pre-
fix filter is applied by using only its prefix tokens for lookups
(Line 4) and indexing, where a reference to r is appended to
the inverted lists (Line 10). In this way, set pairs sharing no
prefix tokens are never considered candidates. The length
filter is employed for each set s found in the inverted lists
(Line 6). At this point, various other filtering techniques can
also be applied to reduce the comparison space, such as po-
sitional and suffix filters [Xiao et al., 2011]. If set s passes
through the filters, its similarity score is accumulated on a
map (Line 9). After the filtering phase, the similarity be-
tween r and each of its candidates is fully calculated in the
verification phase, and similar pairs are sent to the output
(Line 11). Verification can be highly optimized by exploit-
ing the token ordering in a merge-like fashion and the over-
lap bound to define early stopping conditions [Ribeiro and
Härder, 2011]. Finally, the set collection can be pre-sorted
according to set size to enable further index reduction either
at indexing time [Bayardo et al., 2007] or dynamically dur-
ing the filtering phase [Ribeiro andHärder, 2011]. It has been
shown that the runtime decrease achieved by such optimiza-
tions largely compensates for the additional sorting cost.

Figure 1. GPU architecture overview.

2.4 Distributed Computing Frameworks

Distributed computing frameworks automatically partition
the input data over different nodes and provide a program-
ming model to express complex transformations on this data.
MapReduce is one of the earliest and most popular of such
frameworks [Dean and Ghemawat, 2004]. Its computing
platform provides an abstraction for parallelization, fault tol-
erance, load balancing, scheduling, and synchronization of
data processing tasks. Input data is represented as a set
of key/value pairs. The programming API consists of two
used-defined functions: map(k1, v1) → list(k2, v2) and
reduce(k2, list(v2))→ list(k3, v3).
Apache Spark is another widely used framework for pro-

cessing large-scale datasets on shared-nothing architectures.
It provides an abstraction for in-memory data storage and
parallel processing on clusters called resilient distributed
datasets (RDDs). More specifically, an RDD is an im-
mutable, partitioned collection of objects created by coarse-
grained deterministic operations. In particular, the opera-
tions called flatMap and groupByKey allow expressing the
MapReduce programming model.

2.5 Graphic Processing Units

GPUs were originally designed as special-purpose coproces-
sors for dedicated graphics rendering. With the advent of effi-
cient parallel programming models, such as NVIDIA CUDA
and OpenCL, these devices evolved into powerful acceler-
ators for general-purpose computing. Figure 1 depicts an
overview of modern GPU architecture. Basically, a GPU
contains multiple compute units called Streaming Multipro-
cessor (SMs). Inside each SM there are several Streaming
Processors (SPs) cores that operate on different data but
in a synchronous way. Memory is organized into a hierar-
chy. The largest (and slowest) memory is the global memory.
Data accessed from the global memory is cached in the L2
cache, which is shared across all SMs as the global memory,
and, optionally, also in the L1 cache, which is local to each
SM. The shared memory is controlled by the programmer for
use as a scratchpad and can be accessed by all SPs in an SM.
Finally, registers store per-thread data.
A GPU program exposes parallelism through data-parallel

functions, called kernels, that are offloaded to the GPU. The
programmer configures the number of threads to be used; un-
like CPUs, the overhead of thread creation and switching in
GPUs is negligible. These threads are organized in thread

JIDM 2023 Silva and Ribeiro 2023

blocks that are assembled into a grid structure. When a ker-
nel is launched, the blocks within a grid are distributed on
idle SMs, and the threads are mapped to the SPs. A thread
block in an SM is divided into multiple schedule units, called
warps, that are dynamically scheduled on the SM. Warps ex-
ecute in a Single Instruction Multiple Threads (SIMT)model,
where its threads execute the same instruction simultane-
ously but on different data. Data must first be transferred
over a system bus for processing on a dedicated GPU. The
bandwidth of current GPU interconnects such as PCI Express
(PCIe) 3.0 is significantly slower than that of the CPU main
memory, leading to a potential transfer bottleneck. The emer-
gence of faster GPU interconnects, such as NVLink 2.0, en-
ables the GPU to access CPU memory with the full memory
bandwidth, potentially eliminating this bottleneck.

3 SSJ on Heterogeneous Clusters
In this section, we describe our solution to efficiently exe-
cute SSJ queries on heterogeneous clusters equipped with
CPU and GPU. We first define levels of cluster heterogene-
ity w.r.t the available data processors. Then, the main con-
tribution of this article is presented: a CPU-GPU cost model
to distribute the workload between CPU and GPU accord-
ing to their relative processing power. Finally, we employ
the proposed model to seamlessly integrate two algorithms,
one massively parallel designed for GPUs and the other dis-
tributed designed for shared-nothing architectures, thus fully
exploiting the available hardware resources.

3.1 Cluster Heterogeneity Levels
We use the term cluster to refer to the traditional notion of a
computer cluster, i.e., a collection of independent computer
nodes connected together via high-speed network technol-
ogy. Further, we focus on shared-nothing architectures, i.e.,
distributed computing architectures in which neithermemory
nor storage is shared among processors. In this context, we
categorize the cluster configurations addressed in this article
by the level of heterogeneity of their processors as formally
defined below.

Definition 2 (Cluster Heterogeneity Levels). Consider a
cluster CT formed by computing nodes N1, ..., Nn. Each
node Ni has a set of processors Ni.P = {P1, ..., Pm}.
A processor P is of type CPU or GPU, i.e., P.type ∈
{CPU, GPU} and has a specification P.spec; specifica-
tions of the same type of processors are uniform within a
node but can vary along different nodes. We formally define
the levels of cluster heterogeneity as follows.

• Homogeneous (HM) cluster: CT is a HM cluster if∣∣∣⋃n
i=1

⋃m
j=1 Ni.Pj .type

∣∣∣ = 1.
• Heterogeneous (HT) cluster: CT is an HT cluster if

(∀Ni ∈ CT,
⋃m

j=1 Ni.Pj .type = {CPU, GPU})
∧ |

⋃n
i=1{P.spec : Ni.P.type = CPU}| = 1 ∧

|
⋃n

i=1{P.spec : Ni.P.type = GPU}| = 1.
• Highly Heterogeneous (HHT) cluster:

CT is an HHT cluster if (∀Ni ∈

CT,
⋃m

j=1 Ni.Pj .type = {CPU, GPU}) ∧
(|

⋃n
i=1{P.spec : Ni.P.type = CPU}| > 1 ∨

|
⋃n

i=1{P.spec : Ni.P.type = GPU}| > 1).

In an HM cluster, all nodes have the same processor type,
either CPU or GPU. In HT and HHT clusters, all nodes are
equipped with, possibly multiple, CPU and GPU. Processors
of the same type in an HT cluster have the same specifica-
tions, whereas in an HHT cluster, processors of the same type
have varying specifications along different nodes.

Example 2. As a concrete example, consider a cluster CT ,
whose initial configuration contains two compute nodes;
each node has a CPU Intel Xeon E5-2650. We classify CT
as an HM cluster. Then, a GPU NVIDIA Tesla K40 is added
to CT , leading to a new version CT ′, which is classified
as an HT cluster. Finally, another version is built, CT ′′, by
adding a third nodewith a CPUAMDEPYC7452 and aGPU
NVIDIA Tesla V100. We classify CT ′′ as an HHT cluster.

Clearly, there exist cluster configurations that do not fit the
above definitions. For example, wemay have a cluster where
some nodes contain both CPU and GPU while others only
CPU. Adapting our proposal for dealing with such scenarios
is conceivable but left for future work.
Answering SSJ queries on HM clusters has attracted con-

siderable research attention over the years (see Section 5). In
contrast, evaluating SSJ on HT and HHT clusters has so far
been ignored, which is our focus next.

3.2 Cost Model for CPU-GPU Coprocessing
The crux of a coprocessing strategy on heterogeneous hard-
ware is identifying the best workload distribution. On the
one hand, such distribution should avoid resource underuti-
lization by keeping all processors busy. On the other hand,
overloading a processor can lead to disastrous performance
because the overall execution time is determined by the last
processor to finish its workload.
Given the general notion that in-memory execution of tra-

ditional database operators is typically memory-bandwidth
bound, the work of Shanbhag et al. [2020] presents a cost
model to predict runtime selection, projection, and join on
CPU and GPU. The key insight is that the ratio of operator
runtime on CPU to runtime on GPU roughly follows the ra-
tio of memory bandwidth ratio of these two devices. Inspired
by this insight, we propose a model for workload distribution
between CPU and GPU.

Definition 3 (CPU-GPU Cost Model). Let W cpu and W gpu

be the workload fractions of CPUs and GPUs in a cluster
CT , respectively; we have W cpu + W gpu = 1. Further,
let Bcpu

1 , ..., Bcpu
k and Bgpu

1 , ..., Bgpu
l be the memory band-

width of the distinct specification of the CPUs and GPUs,
respectively. The workload distribution in CT is defined by
the following proportion:

W cpu

W gpu
=

1
k

∑k
i=1 Bcpu

i

1
l

∑l
i=1 Bgpu

i

.

Example 3. Consider the HT cluster CT ′ in Example 2.
The memory bandwidths of the CPU Intel Xeon E5-2650

JIDM 2023 Silva and Ribeiro 2023

Algorithm 2: WDTBuilder (T, W cpu)
input :Token-frequency table T , fraction of the

CPU workload W cpu

output :A workload-distribution tableW
1 W ← ∅, cpuLoad← 0
2 workload← sum(T.values())
3 foreach (tok, freq) ∈ T do
4 if cpuLoad < workload×W cpu then
5 W.add(tok, CPU)
6 else
7 W.add(tok, GPU)
8 cpuLoad← cupLoad + freq

9 returnW

and GPU NVIDIA Tesla K40 are 68 GB/s and 288 GB/s,
respectively. Thus, we have W cpu

W gpu = 68
288 . By substitut-

ing W gpu in the formula W cpu + W gpu = 1, we have
W cpu + 288

68 × W cpu = 1 ≡ W cpu ×
(
1 + 288

68
)

= 1 ≡
W cpu ≈ 0.19. Therefore, the distribution of the workload
is 19% for CPU and 81% for GPU for cluster CT ′. Now
consider the HHT cluster CT ′′ in Example 2. The mem-
ory bandwidths of the CPU AMD EPYC 7452 and the GPU
NVIDIA Tesla V100 are 204.8 GB/s and 897 GB/s, respec-
tively. Now we have W cpu

W gpu = (68+204.8)/2
(288+897)/2 = 272.8

1185 . By
substituting W gpu in the formula W cpu + W gpu = 1, we
have W cpu + 1185

272.8 ×W cpu = 1 ≡ W cpu ×
(
1 + 1185

272.8
)

=
1 ≡ W cpu ≈ 0.18. Therefore, the distribution of the work-
load is 18% for CPU and 82% for GPU for cluster CT ′′.

3.3 The DSJoingpu Algorithm
In this section, we illustrate the applicability of our CPU-
GPU cost model to coupling distributed computing and mas-
sive parallelism for answering SSJ queries on heterogeneous
clusters. In particular, we employ the model to integrate
two existing SSJ algorithms: DSJoin [Oliveira et al., 2017,
2018], a distributed algorithm designed for CPU-based HM
clusters, and sf-gSSJoin, a parallel algorithm designed for
GPUs [Ribeiro-Júnior et al., 2017]. It is important to notice,
however, that our model is not tethered to any particular SSJ
algorithm: it only requires that the underlying algorithms al-
low workload distribution along different devices.
The DSJoin algorithm partitions the input data using pre-

fix tokens as partition keys; only sets within the same parti-
tion are compared. This strategy indirectly applies prefix fil-
tering as two sets wind up in the same partition only if they
share a prefix token. Similarity evaluation on the partitions
uses an inverted index and applies further filters, such as the
length filter, analogously to Algorithm 1. The sf-gSSJoin
algorithm builds a complete inverted index on the GPU—
all tokens are indexed, not only prefix tokens— to quickly
identify similar sets. The algorithm applies a block division
scheme for dealing with large datasets that do not fit in GPU
memory; this scheme also enables pruning of the comparison
space by discarding entire blocks based on the length filter.
In our previous paper, we directly used the CPU fraction of

the workload to send the lists of candidate sets either to the
CPU or GPU (see [Silva and Ribeiro, 2022], Algorithm 1).

Algorithm 3: DSJoingpu (C, τ,W)
input :Set collection C, threshold τ , WD tableW
Output: All pairs (r, s) s.t. J (r, s) ≥ τ
// Partition step

1 foreach r ∈ C do
2 flatMap(funcPart(r))→ list(key, r)
3 list(key, list(r))← groupByKey(list(key, r))

// Verification step
4 foreach (key, list(r)) ∈ list(key, list(r)) do
5 sort (list(r)) // asc set size
6 if W.probe(key) = CPU then
7 Output (flatMap (SSJ (list(r), τ)))
8 else
9 Output (flatMap (sf -gSSJoin (list(r), τ)))

// Partitioning function
10 Function funcPart(r)
11 foreach key ∈ pref (r) do
12 list.add(key, r)
13 return list(key, r)

While intuitive, this strategy can result in a crude workload
distribution owing to the non-uniformity of the sizes of the
lists. In this article, we introduce the concept of workload-
distribution (WD) table, which more precisely reflects the
workload fraction values derived from the CPU-GPU cost
model. We build the WD table during preprocessing as de-
scribed in Algorithm 2. Given a table with the frequency of
prefix tokens and the CPU workload fraction, we first calcu-
late the total workload by summing up all the frequencies;
note that such frequencies correspond to the size of the lists
of candidates. Then, we simply iterate over token-frequency
pairs, associating each token with the CPU flag in the WD
table until the CPU load is reached, after which tokens are
associated with the GPU flag. Since table T has to be created
anyway for ordering the tokens within each set, constructing
the WD table incurs negligible overhead in preprocessing.
We now present DSJoingpu, an algorithm integrating

DSJoin and sf-gSSJoin. Figure 2 shows the processing
steps of DSJoingpu, which are formalized in Algorithm 3—
although we use Spark operations in the algorithm, namely
flatMap and groupByKey, our solution is generic and can
be easily adapted to other distributed platforms such as
MapReduce. In the partitioning step (Lines 1–3), each in-
put set is passed to the funcPart function (Lines 10–13),
which extracts the prefix tokens and, in turn, associates each
of them to a copy of the set. Then, the groupByKey opera-
tion is called to group sets with the same key into a list; all
set pairs in a group are deemed candidates.
In the verification step, the cluster processors perform the

pairwise comparison of all candidates in a distributed and in-
dependent manner. First, sets associated with the same par-
tition key are sorted in increasing order of their size. Then,
DSJoingpu uses the input WD table to determine where the
computation takes place (Line 6), i.e., whether a regular
CPU-based SSJ algorithm (Line 7) or sf-GSSJoin (Line 9)
is invoked. Finally, candidate pairs satisfying the similarity
predicate are added to the result set.

JIDM 2023 Silva and Ribeiro 2023

Figure 2. DSJoingpu processing steps.

As presented, the algorithm can produce duplicate pairs in
the result. Two similar sets containing more than one pre-
fix token in common will be sent to different processors and,
therefore, appear multiple times in the final result. This prob-
lem is avoided by exploiting the global token order. In the
verification step, we only compare candidate pairs if the first
token in common is equal to the partition key. Otherwise, if
this token is greater than the key, then we are sure this pair
will be compared elsewhere, and the evaluation can thus be
safely interrupted. We have incorporated this checking into
both the CPU- and GPU-based algorithms.

4 Experiments
We now present an experimental evaluation of our proposal
on HT and HHT clusters. The goals of our study are 1) to
evaluate the effectiveness of our cost model in identifying
the best workload distribution, 2) to test the scalability of our
proposal, and 3) to compare the performance of DSJoingpu

against DSJoin.

4.1 Experimental Setup
We used two publicly available, real-world datasets as
sources: DBLP1, a dataset containing information about
Computer Science publications, and IMDB2, a dataset con-
taining information about movies and TV shows. In each
dataset, we randomly selected entries and extracted the string
content of the title attribute (title of papers for DBLP and
movies for IMDB). We then generated a number of ”dirty”
copies of each string by performing 1–5 character-level trans-
formations such as character insertions, deletions, and substi-
tutions. We converted strings to upper-case letters and elim-
inated repeated white spaces. Each string was then mapped
to a set of tokens by using q-grams of size 3, hashing each
token into an integer value, and ordering the tokens within
a set according to their frequency in the collection. Table 1
shows details about the datasets (minimum, maximum, and
average set size, and the number of distinct tokens).
We ran the experiments on a cluster accessed through a

central head node, on which processing jobs were then ex-

1https://dblp.uni-trier.de/
2https://www.imdb.com/

dataset min. size max. size avg. size |U|
DBLP 5 250 73.23 32513
IMDB 5 122 19.72 37623

Table 1. Dataset statistics.

ecuted through a queue management system called SLURM
Workload Manager 3. We derived three cluster configura-
tions: HT1, formed by two compute nodes, each one with
CPU Intel Xeon E5-2650 and GPU NVIDIA Tesla K40
CPUs; HT2, formed by a compute node with a CPU AMD
EPYC 7452 and a GPU NVIDIA Tesla V100; and HHT,
formed by the integration of HT1 e HT2. The GPUs are
connected to the CPUs through PCIe 3.0. The specifications
of the CPUs and GPUs were already provided in Example
3. Similarly, the distribution of the workload between CPU
and GPU corresponds to the values presented in Example 3:
19% and 81% for CPU and GPU, respectively, on cluster
HT1; 18% and 82% for CPU and GPU, respectively, on clus-
ters HT2 and HHT. Overall performance was measured in
average wall-clock time over repeated runs.
The algorithms DSJoin and DSJoingpu were implemented

using the following programming languages and technolo-
gies: Oracle Java 11, Scala 2.11, Apache Spark 3.0.2,
Apache Hadoop 3.2.1, and NVIDA CUDA. We used the al-
gorithm mpjoin [Ribeiro and Härder, 2011]. To integrate
sf-gSSJoin into DSJoingpu, we used JCuda, which is a
Java binding library for NVIDIA CUDA.

4.2 Experimental Results
We now report and analyze our experimental results cover-
ing the aforementioned evaluation goals. We begin with the
evaluation of the proposed cost model. Figure 3 shows the
results of DSJoingpu for varying fractions of the GPU work-
load, from 50% to 90%, and threshold values, from 0.9 to
0.7; all datasets contain 16M sets. In all settings, the peak
performance was achieved when the workload was close to
the value obtained from the cost model, i.e., around 80%. Re-
markably, this behavior is observed even on the HHT clus-
ters, demonstrating that our cost model satisfactorily gen-
eralizes on configurations exhibiting heterogeneity on both
processor type and specification. In contrast, the worst re-
sults were obtained with the uniform workload distribution,
i.e., 50/50, up to 2x slower than the distribution GPU-CPU

3https://slurm.schedmd.com/documentation.html

https://dblp.uni-trier.de/
https://www.imdb.com/
https://slurm.schedmd.com/documentation.html

JIDM 2023 Silva and Ribeiro 2023

Figure 3. DSJoingpu runtimes for varying fractions of GPU workload and threshold values.

of 80/20. GPU has superior processing power and memory
bandwidth and, therefore, it finished its workload share way
before the CPU, which, in turn, slowed down the overall run-
ning time. Successive speedups were then achieved as the
share of theworkload assigned to theGPU increased up to the
point when it reached 80%. Afterward, performance dropped
as the GPU became overloaded.
An important observation from the speedups obtained is

that we were able to overcome the data transfer bottleneck
between CPU-GPU with the adopted coprocessing scheme.
Some operations, such as selections and ungrouped aggrega-
tions, are bandwidth-bound and, thus, suffer from the slow
PCIe connection in a coprocessing scheme. In contrast, tra-
ditional join operations are considered latency-bound as they
typically perform random access to a large internal state,
which benefits GPU’s faster memory and larger caches com-
pared to the CPU [Rosenfeld et al., 2022]. Our results sug-
gest that such characteristics are also present in SSJ queries,
and, as a result, performance gains can be achieved even
when the data initially resides in the CPUmemory. Speedups
of SSJ queries in CPU-GPU coprocessing scheme were also
reported in [Bellas and Gounaris, 2021].

DSJoingpu follows the same trend as any SSJoin employ-
ing filters that exploit the threshold: the higher the threshold,
the better performance as the filters become more effective.
For prefix filtering, higher thresholds generate smaller pre-
fixes, reducing both communication and computation costs.
Conversely, lower thresholds translate into more sets trans-
mitted over the network and processed at the compute nodes.
In this context, the block division scheme of sf-GSSJoin
comes at hand to deal with larger data volumes on the GPU.
Next, we conducted scalability tests on datasets with a

varying number of sets, from 16M to 48M. The threshold
was fixed at 0.9. Figure 4 shows the results. The behavior
of DSJoingpu is identical to the previous experiment: the

best performance is achieved with the workload distribution
closer to the values returned by our cost model, i.e, 80%GPU
and 20%CPU, and theworst was obtainedwith a uniform dis-
tribution. The runtimes do not scale linearly with the number
of sets, but this result was expected because the verification
workload of SSJ algorithms grows quadratically with the in-
put size [Xiao et al., 2011; Ribeiro and Härder, 2011].
In our last experiment, we compared DSJoingpu against

DSJoin, which is purely CPU-based. The workload distri-
bution of DSJoingpu was set to 80% GPU and 20% CPU, as
it was defined by the cost model and, indeed, is the best dis-
tribution according to the previous experiments. The dataset
sizes were fixed at 48M, and the threshold value ranges from
0.9 to 0.7. We used two versions of cluster HT1 for this ex-
periment, with one and two compute nodes.
Figure 5 shows the results. DSJoingpu outperformed

DSJoin in all settings. In particular, DSJoingpu is up to 63%
faster than the DSJoin algorithm. Moreover, DSJoingpu us-
ing only one compute node achieved superior performance
than DSJoin using two processing nodes in the HT1 cluster
for thresholds 0.9 and 0.8 (Figures 5(a)–(b)). The reason for
the performance advantage of DSJoingpu over DSJoin lies
in the use of GPU during the verification step; note that al-
locating 100% of the verification workload to the CPU turns
DSJoingpu into DSJoin. Figure 6 shows the runtime break-
down of the two algorithms. The flatMap and groupByKey
operations constitute the partition step of the algorithms, thus
encompassing all data transfer over the network. The prefix
tokens are the rarest in the entire input set collection; using
them as partition keys minimizes the communication load,
and, as a result, flatMap and groupByKey have the least im-
pact on the runtime. Further, both algorithms sort candidate
lists on the CPU with similar timings. In contrast, the verifi-
cation step, the largest portion of the overall runtime, is twice
as fast in DSJoingpu compared to DSJoin. This result indi-

JIDM 2023 Silva and Ribeiro 2023

Figure 4. DSJoingpu runtimes for varying fractions of GPU workload and number of sets.

cates that a judicious workload splitting between CPU and
GPU enables effective utilization of both processors, amor-
tizing the overhead incurred by the PCIe bus.

5 Related Work

The efficient evaluation of SSJ queries has been actively in-
vestigated by the database community on various computing
platforms. Most solutions are designed for CPU and assume
memory-resident data [Sarawagi and Kirpal, 2004; Chaud-
huri et al., 2006; Bayardo et al., 2007; Xiao et al., 2011;
Ribeiro and Härder, 2011]; some works also proposed ex-
tensions for disk-resident data [Bayardo et al., 2007; Ribeiro
and Härder, 2011]. Mann et al. [2016] presented an empir-
ical evaluation of several CPU-based algorithms. More re-
cently, Wang et al. [2017] proposed a new inverted list orga-
nization to improve the filtering step and exploited the fact
that similar sets produce similar results to optimize the verifi-
cation step. Fier and Freytag [2022] adapted existing SSJ al-
gorithms to exploit multi-threading parallelism available on
multicore CPUs.
Ribeiro-Júnior et al. [2016] introduced gSSJoin, the first

exact SSJ algorithm designed for GPUs. Later on, the same
authors presented sf-gSSJoin [Ribeiro-Júnior et al., 2017],
which we used in this article, and fgssjoin [Quirino et al.,
2017], which applies various filters to reduce the number of
candidate pairs processed in the verification. In all three al-
gorithms, SSJ is entirely executed on the GPU. Bellas and
Gounaris [2019] presented an SSJ algorithm based on CPU-
GPU coprocessing: in a multi-threading scheme, filtering is
performed on the GPU while the whole verification is dele-
gated to the GPU. Besides considering a distributed setting,
we apply prefix filtering on the CPU during data partition-
ing and perform the remaining processing on both CPU and

GPU at each compute node. In subsequent work, Bellas and
Gounaris [2021] proposed HySet, a framework to execute
SSJ concurrently on CPU and GPU in a single-machine set-
ting. Two strategies for distributing the workload between
the processors are considered, and the best-performing one,
called dichotomy, allocates fixed fractions of the workload
to the CPU and GPU, as in our proposal. However, the best
fractions for each processor are determined manually on a
trial-and-error basis. In contrast, we use a cost model for au-
tomatically splitting the workload.
Another line of work considered the evaluation of SSJ on

CPU-based HM clusters. An experimental comparison of
ten distributed algorithms on this architecture is presented in
[Fier et al., 2018]. The best-performing algorithm, Vernica-
Join [Vernica et al., 2010], employs a data partitioning strat-
egy based on prefix tokens as DSJoin [Oliveira et al., 2017,
2018] and DSJoingpu. More recently, Sun et al. [2019] pro-
posed a framework for adaptively selecting partition keys, on
top of which global and local indexes are built to support sim-
ilarity processing. Fier and Freytag [2021] employed a cost-
based heuristic and a scaling mechanism to avoid intra-node
data replication and recomputation. None of these previous
works considered HT and HTT clusters.

There is a rich body of research addressing the heteroge-
neous execution of database queries on CPU-GPU systems.
A recent, comprehensive survey is presented by Rosenfeld
et al. [2022]. The authors categorize existing techniques
along six dimensions w.r.t scheduling workload on CPU and
GPU: processor usage, scheduling time, scheduling strategy,
workload distribution, task granularity, and data partitioning.
The former three dimensions cover aspects of schedule de-
cisions, while the latter three focus on the characteristics of
the tasks scheduled—in our context, a task refers to a list of
set candidates evaluated in the verification step. We briefly
discuss how our work fits this categorization in the follow-

JIDM 2023 Silva and Ribeiro 2023

Figure 5. DSJoingpu vs. DSJoin.

Figure 6. Runtime breakdown of DSJoingpu and DSJoin.

ing and refer the interested reader to the survey for specific
related work on each dimension.

Regarding processor usage, we consider CPUs and GPUs
as generic compute resources instead other work which uses
them as specialized devices for specific purposes. Schedul-
ing time determines when a task is assigned to a particular
processor. The first version of DSJoingpu determines the
type of processor to which the current list of candidates is
sent during its execution; this approach is called dynamic in
the survey. In the version presented in this article, schedul-
ing is static, i.e., defined in the preprocesisng step. Further,
our scheduling strategy employs a cost model based on the
relative throughput of each processor.

We focus on the execution of the SSJ in isolation. Hence,
our workload distribution strategy is simply based on a single
data partition. Interestingly, some proposals adopt a strategy
that resembles the filtering-verification framework adopted
by SSJ algorithms: result candidates are generated on one
processor and verified on the other to produce final results.
Here, we generate candidates on the CPU in the filtering step
and verify them on both the CPU and GPU. Finally, our task
granularity is defined by lists of candidates, as already men-
tioned, and, in turn, data partitioning is horizontal and pro-
duces arbitrarily-sized partitions.

6 Conclusion and Future Work
In this article, we presented an approach to efficiently an-
swering SSJ queries on a heterogeneous cluster of compute
nodes equipped with CPU and GPU. To deal with the asym-
metry in computing power among processors, we devised a
cost model based on their memory bandwidth to guide the
workload distribution. Further, we applied this cost model to
incorporate an SSJ algorithm designed for GPUs into a dis-
tributed algorithm, thus, coupling massive parallelism and
distributed computing in a coprocessing fashion. We exten-
sively evaluated the integrated algorithm, called DSJoingpu,
on publicly available real-world datasets. Our experimental
results have shown that the proposed cost model accurately
captures the best workload distribution between CPU and
GPU. Moreover, DSJoingpuis scalable and outperformed an
existing distributed algorithm that executes entirely on CPU.
In future research, we will explore the parallelization of

additional steps of SSJ. A clear candidate is the sorting of
the candidate list, which have a significant impact on the run-
time. We can also use the GPU on the pre-processing step of
SSJ, including tokenization, set generation, and building the
token-frequency andWD tables. We also intend to apply our
cost model to enable CPU-GPU coprocessing on other SSJ
algorithms, including the multithreading ones. To this end,

JIDM 2023 Silva and Ribeiro 2023

the Hyset framework of Bellas and Gounaris is complemen-
tary to our work: our cost model can be used to automate
the workload splitting of Hyset, while this framework pro-
vides us with a common testbed for investigating different
SSJ algorithms. Finally, we plan to evaluate our techniques
on a wider spectrum of cluster configurations and study the
impact of fast GPU interconnects on processing SSJ queries.

Acknowledgements

We thank the anonymous reviewers for their insightful comments.
This research was partially supported by LaMCAD/UFG.

References
Bayardo, R. J., Ma, Y., and Srikant, R. (2007). Scaling up
All Pairs Similarity Search. In Proceedings of the Interna-
tional World Wide Web Conferences, pages 131–140.

Bellas, C. and Gounaris, A. (2019). Exact Set Similarity
Joins for Large Datasets in the GPGPU Paradigm. In Pro-
ceedings of the International Workshop on Data Manage-
ment on New Hardware, pages 5:1–5:10.

Bellas, C. and Gounaris, A. (2021). HySet: A Hybrid Frame-
work for Exact Set Similarity Join using a GPU. Parallel
Computing, 104-105:102790.

Chaudhuri, S., Ganti, V., and Kaushik, R. (2006). A Primi-
tive Operator for Similarity Joins in Data Cleaning. In Pro-
ceedings of the IEEE International Conference on Data
Engineering, page 5.

Dean, J. and Ghemawat, S. (2004). MapReduce: Simpli-
fied Data Processing on Large Clusters. In Proceedings
of the USENIX Symposium on Operating Systems Design
and Implementation, pages 137–150.

Fier, F., Augsten, N., Bouros, P., Leser, U., and Freytag, J.
(2018). Set Similarity Joins on MapReduce: An Exper-
imental Survey. Proceedings of the VLDB Endowment,
11(10):1110–1122.

Fier, F. and Freytag, J. (2021). Scaling Up Set Similarity
Joins Using a Cost-Based Distributed-Parallel Framework.
In International Conference on Similarity Search and Ap-
plications, pages 17–31.

Fier, F. and Freytag, J. (2022). Parallelizing Filter-and-
verification based Exact Set Similarity Joins on Multi-
cores. Information Systems, 108:101912.

Mann, W., Augsten, N., and Bouros, P. (2016). An Empirical
Evaluation of Set Similarity Join Techniques. Proceedings
of the VLDB Endowment, 9(9):636–647.

Oliveira, D., Borges, F. F., and Ribeiro, L. A. (2017). Uma
Abordagempara ProcessamentoDistribuído de Junção por
Similaridade sobreMúltiplos Atributos. In Proceedings of
the Brazilian Symposium on Databases, pages 300–305.

Oliveira, D. J. C., Borges, F. F., Ribeiro, L. A., and Cuz-
zocrea, A. (2018). Set Similarity Joins with Complex Ex-
pressions on Distributed Platforms. In Proceedings of the
Symposium on Advances in Databases and Information
Systems, pages 216–230.

Quirino, R. D., Ribeiro-Júnior, S., Ribeiro, L. A., and Mar-
tins, W. S. (2017). fgssjoin: A GPU-based Algorithm for

Set Similarity Joins. In International Conference on En-
terprise Information Systems, pages 152–161. SciTePress.

Ribeiro, L. A. and Härder, T. (2011). Generalizing Prefix
Filtering to Improve Set Similarity Joins. Information Sys-
tems, 36(1):62–78.

Ribeiro-Júnior, S., Quirino, R. D., Ribeiro, L. A., and Mar-
tins, W. S. (2016). gSSJoin: a GPU-based Set Similarity
Join Algorithm. In Proceedings of the Brazilian Sympo-
sium on Databases, pages 64–75. SBC.

Ribeiro-Júnior, S., Quirino, R. D., Ribeiro, L. A., and Mar-
tins, W. S. (2017). Fast Parallel Set Similarity Joins on
Many-core Architectures. Journal of Information and
Data Management, 8(3):255–270.

Rosenfeld, V., Breß, S., and Markl, V. (2022). Query Pro-
cessing onHeterogeneous CPU/GPUSystems. ACMCom-
puting Surveys, 55(1).

Sarawagi, S. and Kirpal, A. (2004). Efficient Set Joins on
Similarity Predicates. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data,
pages 743–754. ACM.

Shanbhag, A., Madden, S., and Yu, X. (2020). A Study
of the Fundamental Performance Characteristics of GPUs
and CPUs for Database Analytics. In Proceedings of the
ACM SIGMOD International Conference on Management
of Data, pages 1617–1632.

Silva, L. R. M. and Ribeiro, L. A. (2022). Junções por Simi-
laridade usando Processamento Distribuído e Paralelismo
Massivo. In Proceedings of the Brazilian Symposium on
Databases, pages 421–426. SBC.

Sun, J., Shang, Z., Li, G., Bao, Z., and Deng, D. (2019).
Balance-AwareDistributed String Similarity-BasedQuery
Processing System. Proceedings of the VLDB Endowment,
12(9):961–974.

Suri, S., Ilyas, I. F., Ré, C., and Rekatsinas, T. (2021). Em-
ber: No-Code Context Enrichment via Similarity-Based
Keyless Joins. Proceedings of the VLDB Endowment,
15(3):699–712.

Vernica, R., Carey, M. J., and Li, C. (2010). Efficient Paral-
lel Set-similarity Joins using MapReduce. In Proceedings
of the ACM SIGMOD International Conference on Man-
agement of Data, pages 495–506.

Wang, X., Qin, L., Lin, X., Zhang, Y., and Chang, L. (2017).
Leveraging Set Relations in Exact Set Similarity Join. Pro-
ceedings of the VLDB Endowment, 10(9):925–936.

Xiao, C., Wang, W., Lin, X., Yu, J. X., and Wang, G.
(2011). Efficient Similarity Joins for Near-Duplicate
Detection. ACM Transactions on Database Systems,
36(3):15:1–15:41.

Xu, L., Butt, A. R., Lim, S., and Kannan, R. (2018). A
Heterogeneity-Aware Task Scheduler for Spark. In Pro-
ceedings of the IEEE International Conference on Cluster
Computing, pages 245–256.

Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauly, M., Franklin, M. J., Shenker, S., and Stoica, I.
(2012). Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. In Pro-
ceedings of the USENIX Symposium on Networked Sys-
tems Design and Implementation, pages 15–28.

	Introduction
	Background
	Problem Definition
	Optimizations
	General SSJ Algorithm
	Distributed Computing Frameworks
	Graphic Processing Units

	SSJ on Heterogeneous Clusters
	Cluster Heterogeneity Levels
	Cost Model for CPU-GPU Coprocessing
	The DSJoingpu Algorithm

	Experiments
	Experimental Setup
	Experimental Results

	Related Work
	Conclusion and Future Work

