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Abstract As trajectory datasets grow larger, summarization techniques become increasingly important. However,
current methods often lack a suitable measure of representativeness, making evaluation a complex task. This is
especially true in the context of multi-aspect trajectories, where evaluating summarization techniques is particu-
larly challenging. To address this, we have developed a novel representativeness measure called RMMAT . This
innovative method combines similarity metrics and covered information, offering adaptability to diverse data and
analysis needs. With RMMAT , evaluating summarization techniques is simplified, and deeper insights can be gained
from extensive trajectory data. Our evaluation of real-world trajectory datasets demonstrates that RMMAT is a ro-
bust Representativeness Measure for Summarized Trajectories with Multiple Aspects. This measure could help
researchers and analysts to evaluate and empower them to make informed decisions about the quality and relevance
of representative data for their analytical goals.
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1 Introduction
The need to distill valuable insights is paramount in an era of
vast trajectory data generated by individuals, vehicles, and
objects. The proliferation of the Internet of Things (IoT)
further enriches trajectories with multiple aspects, such as
weather conditions during travel, the individual’s mood, and
social media posts. Extracting representative information
from trajectories is crucial for effective analysis.
Trajectory summarization methods provide essential tools

for creating concise representations, allowing analysts to
comprehend and leverage the underlying movement patterns
efficiently. Nevertheless, evaluating the effectiveness of
these summarization techniques is a complex task, often ham-
pered by the lack of a robust and comprehensive measure
of representativeness [Seep and Vahrenhold, 2019; Machado
et al., 2022].
This article introduces theRepresentativenessMeasure for

Multiple-Aspect Trajectories (RMMAT), addressing the chal-
lenge of assessing how well a representative trajectory re-
flects the original data. By applying the power of similarity
metrics and covered information, RMMAT provides a multi-
faceted measure that quantifies the quality of representative
trajectories in terms of their representativeness to the com-
plete input dataset. This score, adaptable within a customiz-
able configuration, empowers analysts to tailor the evalua-
tion process to align the unique demands of their analytical
scenarios.
By filling the void left by the lack of a comprehensive rep-

resentativeness measure, RMMAT equips researchers with a
potent tool for extracting insights from summarizedmultiple-
aspect trajectory (MAT) data in the burgeoning trajectory
data landscape. To help understand the paper better, the main
acronyms used in the paper are summarized in Table 1.
In subsequent sections, we delve into RMMAT’s formu-

lation, rigorous experimental evaluations, and facets related
to similarity and covered information. We evaluate RMMAT
using the Foursquare dataset (193 users), with promising re-
sults.
This paper is an extended version of Machado et al.

[2023b], presented at XXIV Brazilian Symposium on GeoIn-
formatics (GEOINFO 2023). We have significantly im-
proved Section 2 by adding more conceptual information
about trajectory summarization and representative trajectory.
Moreover, we have extended Section 5 by including a com-
parative experimental evaluation between two state-of-the-
art MAT summarization methods, MAT-SG and MAT-SGT .
Bothmethods establish amapping between the input data and
the resultant representative trajectory. With this comparative
analysis, we aim to analyze the use of the covered informa-
tion component in RMMAT measure and compare summa-
rization methods. This analysis will give us insights into the
computation of representative data and help us understand
the differences between summarization methods.
The rest of this paper is organized as follows. Section 2

introduces foundational concepts. Section 3 is dedicated to
problem and scope definition. Section 4 describes the pro-
posedmeasure. Section 5 presents evaluations, and Section 6
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concludes the paper.

Table 1. Acronyms table
Acronym Explanation
AR Average Recall
FSM Finite State Machine
MAT Multiple-Aspect Trajectory
MAT-SG MAT Summarization based on a spatial Grid
MAT-SGT MAT Summarization based on a spatial Grid

and Temporal sequence
POI Point of Interest
RMMAT Representativeness Measure for MAT
RT Representative Trajectory

2 Fundamentals
Trajectory data has become increasingly important in various
fields due to the overall adoption of geolocation technolo-
gies. One of the foundational pillars of this work is the com-
prehensive exploration of moving objects. In data analytics,
trajectory data is essential for mining, analysis, and decision-
making, as it is being collected more frequently [Renso et al.,
2003; Oladimeji et al., 2023].
The concept of a trajectory has evolved over time. Ini-

tially, a raw trajectory referred to the sequential movements
of an object through geographical space over time, as defined
by Erwig et al. [1999]. This raw trajectory comprised two di-
mensions: spatial and temporal. Around 2007, the notion of
a semantic trajectory emerged. A third dimensionwas added,
enriching the raw spatiotemporal trajectory (x, y, t) with se-
mantic data. One example could be a point of interest (POI),
like a restaurant, that the object had visited [Alvares et al.,
2007; Parent et al., 2013].
With the proliferation of the Internet of Things (IoT) and

social media, trajectories have been further enriched with
diverse semantic information. When trajectories, or their
specific points, are associated with multiple semantic con-
texts, they are referred to as multiple aspect trajectories
(MAT) [Mello et al., 2019]. This trajectory also encom-
passes three dimensions (spatial, temporal, and semantic),
but the semantic dimension can represent multiple and het-
erogeneous aspects.
As depicted in Figure 1, an individual’s trajectory through-

out a day serves as an example. The raw trajectory retains
spatiotemporal data about the individual (Figure 1(a)). Con-
versely, Figure 1(b) illustrates a semantic trajectory, where
contextual information is associated with the raw data, like
PoIs (home, work, and restaurant).
Figure 1(c), in turn, showcases a raw trajectory enriched

with multiple information, like the mean of transportation
used by the individual, postings on social networks, weather
conditions, health information, and so on. It emphasizes the
complexity ofMATs since the three dimensions can hold sim-
ple or complex attributes depending on the domain context.
Moreover, MATs can generate vast amounts of data at high
frequency, making it challenging to extract meaningful in-
sights. In order to address this issue, a promising strategy
is to compute summarized data from a set of MATs, as pro-

Figure 1. An example of a raw trajectory (a), semantic trajectory (b), and
multiple aspect trajectory(c). Adapted from Mello et al. [2019].

posed in some works [Seep and Vahrenhold, 2019; Machado
et al., 2022, 2023a].

2.1 Trajectory data summarization
Managing trajectory data is a big challenge due to the vast
volume and variety of data continuously generated by differ-
ent devices, resulting in an overwhelming volume and diver-
sity of information [Martinez et al., 2018; Gao et al., 2019].
To address this issue, Trajectory data summarization is a vi-
tal process that condenses extensive and complex trajectories
into more manageable and informative summaries [Etienne
et al., 2016].
Trajectory summarization aims at reducing the volume of

trajectory data while preserving its essential characteristics
and patterns in a more compact representation [Gao et al.,
2015]. In short,MAT summarization encompasses a process
of abstraction from a set of MATs, culminating in a represen-
tative MAT.
The concept of representative trajectory is essential in tra-

jectory summarization. According to Lee et al. [2007]; Ay-
han and Samet [2015], a representative trajectory can be de-
scribed as an imaginary trajectory that denotes the main be-
havior of a cluster of trajectories. Alternatively, Panagiotakis
et al. [2012] suggests that a representative trajectory can vary
according to the considered focus, like interest, density, fre-
quency, and pairwise distance. It is worth noting that the
representative MAT does not need to be congruent with ev-
ery individual MAT, but it captures the overarching essence
of the dataset [Machado et al., 2022].
Representative trajectories are a useful way to analyze and

visualize a dataset of trajectories. They help data analysts un-
derstand patterns in the data, which can be used to make bet-
ter decisions. These patterns can serve as invaluable tools for
diverse applications, such as analyzing traffic patterns within
a city or identifying regions with elevated crime rates. As de-
picted in Figure 2 (left), the MATs across distinct days can
give insights into an individual’s movements. Meanwhile,
the right side illustrates the culmination of these MATs into
a representative MAT. This summarized representation effec-
tively encapsulates the individual’s frequent activities.
As shown in Figure 2 (right), the system can recognize a

pattern in an individual’s preference for lunch in a vegetarian
restaurant. Therefore, if the user is in a different location
than their usual lunch place around lunchtime, the system
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Figure 2. Examples of MATs (left) and a representative MAT for them (right) [Machado et al., 2022].

can identify vegetarian restaurants nearby and recommend
them to the user.
Trajectory summarization is pivotal in handling and ex-

tracting insights from trajectory data. It reduces data com-
plexity while preserving essential information for various ap-
plications. The summarized representation of a moving ob-
ject can help to understand its behavior easily.
Some methods have been proposed for computing a Rep-

resentative Trajectory (RT) from a set of MAT, focusing on
movement patterns. In 2019, Seep and Vahrenhold [2019]
proposed a Finite State Machine (FSM) to identify com-
mon transitions among movements yielding the RT by rep-
resenting each state as a common point. The sequence of
states yields the RT . However, this method did not consider
the aspect-specific types within MATs since all attributes
of the MAT points are spatial or non-spatial. In 2022, a
method designed explicitly for MATs was proposed (MAT-
SG) [Machado et al., 2022]. MAT-SG segments the input
MATs into a spatial grid and performs summarization within
each relevant cell, treating all aspects of MATs individually.
Recently, in 2023,MAT-SGT was proposed as a data summa-
rization method specifically designed to compute representa-
tiveMATs identifying the temporal sequence associated with
the movement pattern. It segments the input MAT points
in two steps: a spatial grid and significant temporal inter-
vals, summarizing all information. Both MAT-SG and MAT-
SGT establish a mapping between the input MATs and the
computed representative MAT, preserving the relationship
between the original data and its summarized representation.

3 Problem Definition

In Figure 2, an example of trajectory summarization applied
to input datasetD (D= {p, q, r}) generates the RT). However,
an issue with existing literature is the lack of a well-defined
measure for evaluating howwell the representative data accu-
rately represents the entire dataset D. Studies highlight this
common challenge when computing representative trajecto-
ries fromMATs [Seep and Vahrenhold, 2019; Machado et al.,
2022, 2023a].
This paper intends to answer this fundamental question:

’How much of the RT captures and reflects the original
MATs’ essence within an input datasetD?’. The computation
of RT’s should align with specific use case objectives and re-
quirements, as different applications may necessitate varying

levels of granularity and information preservation [Machado
et al., 2022].
The scope of this work is to propose a novel representa-

tiveness measure tailored for big trajectory data with multi-
ple aspects, aiming to quantify howmuch information the RT
covers from the input datasetD and how similar this RT is to
the entire dataset, i.e., it aims tomeasure howwell a represen-
tative trajectory captures the essence of the original dataset,
which is particularly useful given the increasing complexity
and growth of trajectory data. The objective is to simplify
the evaluation of summarization methods and extract valu-
able insights from extensive MAT datasets.

4 RMMAT: Representativeness Mea-
sure for Multiple-Aspect Trajectory

In this section, we present the core concepts of our work,
known as the Representativeness Measure for Multiple-
Aspect Trajectories (RMMAT), which serves as a standard-
ized metric for assessing the effectiveness of representative
data produced by summarization methods. RMMAT consid-
ers similaritymetrics and covered information tomeasure the
quality of representative data. It is specifically designed to
fit different analytical scenarios, enabling analysts to tailor
the evaluation process to their specific needs.
RMMAT provides a concrete and measurable way to as-

sess the quality of representative data by considering similar-
ity and covered information. It offers valuable insights into
the summarization quality, allowing for a rigorous and objec-
tive evaluation of how well the representative data captures
the intricacies of the data. By introducing RMMAT , we aim
to simplify the evaluation of summarization methods and ex-
tract valuable insights from extensive MAT datasets.
RMMAT consists of two integral components: (i) similar-

ity metric and (ii) covered information, aiming to quantify
the information coverage of RT from the input dataset D and
estimate its similarity to the entire dataset. By combining
these two components, RMMAT aims to overcome the limi-
tations of evaluating representativeness in summarized MAT.
In the following, we delve into the details of each component.

4.1 Similarity Metric Component
The trajectory similarity metric measures how similar two
trajectories are based on attributes such as spatial positions,
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temporal sequences, and potentially additional semantic as-
pects. It quantifies how much they share common patterns
in terms of movement through space, time, and semantics.
While traditionalmeasures compare trajectories pairwise, the
challenge is to measure the similarity of an RT against the en-
tire dataset of trajectories.
We calculate the similarity between RT and each {T1, T2,

..., Tn} ∈ D, considering that D and RT are non-empty. We
use the median value of the similarity measure to account for
skewed distributions or outliers in the dataset. To address
this concern, we opt to use the median value of the similarity
measure across all pairs of MATs (RT and each T ∈ D),
given that 0 ≤ Similarity ≤ 1. The median is less affected
by extreme values or anomalies in similarity scores, resulting
in a more balanced representation of central tendency. The
equation is given by:

|Similarity (RT, D)| =
Me({Similarity(RT, T1), Similarity(RT, T2), . . . , Similarity(RT, Tn)})

(1)

Find the median similarity value between RT and all T ∈
D by using the function Me that calculates the median of
similarity scores.

4.2 Covered Information Component
In order to compute the covered information within D by RT,
we evaluate the MAT points of each Ti ∈ D that RT covers
and aim to derive the proportion of covered information in a
non-negative value. This computation is defined as:(∑D

p∈T p ⊆ RT

|D.points|

)
(2)

The objective of RMMAT is to harmonize both compo-
nents: (i) the similarity between RT and all MATs and (ii)
the measure of the coverage input MAT points by RT, when
available. So, the representativeness measure score between
the RT and the input dataset is calculated by the final function
RMMAT , with RMMAT ∈ [0,1]:

RMMAT =ωsim × |Similarity (RT, D)|

+ ωcover ×
(∑D

p∈T p ⊆ RT

|D.points|

) (3)

Let W = {ωsim, ωcover} a non-empty set of the weights.
The weights ωsim and ωcover represent the importance of
each component for computing the representativeness be-
tween trajectories for a specific scenario. We assume that
ωsim + ωcover = 1.0. Components with higher weights
have a more pronounced impact on the final representative-
ness scores.

5 Experimental Evaluation
In this section, we illustrate the functioning of RMMAT
through a practical example and evaluate its performance
using experimentation on a real dataset. This assessment

gauges its accuracy and practical utility in effectively cap-
turing trajectory data. The experiments were conducted on
a Dell Inspiron laptop with an Intel Core i5 processor and
16 GB memory implemented with Java. We describe the
datasets (Section 5.1), the general experimental setup (Sec-
tion 5.2), and two evaluations analyzing the relevance of RT
concerning similarity information and covered information
(Sections 5.3 and 5.4) in the following sections.

5.1 Dataset
We used the Foursquare NYC dataset, which includes check-
in records from April 2012 to February 2013 in New York
City. The dataset is enriched with contextual information
such as weekday, category, price, rating of the POIs, and
weather conditions. The dataset includes 3079 trajectories
from 193 users, with each trajectory containing around 22
data points, and each user is associated with an average of
about 16 trajectories.

5.2 General Experimental Setup
To compute RMMAT , several crucial elements need to be de-
fined. First, we need to select a summarization method to de-
rive representative data. In this work, we use the state-of-the-
art MAT summarization methods MAT-SG and MAT-SGT .
These methods establish a mapping between the input data
and the resultant representative trajectory, as exemplified in
Section 2, which allows us to include covered information
in the computation of representativeness. Second, an appro-
priate similarity measure is needed, and we use the widely
recognized MAT similarity measure called MUITAS [Petry
et al., 2019] to establish trajectory similarity. Finally, we de-
fine weights (W ) to individual components using a balanced
weights strategy, setting ωsim = ωcover = 1

2 .

5.2.1 Summarization method setup

Both MAT-SG and MAT-SGT summarize data on a grid of
cells. Two parameters are required for its setup: (i) τrv

(threshold RV), which determines representative values, and
(ii) τrc (threshold RC), which sets the minimum number of
MAT points for a cell to qualify for summarization. For eval-
uation purposes, we dynamically define the cell size of the
spatial grid forMAT-SG using the same strategy ofMAT-SGT .
This was achieved by iteratively analyzing the representative
trajectory for different values of z and selecting the optimal
value that yields the best RT .
We performed experiments by executing MAT-SG and

MAT-SGT in each ground truth, i.e., we consider each user
as the criterion to cluster MATs into groups. The method
was repeated for each user with different parameter settings
(τrv and τrc), varying from 0% to 25% (0, 1, 5, 10, 15, 20,
25), resulting in 49 runs for each user. This parameter vari-
ation allows for evaluating the sensitivity and robustness of
the RMMAT measure.
We established our criteria since we did not identify a com-

mon strategy to evaluate a representative MAT to be used as
a benchmark in the existing literature. For each group, we
select the MAT Ti with the median similarity score across all
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trajectories in the group, i.e., the ith MAT T ∈ D that satis-
fies the criterion of the median similarity across all the others
in D. This ensures that the baseline acts as a reference point
for comparison purposes.

5.2.2 Similarity Measure setup

We performed the similarity measure with MUITAS, where
settings must be defined, including features, weight, and
proximity functions. Each attribute in the input dataset is
defined as a single feature. Proximity functions consider spa-
tial, temporal, and semantic aspects with weight-balanced di-
mensions. The formats of a simple MAT and a RT created by
MAT-SG and MAT-SGT are different, requiring special anal-
ysis and settings. In a simple MAT, each attribute has only
one value. In contrast, in RT , rank values may be present,
particularly when handling categorical values in the seman-
tic dimension and the temporal dimension. Consequently,
particular analyses and configurations become essential.
Adopted functions are:

(i) for the spatial dimension, we use theEuclidean distance.
A spatial match occurs if the distance between a trajec-
tory Tj in the group and RT coordinates is within four
times the RT computed threshold, which is determined
by the spatial dispersion of theMAT points in bothMAT-
SG andMAT-SGT ;

(ii) for the temporal dimension, we assess the match be-
tween RT and other trajectories Tj in the group by eval-
uating the temporal interval of RT . A match occurs if
the timestamp of Tj lies within the interval. The base-
line, which follows the same format as input trajectories,
uses a 30, 45, or 60-minute threshold for analysis;

(iii) for semantic dimension, we evaluate attribute matching
for numeric and categorical data types. For numeric
data types, a match occurs if the difference in attribute
values is<= 10% of the RT value. For categorical data
types, a match occurs if the attribute value falls within
the range of RT values.

For the sake of understanding, this section introduces a
Running Example to illustrate the functionality of RMMAT .
It consists of a set of input MATs D, each one representing a
trajectory attributed to a different individual.
The input MATs and their corresponding RT are shown in

Figure 3. The trajectories are depicted on the left side, and
their corresponding RT calculated is shown on the right side.
The spatial and temporal information, along with the price
and category of the PoIs, weather conditions, and precipita-
tion, represent the input trajectories and the RT .
For computing RMMAT , we first compute the sim-

ilarity between each trajectory in D and RT , where
MUITAS(q, RT ) = 0.686, MUITAS(r, RT ) = 0.835,
and MUITAS(s, RT ) = 0.871. Then, according to Equa-
tion 1, the |Similarity (RT, D)| = 0.835. Regarding the
covered information, Equation 2, T c(RT ) = 10

17 = 0.5882.
Finally, considering the computation of RMMAT with bal-

anced weights strategy by setting ωsim = ωcover = 1
2 , and ac-

cording to Equation 3, we have RMMAT = (0.5 × 0.835) +
(0.5 × 0.5882) = 0.7116. It means that RT has a repre-
sentativeness of 0.7116 of D considering both similarity and

Figure 3. Set of input MATs D = ⟨q, r, s⟩, where q = ⟨pq1 , pq2 , ..., pqn ⟩,
r = ⟨pr1 , pr2 , ..., prm ⟩, and s = ⟨ps1 , ps2 , ..., pst ⟩ (left), and their cor-
respondent RT (right).

covered information. While the similarity score with input
MATs is 0.835, the impact of its coverage of data points is
0.5882. Therefore, in the context of both similarity and cov-
erage, it can be said that the representativeness of RT has an
impact of approximately 71% of the input MATs.

5.3 Analyzing RMMAT Regarding Similarity
Information

To gain insights into RMMAT behavior, we conducted an ex-
periment using a sample of user trajectories of the Foursquare
dataset. We presented illustrative examples of evaluations
based on the standard deviation (SD) of average and median
similarity scores of each user’s baseline. We selected three
users for analysis: (i) user 185 (Du185), which has a lower SD
for average similarity scores; (ii) user 730 (Du730), which
has a lower SD for median similarity scores; and (iii) user
708 (Du708), showcasing the highest SD for both average and
median similarity scores.
This experiment analyzes the representativeness of RTs in

similarity information with different threshold values for rel-
evant cell (RC) and representativeness value (RV), namely
τrc and τrv , using ωsim = 1 and ωcover = 0 based on
MUITAS. The investigation explores the impact of varying
combinations of these thresholds on the computation of RT
in both MAT-SG andMAT-SGT .
Figures 4 and 5 visually depict the results of the similar-

ity evaluation for each user under different input parameter
configurations, compared to the baseline. These figures high-
light the variations in similarity scores while varying the tem-
poral threshold.
Our representativeness measure consistently outper-

formed the baseline for low parameter configurations,
shedding light on the intricate interplay between different
threshold parameters and their impact on RT computed from
MUITAS.
For MAT-SG, users 185 and 708 exhibit a specific RT be-

havior pattern across different τrv values. Regarding the τrc,
determining relevant cells for RT computation seems to in-
fluence RT changes significantly since, for these users, an
increase in the value of this parameter configuration results
in a decrease in RMMAT . This underscores the sensitivity
of RMMAT to parameter choices and their implications for
the representativeness of RT . The behavior of user 730 high-
lights the importance of parameter configurations in RT com-
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Figure 4. This graph analyzes the similarity evaluation (Y-axis) by comparing varying threshold RC, the τrc, shown as distinct lines, and the threshold
RV, the τrv , concerning baseline for users 185, 708, and 730. It explores different parameter configurations of the τrv (X-axis) to evaluate similarity. This
analysis refers to theMAT-SG method.

Figure 5. This graph analyzes the similarity evaluation (Y-axis) by comparing varying threshold RC, the τrc, shown as distinct lines, and the threshold
RV, the τrv , concerning baseline for users 185, 708, and 730. It explores different parameter configurations of the τrv (X-axis) to evaluate similarity. This
analysis refers to theMAT-SGT method.

putation.
For MAT-SGT , users 708 and 730 display specific RT be-

havior patterns across different τrv values. As the value of
this parameter configuration increases, RMMAT decreases,
emphasizing the influence of parameter configurations on
RT computation and its subsequent impact on representative-
ness.
We employed correlation coefficients to quantify the im-

pact of values for τrc and τrv in both methods on the RM-
MAT measure. The coefficients reveal relationships between
input parameters and RMMAT scores for RT computed for
bothmethods (MAT-SG andMAT-SGT) and input trajectories.
The results in Table 2 offer valuable insights into how thresh-
old parameters influence the accuracy of computed represen-
tative trajectories. Positive coefficients indicate that higher
threshold values correspond to higher RMMAT scores, while
negative coefficients suggest the opposite.

Table 2. Impact of Input Parameters on the Representativeness
Measure of RT

correlation
coefficient

MAT-SG MAT-SGT
τrc τrv τrc τrv

User 185 -0.568 -0.526 0.408 -0.788
User 708 -8.770 -0.966 -0.154 -0.829
User 730 -0.378 0.027 -0.817 -0.243

For MAT-SG, user 185 exhibits a negative correlation (-
0.568) between RMMAT scores and τrc, indicating that in-
creasing τrc leads to a decrease in RMMAT scores. User 708,
characterized by a greater SD in similarity scores and dis-
played the one with a more consistent pattern, shows a high
negative correlation (-8.770), suggesting that higher τrc val-
ues consistently lead to lower RMMAT scores. For user 730,
a negative correlation (-0.378) implies that higher τrc values
result in lower RMMAT scores. Across all users inMAT-SG,
the negative correlation pattern highlights that higher τrc val-

ues lead to less representative RT .
For MAT-SGT , user 185 exhibits a positive correlation

(0.408) between RMMAT scores and τrc. The RMMAT
scores increase as τrc values increase. User 708, character-
ized by greater SD in similarity scores, shows a slight nega-
tive correlation (-0.154), indicating that increasing τrc leads
to a minor decrease in RMMAT scores. For user 730, who
displays more consistent patterns, a negative correlation (-
0.817) suggests that higher τrc values lead to lower RMMAT
scores.
This analysis provides nuanced insights into the dynamics

of RMMAT concerning similarity information. It compre-
hensively explains how different parameter configurations
influence the computed RT and its representativeness. No-
tably, inMAT-SG, higher τrv values consistently lead to less
representative RT . Meanwhile, inMAT-SGT , the correlation
patterns reveal the nuanced impact of both τrc and τrv val-
ues on RMMAT scores. The parameter configuration signifi-
cantly influences the behavior and accuracy of the computed
representative trajectory, necessitating careful consideration
of their selection to capture relevant input data patterns. This
analysis underscores the improvements achieved through the
RMMAT measure, highlighting its efficacy in enhancing data
comprehension. Overall, the results emphasize the effective-
ness of RMMAT as a valuable tool for better understanding
complex trajectory data.

5.4 Analyzing RMMAT Regarding Covered
Information

In the absence of a standardized strategy for evaluating the
representativeness of a representativeMAT in the existing lit-
erature, our analysis extends beyond similarity to encompass
both similarity and cover components. To gauge the utility
of RT , we employ the Average Recall (AR) metric, drawing
inspiration from the experimental evaluation of the similarity
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measure proposed by Petry et al. [2019]. While aligningwith
their evaluation methodology and leveraging their dataset for
ground truth segmentation, our focus diverges. In Petry et al.
[2019], the primary objective was to validate their similarity
measure, explicitly assessing the similarity between pairs of
trajectories. While our foundation is rooted in their method-
ology, our focus remains to quantify the quality of the sum-
marization methods and representativeness of data computa-
tion, evaluating the utility of RT within the context of the
input dataset. We aim to evaluate the utility of RT within the
context of the input dataset.
The AR metric becomes pivotal in this evaluation. This

metric measures recall based on the similarity between the
RT computed by RMMAT and other trajectories within the
dataset. The recall is defined as the fraction of relevant tra-
jectories that are successfully retrieved. In the context of
ranking trajectories within the same ground truth group, the
ideal outcome is that the top k most similar trajectories also
belong to the same group, where k = |D|. This provides a
robust measure of how effectively RT can rank trajectories
within the same group.
The evaluation process involves computing the RT for

each user in our sample of users in our selected sample (users
185, 708, and 730), i.e., T = {Du185, Du708, Du730, · · · }.
The idea is that the trajectories of the same user exhibit sim-
ilarity. The goal is for each user of the RT to have high sim-
ilarity values with the trajectories in that group.
To analyze the impact of covered information in RMMAT ,

we assess the utility of RT using the AR metric. The process
begins by computing RT and calculating similarity over the
entire dataset. Trajectories are then ordered based on simi-
larity scores. Subsequently, trajectories are ranked accord-
ing to these similarity scores, and the recall metric is com-
puted. This metric quantifies how effectively RT can accu-
rately rank trajectories within the same group.
Tables 3a and 3b display the AR values for user 185 by

Table 3. The AR Analysis of User 185 by MAT-SG
(a) AR without covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 1 1 1 1 1 1
0.01 0.9 1 1 1 1 1 1
0.05 0.9 1 1 0.95 0.95 0.95 0.95
0.10 0.9 1 1 1 1 1 1
0.15 0.9 0.98 1 1 1 1 1
0.20 0.9 1 1 1 1 1 1
0.25 0.9 0.98 1 1 1 1 1

(b) AR with covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 1 1 1 1 1 1
0.01 0.9 1 1 1 1 1 1
0.05 0.9 1 1 0.95 0.95 0.95 0.95
0.10 0.9 1 1 1 1 1 1
0.15 0.9 0.98 1 1 1 1 1
0.20 0.9 1 1 1 1 1 1
0.25 0.93 0.98 1 1 1 1 1
(c) AR Analysis regarding covered information

With Cover Without Cover
Missing values 0 0
Best Value 1 1
Worse Value 0.9 0.9
AVG AR 0.988 0.988
Median AR 1 1

MAT-SG in scenarios without and with covered information,
respectively. Additionally, Table 3c consolidates the out-
comes of the AR analysis, indicating consistent results for
both scenarios in this specific user context. Instances with
missing values, indicated by ”-”, denote situations where RT
computation with specific parameter configurations is not
feasible due to the particular data patterns present in the in-
put dataset. The variations between both methods are high-
lighted, with the higher value between with or without cov-
ered information being underlined.

Table 4. The AR Analysis of User 185 by MAT-SGT
(a) AR without covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.93 0.95 1 1 1 1
0.01 0.9 0.93 0.93 1 1 1 1
0.05 0.9 0.95 0.98 1 1 0.98 0.98
0.10 0 0 0.81 0 - - -
0.15 0 0.98 - - - - -
0.20 0.02 1 - - - - -
0.25 0.02 0.83 - - - - -

(b) AR with covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.93 0.95 1 1 1 1
0.01 0.9 0.93 0.93 1 1 1 1
0.05 0.9 0.95 0.98 1 0.98 0.98 0.98
0.10 0 0 0.81 0 - - -
0.15 0 0.98 - - - - -
0.20 0.02 1 - - - - -
0.25 0.02 0.83 - - - - -
(c) AR Analysis regarding covered information

With Cover Without Cover
Missing values 18 18
Best Value 1 1
Worse Value 0 0
AVG AR 0.771 0.707
Median AR 0.93 0.93

For the same user 185, the scenarios for MAT-SGT are re-
spectively presented in Tables 4a and 4b, and the compiled
results of the AR analysis are presented in Table 4c.
Upon examining the summarized outcomes of theAR anal-

ysis in Table 4c, notable variations between scenarios that in-
clude and exclude covered information for User 185 byMAT-
SGT become evident. Specifically, there is an average AR
growth of 0.707 when analyzing the scenario without cov-
ered information, compared to 0.771when including covered
information.
In the case of User 708, computed by MAT-SG, Tables 5a

and 5a show the AR values, and Table 5c compiles the results
of the AR analysis, where for this situation, both scenarios
present the same results.
ByMAT-SGT , both scenarios for user 708 are respectively

presented in Tables 6a and 6b, and the compiled results of
the AR analysis are presented in Table 6c. While there were
some minor variations in the specific values, the overall as-
sessment presented in Table 6c does not indicate a substantial
difference. The AR values for this user are relatively stable,
regardless of whether the covered information was included
or excluded during the analysis.
For the user 730, computed byMAT-SG, both scenarios are

respectively presented in Tables 7a and 7b, and the compiled
results of the AR analysis are presented in Table 7c. A slight
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Table 5. The AR Analysis of User 708 by MAT-SG
(a) AR without covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 0.9 0.8 0.5 0.5 0.5
0.01 1 1 0.9 0.8 0.5 0.5 0.5
0.05 1 1 0.9 0.8 0.6 0.6 0.6
0.10 1 1 0.9 0.8 0.6 0.6 0.6
0.15 1 1 0.9 0.7 0.7 0.7 0.5
0.20 1 1 0.9 0.7 0.7 0.7 0.6
0.25 1 1 0.9 0.8 0.6 0.6 0.6

(b) AR with covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 0.9 0.8 0.5 0.5 0.5
0.01 1 1 0.9 0.8 0.5 0.5 0.5
0.05 1 1 0.9 0.8 0.6 0.6 0.6
0.10 1 1 0.9 0.8 0.6 0.6 0.6
0.15 1 1 0.9 0.7 0.7 0.7 0.5
0.20 1 1 0.9 0.7 0.7 0.7 0.6
0.25 1 1 0.9 0.8 0.6 0.6 0.6
(c) AR Analysis regarding covered information

With Cover Without Cover
Missing values 0 0
Best Value 1 1
Worse Value 0.5 0.5
AVG AR 0.81 0.81
Median AR 0.7 0.7

Table 6. The AR Analysis of User 708 by MAT-SGT
(a) AR without covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.01 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.05 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.10 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.15 0.8 0.8 0.8 0.8 0.8 0.8 0.9
0.20 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.25 0.9 0.9 0.9 0.9 0.8 0.8 0.8

(b) AR with covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.8 0.8 0.9 0.8 0.9 0.9 0.9
0.01 0.8 0.8 0.9 0.8 0.9 0.9 0.9
0.05 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.10 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.15 0.8 0.8 0.8 0.8 0.8 0.8 0.8
0.20 0.9 0.9 0.9 0.9 0.9 0.9 0.9
0.25 0.9 0.9 0.9 0.9 0.8 0.8 0.8
(c) AR Analysis regarding covered information

With Cover Without Cover
Missing values 0 0
Best Value 0.9 0.9
Worse Value 0.8 0.8
AVG AR 0.862 0.87
Median AR 0.9 0.9

variation can be observed in this situation when including or
excluding covered information, showing in underlying value.
Additionally, the average AR growth of 0.927 when analyz-
ing the scenario without covered information, compared to
0.940 when including covered information.
The AR values for user 730 computed by MAT-SGT in

both scenarios are presented in Tables 8a and 8b. Addition-
ally, Table 8c compiles the AR analysis outcomes for this
user. It is evident that there is a substantial variation in AR
values across different scenarios, which highlights the signif-
icant impact of covered point data on the AR measure. This
disparity emphasizes how the inclusion of covered informa-

Table 7. The AR Analysis of User 730 by MAT-SG
(a) AR without covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 1 1 0.9 0.83 0.83
0.01 1 1 1 1 0.93 0.87 0.87
0.05 1 1 1 1 0.93 0.87 0.87
0.10 1 1 1 1 0.93 0.87 0.87
0.15 1 1 1 1 0.9 0.83 0.83
0.20 1 1 1 1 0.93 0.87 0.87
0.25 1 1 1 1 0.93 0.87 0.87

(b) AR with covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 1 1 0.93 0.83 0.83
0.01 1 1 1 1 0.93 0.87 0.87
0.05 1 1 1 1 0.93 0.87 0.87
0.10 1 1 1 1 0.93 0.87 0.87
0.15 1 1 1 1 0.9 0.83 0.83
0.20 1 1 1 1 0.93 0.87 0.87
0.25 1 1 1 1 0.93 0.87 0.87
(c) AR Analysis regarding covered information

With Cover Without Cover
Missing values 0 0
Best Value 1 1
Worse Value 0.83 0.83
AVG AR 0.940 0.927
Median AR 1 1

tion can significantly influence the outcomes of a representa-
tiveness measure.

AnalyzingRMMAT regarding covered information and ob-
serving the variation in AR values between the inclusion and
exclusion of covered point data reveals consistent trends in
bothMAT-SG andMAT-SGT scenarios. Overall, minimal dif-
ferences are observed, suggesting a stable pattern of minimal
variation. In the case of MAT-SG, there is a slight growth
when covered information is included. Notably, User 730 in
the MAT-SGT scenario exhibits the most significant distinc-
tions between scenarios, emphasizing the influence of cov-
ered data points. However, it is intriguing to observe that, for

Table 8. The AR Analysis of User 730 by MAT-SGT
(a) AR without covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 0.97 0.97 0.9 0.9 0.9 0.9 0.9
0.01 0.93 0.93 0.87 0.87 0.87 0.87 0.87
0.05 0.93 0.93 0.87 0.87 0.87 0.87 0.87
0.10 0.97 0.97 0.83 0.83 0.83 0.83 0.83
0.15 0.9 0.9 0.77 0.77 0.77 0.77 0.77
0.20 0.9 0.9 0.83 0.83 0.83 0.83 0.83
0.25 0.87 0.87 0.83 0.83 0.83 0.83 0.83

(b) AR with covered information

τrv

τrc 0.00 0.01 0.05 0.10 0.15 0.20 0.25

0.00 1 1 1 1 0.9 0.9 0.87
0.01 1 1 1 1 0.93 0.93 0.87
0.05 1 1 1 1 0.9 0.9 0.87
0.10 1 1 1 1 0.87 0.87 0.83
0.15 1 1 1 1 0.9 0.9 0.73
0.20 1 1 1 1 0.87 0.87 0.9
0.25 1 1 1 1 0.93 0.93 0.87
(c) AR Analysis regarding covered information

With Cover Without Cover
Missing values 0 0
Best Value 1 0.97
Worse Value 0.73 0.77
AVG AR 0.94 0.878
Median AR 1 0.87
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the same user, trajectories retrieved with covered data points
fare better than computed RT trajectories, indicating a poten-
tial impact on RMMAT scores and implying differences in
underlying data patterns.
In short, the AR analysis of User 708 byMAT-SG appears

relatively unaffected by the presence of covered point data,
indicating limited influence on the outcomes. In contrast, the
analysis of User 730 by MAT-SGT underscores the substan-
tial impact of aggregating covered information. This dispar-
ity underscores the importance of a nuanced consideration of
each component inRMMAT computation, enabling a tailored
parameter configuration to the specific dataset and analysis
objectives.

6 Conclusion
In conclusion, this paper introduces the Representativeness
Measure for Multiple Aspect Trajectories (RMMAT), offer-
ing a standardized and comprehensive metric to assess the
efficacy of representative data derived from trajectory sum-
marizationmethods. As trajectory data experiences exponen-
tial growth and heightened complexity, RMMAT emerges as
a pivotal tool for quantifying how well a representative tra-
jectory encapsulates the essence of the original dataset.
Leveraging similarity metrics and covered information,

RMMAT provides a holistic evaluation approach, enabling
analysts to estimate both the similarity between represen-
tative and input trajectories and the information coverage
within the dataset. This measure helps researchers and an-
alysts evaluate and empowers them to make informed deci-
sions about the quality and relevance of representative data
for their analytical goals.
RMMAT effectively quantifies the representativeness of

computed representative data in comparison to the original
MATs, yielding valuable insights. For example, in evalu-
ating MAT-SG and MAT-SGT methods, our findings under-
score the pivotal role of parameter selection in achieving op-
timal results. This observation emphasizes how RMMAT of-
fers insights that guide researchers in refining trajectory sum-
marization methods for improved outcomes.
A notable strength of RMMAT lies in its adaptability, with

configurable components that permit analysts to tailor the
evaluation process to the unique demands of different ana-
lytical scenarios. This adaptability positions RMMAT as a
versatile tool aligning with varying objectives and data char-
acteristics.
Our work bridges a critical gap in the field of trajectory

data summarization, allowing researchers and analysts to
evaluate and measure trajectory summarization methods by
a quantitative metric. By overcoming the limitations of pre-
vious subjective evaluation methods, RMMAT provides in-
sights that guide researchers in refining trajectory summa-
rization methods for improved outcomes.
As the effectiveness of computing an RT depends on the

specific purpose and requirements of a use case, different ap-
plications may necessitate different levels of granularity and
information preservation. The evaluation of this approach is
inherently tied to the intended analytical objectives, focus-
ing on views of similarity and covered information. Future

work aims to explore additional perspectives regarding the
representativeness of summarized MAT, such as reduced in-
formation.
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