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Abstract

In this study, we evaluated multiple methods and data sources for mapping irrigated rice fields in Turvo, Santa Cata-
rina, using a detailed reference map that includes irrigation channels, roads, and boundaries within and between rice
fields. We tested different approaches using a per-pixel and segmentation approaches. In the per-pixel classifications
scenarios we used a a Random Forest (RF) applied to the China-Brazil Earth-Resources Satellite Multispectral and
Panchromatic Wide-Scan Camera (CBERS-4A/WPM) data, and to Sentinel-2 (S2) imagery. For the segmentation
approach we used a combination of S2 imagery with a Segment Anything Model geospatial (Samgeo) mask applied
to high-resolution CBERS-4A/WPM data (S2+WPM/Samgeo). We qualitatively and quantitatively compared maps
derived from a existing source (MapBiomas) with our scenarios. MapBiomas and per-pixel S2 classification pro-
vided adequate general plot boundary identification, however, lacked finer details. CBERS-4A/WPM data captured
some of these details, although they showed a high rate of false positives due to confusion with other vegetation
types. We also examined how detailed rice field mapping affected time-series analysis. Our findings indicate that
the S2+WPM/Samgeo approach most closely matched the reference map time-series and offered superior detail, bet-
ter distinguishing field heterogeneities. This method could support more detailed and accurate monitoring of rice
fields. Overall, S2+WPM/Samgeo delivered the most precise and detailed mapping of irrigated rice in the region.
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1 Introduction

Rice is one of the most relevant grains crops that humankind
grows [Macarini et al., 2019] [Cris6stomo de Castro Filho
et al., 2020] [Laborte ef al., 2017], and it has been present
in the food systems of many different countries worldwide,
including Brazil. According to the United Nations Food and
Agriculture Organization Statistical Databases [FAO, 2022],
from 1994 to 2020, rice was the tenth most produced crop in
the world, with 660 million tons produced. Brazil has an an-
nual average production of 11.2 million tons of rice and is the
only non-Asian country on the list [de Bem et al., 2021]. Rio
Grande do Sul (RS) and Santa Catarina (SC) are the promi-
nent Brazilian rice producer states, with 8 million tons and
1.2 million tons, respectively [ANA, 2020]. In this context,
obtaining accurate geolocation of rice fields is highly desir-
able to provide reliable information to mitigate the impacts
of climate change and food insecurity [Cris6stomo de Cas-
tro Filho et al., 2020] [Lobell et al., 2008] [de Bem et al.,

2021].

Remote Sensing (RS) technology has been used to obtain
detailed information about crops in different studies [Amani
et al., 2020] [Beriaux et al., 2021] [Boschetti et al., 2017]
[Criséstomo de Castro Filho ef al., 2020] [Cucho-Padin ez al.,
2020] [de Bem et al.,2021] [Meng et al.,2021] [Zhang et al.,
2018a] [Zhang et al., 2019]. With RS, it is possible to mon-
itor large areas in a less cost-effective way than traditional
survey approaches. However, generally, there is a trade-off
between mapping large areas and providing detailed features.
Monitoring each individual field is important for accurate
estimates and for guiding farms to individual field manage-
ment. The more traditional mapping using the common free
satellite data has limitations on spatial (10 to 30 meters) and
temporal resolution (5 to 16 days), which negatively impacts
the accuracy of identifying single fields. Data from satellites
such as Landsat/National Aeronautics and Space Adminis-
tration (NASA) (30 meters, 16 days) or Sentinel-2/European
Space Agency (ESA) (10-20 meters, 5 days) cannot map
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field boundaries in a high level of detail. The mapping us-
ing these satellites generally incorporates small roads and
irrigation water channels (< 10 meters) as part of the rice
fields. This misincorporation can interfere with the classifi-
cation metrics of rice fields and, therefore, with other official
statistics.

An essential phase to define agricultural fields is the ac-
curate identification of the field boundaries. Generally, two
main categories are commonly employed for this task. The
first one involves using edge detection techniques to detect
discontinuities in pixels exhibiting significant variations in
values. Examples of such algorithms involve more simple
filters like Sobel [Wen et al., 2022] and Scharr [Watkins and
Van Niekerk, 2019], as well as more complex filters like
Canny operators [Zhang et al., 2018b; Xiao et al., 2021].
The second category consists of image segmentation tech-
niques, ranging from traditional, unsupervised computer vi-
sion algorithms to advanced deep learning models. Conven-
tional computer vision algorithms, such as Simple Linear It-
erative Clustering (SLIC) [Clauss et al., 2018; Zhang et al.,
2018b], Multi-Resolution Segmentation (MRS) [Li et al.,
2015; Tang et al., 2020], and the Watershed segmentation
algorithm [Xue ef al., 2021] that produce a single connected
and closed pixel region, are commonly used for agricultural
crop type classification. Nevertheless, these segmenters fre-
quently encounter challenges with parameter configuration,
where determining the best parameters can be a susceptible-
to-error process, potentially resulting in less than ideal out-
comes.

In recent years, deep learning models and neural networks
have gained traction for satellite image segmentation tasks
[Masoud et al., 2019; Garcia-Pedrero et al., 2019; Waldner
and Diakogiannis, 2020]. Despite this, these models typi-
cally necessitate extensive collections of images and task-
specific training samples, which restricts their ability to gen-
eralize across various regions and types of land cover. In
this context, the newly introduced Segment Anything Model
(SAM) [Kirillov et al., 2023] stands out, since it already
holds a comprehensive collection of training images and de-
livers a very good performance for zero-shot segmentation
tasks.

The modified version of SAM for geo-information data
(Samgeo) [Wu and Osco, 2023b] simplifies its use for remote
sensing applications [Osco ef al., 2023]. We adopted the gen-
eral segmentation approach, whereby SAM segmented vari-
ous objects without guided prompts. This method segments
all potential objects within images, including those without
ground-truth labels. As it lacks guidance, it may also pro-
duce segments for unknown classes, functioning as a conven-
tional segmentation filter. Samgeo offers several pre-trained
ViT, including ViT-H, ViT-L, and ViT-B. These models ex-
hibit varying computational demands and possess different
underlying architectures. We used the ViT-H SAM model,
the most advanced and accessible in this package.

In this way, our study aims to identify and delineate irri-
gated rice fields in Turvo, Santa Catarina state in the southern
part of Brazil. For that, we combined the use of the Samgeo
segmentation tool in images from Multispectral and Panchro-
matic Wide-Scan Camera (WPM) sensor onboard the China-
Brazil Earth Resources Satellite-4A (CBERS-4A) with data
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from Sentinel-2/MSI (MultiSpectral Instrument). We com-
pared the gain of this approach with per-pixel classifica-
tions based on 1) only Sentinel-2/MSI data, ii) only CBERS-
4A/WPM data, and iii) with the map of the Mapbiomas initia-
tive [MapBiomas, 2023]. The objective of this study was to
evaluate the impact of a more detailed segmentation in rice
irrigated fields along with the use of Samgeo to minimize in-
clusion errors in the final demarcation of irrigated rice plots.
This paper is an extended version of [Garcia et al., 2023], pre-
sented at the XXIV Brazilian Symposium on Geolnformatics
(GEOINFO 2023).

2 Material and Methods

2.1 Study Area

Our study area is the municipality of Turvo, located in the
southern Santa Catarina region (SC), Brazil (see Figure 1).
Turvo is the major rice producer within this relevant region
for irrigated rice cultivation in SC. A substantial portion,
50.7%, of the entire region is dedicated to rice cultivation,
corresponding to approximately 11.9 thousand hectares of
land. Turvo has a humid subtropical climate characterized
by hot summers and an average annual temperature ranging
from 19°C to 20°C. The total annual precipitation average
reaches approximately 1,800 mm. Throughout the year, rela-
tive air humidity remains consistently above 80%. The rain-
fall distribution is generally well balanced, although tends
to be more concentrated between May and August [Wrege
etal., 2012].

Study Area

¥ Floriandpolis
[ Turvo
[ santa Catarina

Coordinate Reference
System
DATUM: WGS 84

A

0 50 100 km
— )

Figure 1. Location of the study area in the state of Santa Catarina, highlight-
ing Floriandpolis, the state capital, and Turvo, in the Southern region.

In Santa Catarina, irrigated rice cultivation is found in
three principal regions, Northern, Itajai Valley, and Southern.
For our Region of Interest (ROI), the cultivation ranges from
August to April. For Turvo, rice management and phenolog-
ical stages can be divided into Sowing (S) and Emergence
(E) which occur between August and November, Vegetative
Development (VD) phase is observable between September
and December, Flowering (F) usually occurs in the summer
between December and January, Grain Filling (GF) occurs
between January and February followed by Maturation (M)
and Harvest (H) which can take place between late February
and April [CONAB, 2023].
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2.2 Satellite Data

We used data from two optical sensors to perform this study.
The first sensor was the Multispectral and Panchromatic
Wide-Scan Camera (WPM) onboard the China-Brazil Earth-
Resources Satellite (CBERS-4A), freely available in the im-
age catalog of the National Institute for Space Research
(INPE). CBERS-4A/WPM has five spectral bands (see Ta-
ble 1). Due to the low temporal resolution of CBERS-
4A/WPM (31 days) and the high frequency of cloud cover in
the region [Prudente et al., 2020], only a single cloud-free im-
age from September 26, 2021, was utilized for segmentation.
This date corresponds to the period of soil preparation and
rice crop planting (see Section 2.1), the optimal time frame
to identify agricultural fields. In Turvo, this period extends
from early August to late November [CONAB, 2023].

Table 1. CBERS-4A/WPM spectral bands used in this study.

Spectral bands (um) Resolution (m/px)  Band ID
Blue (0.45-0.52) 8 1
Green (0.52-0.59) 8 2
Red (0.63-0.69) 8 3
NIR (0.77-0.89) 8 4
Panchromatic (0.45-0.90) 2 P

Note: NIR = Near Infrared.

The second sensor was the Multispectral Instrument
(MSI) onboard the Sentinel-2A and 2B satellites, obtained
through the "COPERNICUS/S2 SR HARMONIZED” col-
lection on the Google Earth Engine (GEE) platform [Gore-
lick et al., 2017]. The Sentinel-2/MSI has 13 spectral bands.
However, we used only six for this study (see Table 2).

Table 2. Sentinel-2/MSI spectral bands used in the study.

Spectral bands (um)  Resolution (m/px)  Band ID
Blue (0.45-0.52) 10 B2
Green (0.54-0.57) 10 B3
Red (0.65-0.68) 10 B4
NIR (0.78-0.89) 10 B8
SWIR 1 (1.56-1.65) 20 B11
SWIR 2 (2.10-2.28) 20 B12

Note: NIR = Near Infrared, SWIR = Shortwave Infrared

2.3 Reference data creation

Based on the expert’s domain in the field, polygons repre-
senting irrigated rice fields and non-rice areas in the region
were drawn manually. For this purpose, we used a 2x2
meters pansharpening image of CBERS4A/WPM from the
beginning of the rice reproductive cycle (2021-09-26), to-
gether with a mosaic of high-resolution images obtained us-
ing Google Earth Pro software, dated December 2021, on
the Quantum Geographic Information System (QGIS v.3.10)
platform. Initially, the polygon boundaries were delineated
using CBERS4A/WPM 2x2 meters images, however, in case
of doubt, we refer to Google images to ensure the correct de-
lineation of the boundaries, channels, roads and borders of
the irrigated rice fields. Due to the level of detail required for
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the reference map, covering a manual vectorization for our
entire study area would require a lot of time and labor effort.
For this reason, we created a grid of 5x5 km and randomly
chosen five representative blocks for the vectorization pro-
cess. This area served as a guide to delineate the reference
areas.

After delineating the rice and non-rice areas, the vector
data were converted to raster data for evaluation and com-
parison with binary mappings produced by different classi-
fication methods. Since irrigation channels, roads, and bor-
ders of rice fields have a narrow width, between 2 and 3 me-
ters, we defined the pixel size as 2x2 meters, with the Coordi-
nate Reference System (CRS) set to EPSG: 32722, in order
to maintain these characteristics in the raster field map.

2.4 Irrigated rice maps

In the following sections, we will discuss in detail how the
binary maps of irrigated rice were obtained. In Figure 2,
we illustrate the general step-by-step process to obtain these
maps. We conducted a qualitative analysis of the land use
and land cover map to verify which classes cause the most
confusion between non-rice classes and also which ones most
closely resemble irrigated rice. In addition, we obtained time
series for each class within the initial development period of
irrigated rice in the region.

2.4.1 Mapbiomas irrigated rice map

In order to compare our detailed mapping approach of irri-
gated rice fields and our reference map with different prod-
ucts and classification methods, we used the Mapbiomas
mapping for the year 2021. The Mapbiomas product is based
on Landsat image mosaics with a spatial resolution of 30x30
meters and aims to map the entire Brazilian territory. For
a complete description of the mapping methodology, it is
recommended to refer to the Handbook [MapBiomas, 2023].
The Collection 8 used contains more than 30 thematic classes,
including the subclass of irrigated rice (’id”” = 40). Therefore,
for this work, thematic subclass 40 was reclassified as 1, and
all other classes were reclassified to the value 2 (see Figure
2), thus producing a binary map of rice and non-rice with a
resolution of pixel of 30 meters, which was resized using the
Warp method in QGIS software v.3.10.

To ensure that the matrices/grids of all classified images
have the same size and number of pixels, and that each pixel
corresponds exactly to its reference pixel in the ground truth
map, an algorithm was used to reproject the pixels of the bi-
nary maps with a pixel size of 2x2m into the Coordinate Ref-
erence System (CRS) set to EPSG:32722. This procedure
did not aim to enhance or diminish the scale of the refer-
ence maps, instead, it aimed to establish alignment and con-
sistency among the images.

2.4.2 CBERS-4A/WPM irrigated rice map

A mapping using an image generated by the WPM sensor of
CBERS-4A was also employed, aiming to take advantage of
the good spatial resolution of 8 meters per pixel of the blue,
green, red, and near-infrared bands to assess whether it is
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Figure 2. Flowchart of binary classifications of irrigated rice from different approaches.

possible to classify the irrigated rice fields in detail consider-
ing irrigation channels, boundaries, and roads, using only a
single available image for the period.

To produce the binary map, the composite image of 4
bands was loaded into the Google Earth Engine (GEE) plat-
form, and we utilized a Random Forest algorithm through
the “ee.Classifier.smileRandomForest()”” function to classify
the pixels into irrigated rice and non-irrigated rice. The na-
tive Random Forest function of GEE has only six parameters
for model adjustment, including "numberOfTrees,” “varia-
blesPerSplit,” “minLeafPopulation,” bagFraction,” ”maxN-
odes,” and “’seed.” In both classifications that used this al-
gorithm, we only modified the parameters "numberOfTrees”
and seed” to 1. For CBERS-4A/WPM, considering the
[Oshiro et al., 2012] study information and our previous ex-
ploratory analysis with 20, 50, and 100 trees, a value of 20 for
“numberOfTrees” was selected as the most suitable choice
due to the small dataset we had for CBERS-4A/WPM clas-
sification. The previous study conducted by [Oshiro et al.,
2012] with 29 different datasets concluded that beyond 128

trees, there is no significant improvement in the model’s per-
formance. The authors also highlight that for medium-sized
datasets, the ideal range of trees is between 64 and 128, while
for small datasets, 8§ trees or more are sufficient.

Based on experts domain 4,000 points were selected
within the area of interest and labels were added to them un-
der the category "LULC,” with a value of one (1) designated
for pixels representing irrigated rice and two (2) for all other
types of objects in the scene. Similarly to the process used
for the MapBiomas map, here the raster matrix data was also
resized using the Warp algorithm of QGIS software version
3.10, ensuring that the pixels corresponded to the reference
map.

2.4.3 Sentinel-2 irrigated rice map

For mapping using Sentinel-2 images based on the Multi-
Spectral Instrument (MSI) sensor, cloud-free images were
filtered, considering only the period between July and De-
cember, during which rice is in the early development stage
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(from soil preparation to peak vegetative growth). The se-
lected images, one for each month, correspond to the follow-
ing dates: July 18, 2021; August 22, 2021; September 26,
2021; October 26, 2021; November 25, 2021; and Decem-
ber 20, 2021.

Since the SWIR bands have a spatial resolution of 20 m,
we used a resampling and reprojection algorithm within the
GEE platform to match the other 10 m resolution bands used.
For details on the resampling step functions, see the guide
developed by GEE team [Google, 2024] and to our github
link at the end of this paper.

The temporal series of images were reduced in GEE using
the mean (.mean() function), standard deviation (.std_dev()
function), maximum (.max() function) and minimum (.min()
function). After applying the reducers to each band of the 6
images, we obtained 24 temporal features (4 metric for each
band) that were combined and stacked into a single image for
use in the Random Forest classifier.

The same set of points used for the mapping based on the
CBERS-4A WPM image was also used here, after confirm-
ing that the points were correctly labeled. After this process,
they were divided into 70% for training and 30% for valida-
tion and testing.

The Random Forest algorithm was implemented
on the Google Earth Engine platform using the
”ee.Classifier.smileRandomForest()” function, the same
step described in Section 2.4.2) to CBERS-4A/WPM data.
Taking into account the information highlighted by [Oshiro
et al., 2012] and the analyzes performed (ntree = 20, ntree =
50, and ntree = 100), a value of 50 trees was selected as the
most suitable choice.

The other parameters of the function were set as default,
except for the ’seed” parameter, which was defined as the
value 1, similar to what was done for the classification of the
image obtained from the CBERS-4A/WPM. Following the
process used for other binary map classifications, the raster
matrix data was resized using the Warp algorithm of QGIS
software version 3.10, ensuring that the pixels corresponded
to the reference map.

The importance of each variable was calculated by the sum
of the decrease in the Gini impurity index on all trees in the
forest. Each time a node is split based on a variable, the impu-
rity criterion for the descendant nodes is consistently lower
than that of the parent node [Jiang et al., 2019]. The sum
of these decreases for each variable across all trees in the
forest provides a rapid and reliable assessment of variable
importance. After computing all importance, the Feature
Score (FSCORE) and Recursive Feature Elimination (RFE)
methodologies are applied to find the most accurate classifi-
cation map based on the number of variables [Bazzan et al.,
2022; Badda et al., 2023].

To identify which thematic classes cause the most confu-
sion with irrigated rice, which is the subject of the study, we
generate a parallel LULC classification, we used the Sentinel-
2 image collection to create a land use and land cover map
with 7 classes: irrigated rice, forest, fallow land, other crops,
built-up areas, pasture, and water. The purpose of this map
was to identify which thematic classes cause the most con-
fusion with irrigated rice, which is the subject of the study.
We used 378 points, distributed as follows: 100 points for
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rice, 52 points for other crops, 36 for built-up areas, 50 for
water, 50 for forest, 48 for pasture and 42 for fallow land.
We reduced the number of irrigated rice points to avoid class
imbalance in the model.

2.4.4 S2+WPM/Samgeo irrigated rice map

Within the rice cultivation period, from August 1st to
May 30th, only the tiles identified as WPM205149 and
WPM205150 cover the region of interest, delimited by the
boundary box [610301.5645096592, 643079.4595588772,
6792884.760658602, 6813189.905747686 [EPSG: 32722]].
A total of 10 images were found for the region of in-
terest, at the L4 processing level, meaning images al-
ready orthorectified with radiometric and geometric cor-
rection of the system refined by the use of control
points and a digital terrain model. However, only the
image "CBERS4A WPM20514920210926” fully covers
the study area and does not have clouds. The image
”"CBERS4A WPM20515020210926”, although suitable re-
garding clouds, covers only the lower/southern third of the
region of interest. Once the image to be used was defined, the
Blue, Green, Red, NIR, and Pan bands belonging to this tile
and date were downloaded. A three-band composition was
created using the red, green and blue bands, with a resolution
of 8x8 meters, as illustrated in Figure 3. This same compo-
sition was used to generate a 2x2 meters image using a pan-
sharpening approach, using an algorithm from the Geospatial
Data Abstraction Library (GDAL) library [GDAL and OGR,
2024] within QGIS, as illustrated in Figure 3. Currently, the
only pansharpening algorithm supported in the GDAL pack-
age used is a "weighted” Brovey algorithm, and among the
available resampling methods, a cubic convolution method
was applied, based on the results obtained by [Li et al., 2017]
for agricultural areas.

Menu k Raster k Miscellaneous ’.

Input Layers: B3, B2, Bl (red, green and blue bands)
Resolution: Average
v" Place each input file into a separate band (check)

Build a raster ‘

Export as: Geotiff
*The rest of parameters stay default

Processing Raster b .
(GDAL) Miscellaneous e

Spectral dataset: B3, B2, B1 (Compositons created in above step)
Panchromatic dataset: Pan band of CBERS4A

Resampling algorithm: Cubic

*The rest of parameters stay default

Figure 3. Menus and step by step guide to create a pansharpening compo-
sition in QGIS.

After the pansharpening process, the image was converted
to the integer type (uint8) with values ranging from 0 to 255
for the pixels. This conversion is necessary since the Sam-
geo package uses dependencies such as pyTorch, where, typ-
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ically, images of dtype torch. uint8 are expected to have
values in the range of 0 to 255 [Wu and Osco, 2023a]. To
perform this conversion, we used a Python script that can be
accessed by following the link to the repository at the end of
this article. With the prepared image, Google Drive was used
to upload and store the image in the cloud, so that it could be
processed using the Google Colab platform. In addition to
the functions for importing and loading the packages used
for visualization and image loading, we also used functions
belonging to the Samgeo package to obtain the feature mask
of our study area. For a detailed explanation of the code used,
we recommend accessing the GitHub repository available at
the end of the article.

As in this work, the intention was to use the Samgeo pack-
age in a zero-shot approach, and we also chose to leave the
fine-tuning parameters according to the default established
by the package developers. However, it is possible to ad-
just the parameters of the ”sam_kwargs” variable to obtain
different results. We recommend accessing the package doc-
umentation for a better description of these parameters [Wu
and Osco, 2023a]. The feature mask, with a spatial resolu-
tion of 2x2 meters, generated for the entire region of interest,
was subsequently used to obtain channels, edges, roads and
boundaries within and between the fields applying to classi-
fied irrigated rice areas (see Figure 4). Although the original
mask contains various features for all the geometries found
in the image, we chose to use only the irrigated rice areas
based on our Sentinel-2 binary map generated in Section 2.6
as a delimiter to extract roads, irrigation channels, and bound-
aries, since our interest is in monitoring these irrigated rice
areas.

2.5 Evaluation metrics

The qualitative analysis of the five generated blocks was car-
ried out by inspecting how well the generated maps included
the channels, borders, and roads that are located between and
within the irrigated rice fields. This inspection was carried
out by comparing the generated maps with an RGB reference
image and the created reference map. Furthermore, a macro-
level qualitative analysis was performed to assess the overall
presence of false-positive and false-negative area inclusions.
This was particularly focused on regions where irrigated rice
cultivation is not feasible, such as built-up areas and forests.

The generated binary map was assessed not only by over-
all accuracy, but also recall, precision, and the F1 score de-
rived from the confusion matrix. Accuracy serves as a funda-
mental metric in classification assessment; however, relying
solely on accuracy can be insufficient for a comprehensive
evaluation. Therefore, in addition to accuracy, precision, re-
call and the F1 score are used as essential evaluation criteria
[Zhang et al., 2019].

The general accuracy gauges the relationship between the
model predictions and the total instances across all test sets,
calculated as the equation (1).

TP + TN )
TP + TN + FP + FN

Precision represents the ratio of truly positive instances
among all predicted positive cases, calculated as equation

Accuracy =
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TP

Precision = ———
TP + FP

@

In contrast, recall signifies the proportion of all actual pos-
itive instances correctly predicted as positive, determined by
Equation (3). In particular, precision and recall often exhibit
a trade-off; an increase in one typically corresponds to a de-
crease in the other.

Recall = _TP 3)
TP + FN
The F1 score, a holistic assessment metric that combines
precision and recall, is calculated as Equation (4). The F1
score, which is the harmonic mean of precision and recall,
offers a balanced perspective, with 1 indicating optimal per-
formance and 0 indicating the least desirable outcome.

F1 Score — 2 % Prf:c.ision x Recall @
Precision + Recall

2.6 Time series extraction and evaluation

To evaluate the time series, the classified areas of irrigated
rice for each of the methods described above, as well as
the reference areas, were used. The regions of interest
(rice fields) were used as a search filter on the Google
Earth Engine (GEE) platform from July 1, 2021 to June 30,
2022. Sentinel-2 (COPERNICUS/S2 SR HARMONIZED)
images with cloud filtering and noise-corrected pixels were
used. The average values of the Normalized Difference Veg-
etation Index (NDVI) were extracted for each plot, forming
time series for each of the binary maps produced. The ex-
tracted series were exported in CSV format for subsequent
analysis.

The NDVI index was selected to evaluate the develop-
ment of rice in the region due to its widespread recognition
and established use in agricultural research. Numerous stud-
ies have well-documented the behavior of NDVI in rice and
other crops monitoring, making it a reliable indicator for this
purpose [Amani ef al., 2020], [ANA, 2020], [Orynbaikyzy
etal., 2022].

Subsequent analyzes include the analysis of the structure
of each series for each irrigated rice area defined by each
evaluated mapping method. From the generated graphs, we
excluded the series that presented noise that impeded the vi-
sualization of rice development and opted to keep only those
that presented a mix of the spectral response of NDVI of ir-
rigated rice with other vegetation and those of irrigated rice
itself. Then, we verified the total number of generated series
(without removing noisy series) and the selected series (with
the removal of noisy series).

To obtain the plots and extract the series, the binary maps
were vectorized so that each neighboring pixel connected to
another of the same class was considered a single polygon.
In other words, continuous areas where there is no change in
class were treated as single plots for each map. This process
ensures that adjacent pixels belonging to the same class are
grouped together.
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Sentinel-2 time series stack
Figure 4. General process to generate an irrigated rice binary map with Sentinel-2/MSI and Samgeo.

3 Results and Discussion

3.1 Qualitative and quantitative analysis

Evaluation of the different classification methods, in-
cluding Mapbiomas, CBERS4A/WPM, Sentinel-2, and
S2+WPM/Samgeo, reveals significant variations in perfor-
mance compared to a detailed feature map. The Sentinel-2
combined with the WPM/Samgeo method demonstrated su-
perior accuracy (0.879), precision (0.858), recall (0.942), and
F1 score (0.895 (Table 3), indicating its robust classification
capabilities. In contrast, Mapbiomas and CBERS4A/WPM
showed lower performance in all metrics, with accuracy
scores of 0.767 and 0.752, respectively, and F1 scores of
0.785.

Upon observing the qualitative results (Figure 5), it is vi-
sually apparent that the binary map derived from the Map-
Biomas data is capable of identifying the general outline of
rice fields; thus, in a macro-analysis, the data appear ade-
quate. However, no channels, boundaries or roads were ob-
served in this classification. This outcome is primarily due to
the spatial resolution of the satellite data used of 30 meters.

The results published by [Shimabukuro et al., 2023] also
recorded that MapBiomas had less accurate results compared
to the Land Use Land Cover Random Forest model used by
them based on reference polygons created using a Sentinel-2
spatial resolution, highlighting mainly the agriculture class,
which showed the highest error of omission, often classified
incorrectly as pasture, forest plantation, and forest. This re-
sult reinforces the difficulty of differentiating between these
classes, which include vegetation targets.

In examining the CBERS/WPM classification, the obser-
vations from Figure S reveal that the mapping successfully
identified some prominent features, such as wider roads and
certain plot boundaries. Compared to MapBiomas mapping,
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CBERS/WPM offers more detailed delineations within and
between rice fields. However, it introduces a notable amount
of false positive pixels in the classification, particularly in ar-
eas prone to confusion with other crops, grasslands, and fal-
low lands. The confusion matrix (Figure 6) and the (Table 3)
indicate that the highest commission error was associated
with the mapping derived from the CBERS/WPM data, with
a precision of 73.2% and an average of 10,719 false posi-
tive pixels identified. This was followed by MapBiomas data
with a precision of 75.3% and 9,923 false positive pixels on
average, Sentinel-2 data with a precision of 78.3% and 9,484
false positives, and S2+WPM/Samgeo with 85.8% precision,
representing almost half less false positives at 5,349 pixels on
average, i.e. suggests a lower commission error between all
models.

This is mainly due to the utilization of a single image
for classification and the spectral similarity in vegetation re-
sponse among these targets. Despite the high comission er-
rors, the channels and roads surrounding and intersecting the
irrigated rice fields typically have widths ranging from 2 to 4
meters, making their identification feasible with this product,
as can be seen in Figure 7. In addition, note that the num-
ber of plots is significantly higher compared to the reference
areas.

This primary confusion issue that can also be observed
in our multiclass map (Figure 8) was related to the targets
of irrigated rice fields, grasslands, other crops, and fallow
land, similar results was highlighted by [Shimabukuro ef al.,
2023] with their Random Forest models for LULC classifi-
cation. These targets or landscape components were occa-
sionally confused with each other, as observed, for example,
within the city image where areas labeled as other crops and
irrigated rice were mistakenly classified when they should
have been classified as grasslands or trees. Within fallow
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lands and other crop areas, some points were also incorrectly
classified as irrigated rice, similarly occurring within certain
forest regions, where small clusters of pixels were identified
as rice.

The main reason for confusion in identifying vegetative
areas is due to chlorophyll behavior in green leaves. As
[Segarra et al., 2020] noted, chlorophyll strongly absorbs
blue and red light in the visible spectrum (400—700 nm) for
photosynthesis. Meanwhile, leaves reflect and transmit more
in the near-infrared (700—1300 nm) due to their structure and
biomass. Additionally, the plant canopy structure and leaf
surface area crucially affect reflectance patterns, important
for monitoring growth

Although the incorporation of more detailed features into
our CBERS/WPM classification is beneficial in that it ef-
fectively delineates these features compared to MapBiomas,
the these false positives makes our classification less suit-
able: the irrigated rice area within the study area suffers from
significant overestimation errors. Moreover, while Map-
Biomas lacks finer-scale features like roads, channels, and
the boundaries of rice plots, and; hence, further suitable than
CBERS/WPM as it contains a fewer number of false positive
inclusions.

In terms of classification accuracy (Table 3), our results
indicate that Sentinel-2 exhibits a lower false positive rate
in the class of irrigated rice compared to CBERS/WPM, but
a higher rate compared to MapBiomas. Notably, the incor-
poration of temporal series data significantly reduces the in-
cidence of false positive inclusions, even when using lower
resolutions such as 30x30 pixels in the case of MapBiomas
and 10x10 pixels in our Sentinel-2 model. In contrast, the
use of a single CBERS/WPM image results in a higher rate
of false positives. These findings highlight the potential ben-
efits of integrating temporal series data into satellite imaging
applications for improved accuracy and reduced errors.

A classification based on a single image is particularly de-
sirable in regions with high cloud cover and noise. In this re-
gard, achieving high-accuracy classification with a CBERS-
4A image would be ideal, given the cloud coverage in our
study area. However, the random forest model applied here
failed to provide an accurate classification. One potential so-
lution for the region could be the use of hyperspectral images,
which allow area characterization by extracting hundreds of
spectral features from a single image, as demonstrated in the
case of wheat and rapeseed by [Meng et al., 2021]. Further-
more, the incorporation of other techniques or algorithms
such as semantic segmentation models based on clusters or
deep-learning methods may enable the use of a single image
or a combination of unique images from different sources for
agricultural mapping, as reported by [Luo et al., 2023].

Although the Sentinel-2 and MapBiomas models, in a
macro analysis, successfully classify and differentiate rice
fields from other targets, they cannot identify detailed fea-
tures of irrigation channels, roads and plot boundaries, which
are more prevalent when employing our approach that com-
bines Sentinel-2 binary classification with the feature mask
generated by Samgeo.

As [Cucho-Padin ef al., 2020] highlight in their research,
accurate mapping is crucial for small-scale farmers, who pro-
duce around 70% of the world’s food. Unfortunately, na-

Garcia et al. 2025

Table 3. Performance of each classification compared to detailed
features map.

Metric Mapbiomas CBERS4A Sentinel-2 Sent2+Samgeo

Accuracy 0.767 0.752 0.814 0.879
Precision 0.753 0.732 0.783 0.858
Recall 0.837 0.868 0.943 0.942
F1 0.785 0.785 0.853 0.895

tional crop statistics often do not accurately capture the di-
verse cropping systems used by small farmers. This lack of
precision makes it difficult for policymakers and farmers to
make informed decisions about food production and distri-
bution. A system that collects accurate crop data from the
farm level would revolutionize crop management and pre-
vent food shortages. Although satellite technology is used
for monitoring, its spatial resolution is often too coarse to
capture the diverse crops grown by small-scale farmers. To
support these farmers and ensure global food security, it is
crucial to improve mapping accuracy using advanced remote
sensing. This would enable better monitoring, more efficient
resource allocation, and a more secure food supply.

Our Sentinel-2 model also suffers from vegetation con-
fusion, and to better understand this the Figure 9 exhibits
the temporal behavior for each band used in the model. Ar-
eas identified as fallow and other crops exhibit similar spec-
tral behavior from July to December. During the first two
months, the NIR reflectance in these areas is around 0.2.
By mid-October, it peaks at 0.4 before dropping to approxi-
mately 0.2 for fallow areas and 0.3 for other crop areas. In
fallow areas, this peak is due to the spontaneous growth of
herbaceous and natural plants, and the subsequent drop oc-
curs due to their removal and soil preparation for new crops.
This pattern is evident in the red (B4) and shortwave infrared
(B11 and B12) bands, where reflectance values increase after
mid-April, indicating exposed dry soil following vegetation
removal.

In contrast, for areas with other crops, after the mid-
October vegetative peak and subsequent drop in reflectance,
the red and SWIR bands stabilize. This indicates an increase
in absorption in these bands due to the presence of vegeta-
tive and reproductive parts of the plant and water from ir-
rigation. In the short-wave infrared region (SWIR) from ap-
proximately 1300 to 2500 nm, radiation absorption is mainly
influenced by the water content and other biochemical com-
ponents of leaves, as observed by [Segarra et al., 2020] and
[Holzman et al., 2021]. In agriculture, factors such as sea-
sonal climatic changes, extreme weather events, pests, soil
properties, and phenological stages alter plant signal patterns.
For irrigated rice, the SWIR band is particularly sensitive to
water levels at the beginning and early stages of the season.

From the images, it is evident that the number of lines and
features representing non-rice classes is significantly higher
in the S2+WPM/Samgeo image compared to other evaluated
methods.

Among the primary limitations of our proposed method
is its reliance on the Sentinel-2 classification to delineate ir-
rigated rice fields, leading to cases where only the mask is
applied over channels and roads, leaving parts of the edges
unmasked. This creates polygons that show a mixture of rice
with other materials present at the edges, such as asphalt,
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Figure 5. Qualitative results of binary irrigated rice classification by different approaches.
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Figure 6. Confusion matrix for the different evaluated irrigated rice fields
maps based on 62,500 pixels.

exposed soil, and other types of vegetation, as can be seen
in Figure 7. Additionally, the Samgeo zero-shot segmen-
tation model fails to distinguish some internal plots, espe-
cially when pixels demonstrate homogeneity among neigh-
borhoods, resulting in excessively extensive geometries that
require manual adjustment.

To address these issues in future endeavors, it is recom-
mended, if possible, to utilize a minimum of two CBERS im-
ages, one for the initial period and another for the final stage
of rice development. This ensures that neighboring pixels
are at different stages, enabling the creation of more hetero-
geneous plots, which should enhance the mask obtained by
Samgeo. Another alternative is to employ higher-resolution
images, such as Planet images, to obtain more detailed infor-
mation on each irrigated rice area.

The effect of borders in crop fields is a well-known phe-
nomenon, as demonstrated by previous studies, such as those
conducted by [Gomez and De Datta, 1971] and [Vernertti
et al., 1982], which highlight the importance of identify-
ing field borders and selecting rice cultivars that are better
adapted to border conditions, which typically receive less fer-
tilizer and exhibit lower productivity.

More recent work by [Wang et al., 2013] investigated the
effects of field borders on rice grain yields and found that the
overestimation rate decreased with larger plot sizes. They
concluded that the rate of overestimation of the minimum
yield due to the border effect was 2.7%. This finding is con-
sistent with other research by [Castro Alvarez ef al., 2013]
and [Zheng et al., 2023], which reported yield overestima-
tion ranging from 3% to 20% as a result of effects of the
border and the plot sizes.

In agricultural remote sensing studies, recognizing the im-
portance of borders and based on the agronomic insights
discussed above, it is not uncommon. In some studies, re-
searchers apply a negative buffer to exclude field borders
from their analyses, regardless of the type of crop [Reyes
et al., 2023], [Beriaux et al., 2021], [Orynbaikyzy et al.,
2022]. The purpose of applying this exclusion buffer is to
avoid the inclusion of heterogeneous pixels in the time se-
ries analysis, which can result from the incorporation of ad-
jacent materials such as exposed soil, irrigation dikes, and
different types of vegetation [Reyes et al., 2023], or even due
to the different management practices employed by farmers
at the field borders [Beriaux et al., 2021]. This practice en-
sures more accurate and consistent data for remote sensing
analyzes, enhancing the reliability of the results.

In terms of our Sentinel-2 model, the top 14 variables pro-
duced the most accurate rice irrigation map for the 2021/2022
season (Figure 10). The training step achieved an accuracy
of 99.25%, indicating a high level of accuracy in correctly
predicting both classes. In the validation step, the model
demonstrated an accuracy of 94.4%, further confirming its
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performance. The analysis of the F score enabled the verifica-
tion that among the 24 variables used, the bands B11_stdDev
(SWIR) and B8 mean (NIR) showed an importance above
5% in classification (Figure 10). These two bands are of
great importance due to the characteristics in which the land-
scape/image is found during the early stages of development
(up to a vegetative peak) of irrigated rice cultivation. Re-
garding B11_stdDev, since the fields are irrigated by flood-
ing, the SWIR1 values undergo significant changes during
the transition from completely flooded fields at the begin-
ning of planting to completely dry fields at the end of har-
vesting. Therefore, when computing the standard deviation
of the values of each pixel in the image, there is a significant
difference between the values obtained in the first image of
the temporal series and the last image. Regarding B8 mean,
it is of great importance to differentiate rice fields from other
areas, since rice exhibits variation in the mean due to vari-
ations in green pigmentation (high interaction with the NIR
band), while other targets such as forests, exposed soil, water
and urban areas have a more constant value for this band.

It should be noted that among the first 14 bands, which
represent the cumulative importance of 63% for classifica-
tion, three are related to band B11 (SWIR) (stdDev, min and
mean), three are related to band B8 (NIR) (stdDev, min, and
mean), two are related to band B4 (Red) (stdDev and min),
two are related to band B12 (SWIR2) (stdDev and min), two
are related to band B2 (Blue) (stdDev and max), and two are
related to band B3 (Green) (stdDev and mean). The images
generated from the extraction of maximum values in the tem-
poral series showed the lowest overall importance, with only
band B3 max among the top 14 bands of importance. On the
other hand, images generated from the extraction of standard
deviation values from the temporal series were of the highest
importance. So, for all bands, the stdDev is among the top
14 most important parameters.

Their importance can be attributed to the dynamic nature
of plant growth, which undergoes substantial changes from
exposed soil to the vegetative peak stages [Boschetti ef al.,
2017]. This fluctuation in the reflectance values of the pix-
els results in higher standard deviation values within the rice
areas. Furthermore, complete removal of vegetation during
soil preparation and sowing phase facilitates the distinction
between crop fields and other surfaces, as evident in Figure
9. Consequently, the minimum pixel values in the time se-
ries become crucial in classifying rice areas, as they capture
the distinctiveness of these stages in the vegetation cycle.

From the reduction of the variables used in the model, the
classification image was generated that returns the highest
validation accuracy with 14 variables (94.4%). The use of
three and four variables only resulted in a classification with
1.2% and 1.3% lower accuracy, while the classification with
only the two most important variables returned a classifica-
tion with 3.8% lower accuracy. Between 5 and 23 variables,
the difference in the best accuracy (14 variables) did not ex-
ceed 0.74%. Therefore, it is interesting to note that the use of
all variables (24) returned a classification 0.9% less accurate.
Some studies indicate that the correct selection of variables
and the number of variables for the RF model is ideal for pro-
ducing good results [Bazzan et al., 2022; Badda et al., 2023].
Contrary to intuition, increasing the number of variables for



Detailed Mapping of Irrigated Rice Fields Using Remote Sensing data and Segmentation Techniques:
A case of study in Turvo, Santa Catarina, Brazil Garcia et al. 2025

%

2805575078 49°41°337"W

RGB GOOGLE CBERS-4ARGB
DECEMBER 2021 SEPTEMBER 2021

SRRV

-
GROUND TRUTH MAPBIOMAS CBERS-4A SENTINEL-2 SENT2+SAMGEO
Figure 7. Example of how the detailed features in the irrigated rice fields looks like in different maps.

Irrigated rice - Other crops Built-up areas . Water bodies

.Forest/trees QGrassland Fallow

Figure 8. Qualitative results of Land Use Land Cover for Region of Interest

the model can reduce its accuracy. tribute to the development of a better model for future work.

We understand that our S2+WPM/Samgeo model, which
combines a binary map generated by our model to classify 3.2 Time series analysis
Sentinel-2 data with a single CBERS-4A/WPM image, is
crucial to improve the final results of the S2+WPM/Samgeo  To classify and identify rice growing areas, it is acceptable to
map. Therefore, the analyses conducted in this study con-  use a map with a broader delineation of plots since the main
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Figure 9. Spectral response of each Sentinel-2/MSI bands for different Land Use Land Cover classes in the Region of Interest

objective is to locate rice producing regions and differenti-
ate them from other objects in the scene/image. However,
by encompassing a large area in the classification, we can
include different patterns (time series behavior) of irrigated
rice cultivation, for example, short cycle and long cycle rice,
early and late-sowed irrigated rice, or even single-cycle or
regrowth-cycle rice (double harvest), as discussed next.

In the temporal series analysis, the number of plots and,
consequently, the NDVI patterns of irrigated rice develop-
ment obtained from each mapping source varies considerably
(Figure 11). The reference map initially presented a total of
1334 rice plots; however, after the removal of series that dis-
played extreme cloud or shadow noise, which hindered pat-
tern identification, the observed series dropped to 1325.

For the MapBiomas binary map, the original number of

plots was 26, and after the removal of noisy series, the
count decreased to 25. Regarding series originating from the
CBERS4A/WPM map, the initial count was 626, but numer-
ous noisy series were observed, reducing the count to 260,
representing the highest number of removed series compared
to the original count.

Sentinel-2 mapping yielded a total of 99 NDVI temporal
series, with only 48 identified as noise-free for irrigated rice.
The Sent2+Samgeo binary map generated the highest num-
ber of NDVI series and plots for irrigated rice compared to
the reference data, with an initial count of 982 patterns, re-
duced to 847 after the removal of noisy series.

In Figure 11, the main observed behaviors are represented
through the grouping of noise-free plots from the utilized
mappings. Upon analyzing the patterns obtained, it is ev-
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ables inserted into the model (bottom).

ident that the reference map reveals four distinct patterns,
two primarily distinguished by a single rice crop cultivation
and the other two showing regrowth, indicating two harvests
within the same season. Focusing solely on these behaviors
(single or double cropping), the distinguishing factors among
them are the curve’s amplitude, flattening, and temporal shift
(early, regular, or late onset of cultivation). These differ-
ences in curves are mainly due to the use of different cul-
tivars, varying fertilization strategies, and agricultural man-
agement practices by farmers.

The region is characterized by the implementation of mul-
tiple rice cultivars. A study conducted by [Macarini et al.,
2019] in the Southern region, near the municipalities of
Morro Grande, Turvo, and Meleiro, revealed that 55% of
farmers use the SCS121 CL cultivar (long cycle), followed
by the SCS122 MIURA cultivar (long cycle) at 24%, and the
SCS116 SATORU cultivar (medium cycle) with 10%, with
the remaining four cultivars collectively accounting for 12%
of the total planted area in the region.

In general, the time series data obtained from the rice plots
in the MapBiomas project accurately represent the develop-
ment patterns of the crops in the region. However, we ob-
serve a double harvest pattern in which the NDVI signal is
much more prominent in the second peak compared to the
first. This suggests a mix of different types of vegetation
within a single plot classified as irrigated rice, as rice re-
growth does not exhibit such a marked increase as observed
in the reference plot curves.

A similar pattern is evident in one of the behaviors derived
from the binary map of Sentinel-2 data, which also shows
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two distinct peaks. Furthermore, some behaviors in Sentinel-
2 data exhibit an almost linear NDVI pattern, indicating noise
within the plots classified as irrigated rice. These more linear
NDVI patterns suggest the presence of perennial vegetation,
which only shows variation due to seasonal changes, unlike
irrigated rice.

The patterns obtained from the CBERS plots show the
noisiest data, with many linear behaviors included. Despite
the mixed vegetative targets in the CBERS binary map plots,
it is still possible to observe growth and decline at the begin-
ning and end of the series. This highlights the difficulty of
the model used to differentiate irrigated rice from grasslands,
other crops, and fallow.

Compared to the reference NDVI series, the temporal pat-
terns obtained from the Sent2+Samgeo mapping are the most
similar and thus quite satisfactory. In these patterns, we can
observe both single and double cultivation, although the se-
ries are slightly flatter.

Studies involving NDVI time series for smallholders gen-
erally use unmanned aerial vehicles (UAVs) to monitor indi-
vidualized agricultural areas. This mapping generally allows
the acquisition of images for only a few properties, assess-
ing variations within individual plots [Stoy ef al., 2022] and
evaluating the costs of flights with the benefits of monitoring
[Harsh et al., 2021]. The approach we propose can aid in the
monitoring of small irrigated rice plots, even at the city or
state level, as it incorporates techniques that allow the indi-
vidual separation of rice fields.

At the regional level and on larger scales, the study con-
ducted by [Guan et al., 2016], which monitored irrigated rice
in Vietnam, showed that there can be up to four variations of
cultivation in the region. In contrast, the work of [Csillik
et al., 2019], which monitored various crops in two regions
in California and Texas, highlighted the significant regional
variability and indicated that understanding small-scale tem-
poral series can facilitate crop mapping. Furthermore, the
study by [Bellon et al., 2017] showed that knowledge of the
temporal series of a vegetation index like NDVI on a regional
scale can enable the differentiation of rice from other crops
in a region of Tocantins, Brazil.

To illustrate how classification using larger rice plots can
affect the observation of detailed time series behaviors, we
use the example of an area depicted in Figure 12. Three dif-
ferent cultivation patterns are presented in Figure 12, found
within a single plot defined as rice area by Sentinel-2 ap-
proach (without the application of the Samgeo segmenter).
On the other hand, it can be observed that the larger plot
shows an overall average behavior for the entire covered re-
gion, with NDVI values equivalent to 0.1 on 2021/08/22, 0.7
on 2022/02/18, and 0.3 on 2022.

The three plots selected to represent the heterogeneity
found within a single plot classified with broad delineation
are identified with IDs 37, 38, and 101. Plots 37 and 101 ex-
hibit behavior similar to the overall average for 2021/02/22,
with an NDVI value of 0.1. However, plot 38 shows a
slightly lower value close to 0; this difference can also be
seen in Figure 12 (left image), where plots 37 and 101 reflect
a darker and browner coloration, indicating a wetter and wa-
terlogged soil, characteristic of recently irrigated soils. How-
ever, plot 38 for the same date shows a more yellowish and
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Figure 11. Comparison of most observed behaviors of Sentinel-2/MSI NDVI time series using different binary of irrigated rice maps.

light coloration, characteristic of exposed and dry soil.

On the date of 2021/02/18, plots 37 and 101 also exhibit
more similar behavior with elevated NDVI values (0.8 and
0.75, respectively), indicating the presence of rice plants
with high vegetative vigor and high reflectance in the NIR
band, meaning the plants are still in the field and have not
yet been harvested, as seen in the image and their respec-
tive time series. However, plot 38 shows a sharp decrease
for 2021/02/18 with an NDVI close to 0.3, indicating the re-
moval of plants from the field, i.e. harvesting.

Analysis of the time series and images in Figure 12 re-

veals a double harvest behavior in plot 38 due to the increase
in the NDVI value between March and May, with green col-
oration present in the image on 2021/05/19. Plots 37 and 101
exhibit a single-cut difference pattern with harvest around
April. The main difference between these two plots is that
plot 37 shows a crop development pattern starting in early
October, while the development in plot 101 already begins
in mid-September. In this sense, in the image of 2021/05/19,
it is possible to observe more exposed soil in plot 101, while
in plot 37 a darker/greener coloration is noticed, indicating
the presence of crop residues.
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Figure 12. Temporal profile of individually segmented plots compared to a large plot obtained through Sentinel-2 classification.

A more specific investigation with a more local analysis
of the plots allows for better estimation of planting and har-
vesting dates with precision. Furthermore, possible planting
failures due to natural phenomena and attacks by pests or
pathogens can also be better evaluated with a more detailed
segmentation of the plots, compared to a broad or average
classification of the plots. As discussed earlier, more effec-
tive segmentation is obtained by using higher-resolution im-
ages. Therefore, since medium-resolution images, such as
Sentinel-2, are more frequent (6-day revisit time), allowing
for better crop monitoring, they are suitable for producing
maps with broad plots. Complementarily, CBERS-4A im-
ages (less frequent revisits) can optimize the segmentation
of classifications produced based on 10x10 m/px Sentinel-2
images, as demonstrated in this study.

Typically, the identification of small features in the agricul-
tural field employs techniques utilizing images from UAVs
[Padua et al., 2024], [Brinkhoff ef al., 2018], and [Traore
et al., 2022]. However, employing a technique such as gen-
erating a mask through high-resolution imagery, like that of
CBERS-4A/WPM, to map these features - such as irrigation
channels, roads and boundaries - allows for expanded cover-
age of these mappings. This approach improves the ability
to monitor and manage agricultural landscapes in larger ar-
eas, utilizing the high spatial resolution of CBERS imagery
to accurately capture and delineate critical infrastructure and
plot divisions within the agricultural context.

In addition to enabling individual monitoring of irrigated
rice fields through better delineation, the identification of ir-
rigation channels offers some other benefits. Facilitates im-
proved regional planning to reduce or prevent damage caused
by leaks [Padua ef al., 2024] and [Traore et al., 2022]. Fur-
thermore, it allows the appropriate management of invasive
aquatic plant species that clog and infest channels [Brinkhoff
et al., 2018]. This precise mapping and monitoring capabil-
ity is essential to maintain efficient water distribution and
ensure the sustainability of agricultural practices.

4 Conclusion

In conclusion, our evaluation of classification methods has
shown that Sentinel-2 combined with Samgeo approach
stands out as the most effective, achieving an accuracy of
87.9%, precision of 85.8%, recall of 94.2%, and F1 score
of 89.5%. In contrast, Mapbiomas and CBERS4A demon-
strated lower accuracy scores of 76.7% and 75.2%, respec-
tively, with corresponding F1 scores of 78.5%. Mapbiomas
struggled to identify detailed features due to its coarse spatial
resolution, while CBERS4A introduced a significant number
of false positives, particularly in areas confused with other
vegetation types. Furthermore, our analysis of time series
data revealed notable variations in the number of plots iden-
tified, with the Sent2+Samgeo method generating the high-
est count of 847 noise-free patterns, indicating its efficacy
in capturing temporal dynamics. These results highlight the
importance of integrating high-resolution temporal data and
advanced segmentation techniques for accurate agricultural
mapping, which is crucial to supporting small-scale farmers.
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