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Abstract Business process analysis is a part of process mining, which involves predictive monitoring. It seeks to
predict individual processes, such as determining the next step to execute based on past events or estimating the
remaining time until process completion. Such predictions can help to prevent waits, discover process bottlenecks,
and assist alert systems. This paper aims to evaluate deep learning architectures to predict the time required to
complete a business process instance. We have evaluated the models using three real datasets, including two widely
used public ones. The experimental results show deep learning architectures that combined dense layers with a
self-attention mechanism outperformed the current state-of-the-art, demonstrating superior performance regarding
the mean absolute error metric in most of the datasets analyzed.
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1 Introduction
A wide range of private institutions, as well as public ser-
vice organizations and departments, aim to produce better
and in less time or perform tasks as efficiently as possible
[Kalenkova et al., 2017]. Due to these factors, business pro-
cess optimization is an area of research that has become pop-
ular [Reijers, 2021] and commonly deals with real process
monitoring problems.
Several leaders in digital product companies believe that

optimizing business processes is crucial for the impact of dig-
ital transformation. Machine learning is a core technology
that supports the development of new business models, be-
ing highly effective for predictive maintenance and enhanc-
ing operational efficiency, increasing productivity, and re-
vealing previously unattainable insights [Akhramovich et al.,
2024]. According to [Paschek et al., 2017], estimates for
2020 showed that machine learning for process optimization
and automation would be a very promising tool. The rela-
tionship between process management and digital transfor-
mation is quite solid, and [Stjepić et al., 2020] highlights a
series of business segments supported by these technologies.
Additionally, the digital transformation conducted by gov-

ernments has improved the quality of public services deliv-
ered to the citizens. Usually, the enormous volume of in-
formation these services manage, associated with its variety
and the speed with which this data is generated, classifies
it as Big Data. Processing such data to guide public poli-
cies requires innovative forms of analysis, and its potential
value lies precisely in the possibilities of developing preven-
tive and corrective measures in “real-time” and providing ac-

curate information for planning and improving public poli-
cies. One initiative in Brazil is the Chief Scientist Program
(CSP)1, conducted by the Government of the State of Ceará.
The digital transformation proposed by CSP includes the Fi-
nance Secretariat of Ceará (SEFAZ-CE)2, which specifically
has records of electronic invoices, electronic tax coupons,
digital tax bookkeeping, and others ones.
In the context of SEFAZ-CE, one goal is the predictive

process monitoring. Process monitoring involves leverag-
ing advanced techniques and creating new analytical tools to
characterize the intrinsic correlations between diverse data
types over time and space, predicatively detect emerging or
synchronized behaviors, identify causal relationships, and
determine interdependent resilience measures.
Efficiently monitoring business processes requires the

ability to anticipate any potential bottlenecks [Castro et al.,
2022], cyclical dependencies, long waits, and failures [Mello
et al., 2019, 2020]. Predicting the remaining time for pro-
cess completion mitigates potential issues and optimizes
decision-making systems.
This research aims to evaluate deep learning architectures

to predict the time required to complete a business process in-
stance. Based on the current purposes of improving process
management, this work addresses the following Research
Questions (RQ):

RQ 1 Which machine learning architectures are best suited
for accurately predicting the remaining time to complete

1https://www.funcap.ce.gov.br/
cientista-chefe-descricao-dos-programas/

2https://www.sefaz.ce.gov.br/
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a business process?
RQ 2 What is the influence of the process stage on predic-

tions of the remaining time to complete a business pro-
cess?

RQ 3 What are the differences between the best model pro-
posed in this work and those proposed in related works?

RQ 4 How is the model accuracy influenced by the distribu-
tion of the remaining time needed to complete the pro-
cesses?

This research proposes methods for accurately predicting
the time remaining to finalize a business process. We ex-
plore a range of deep learning architectures to achieve this
goal. Our experimentation involves thorough evaluation us-
ing five real datasets: two widely recognized public datasets
and three private datasets sourced from SEFAZ-CE. The re-
sults reveal that our approach outperforms the current state-
of-the-art, demonstrating superior performance in terms of
mean absolute error. This paper extends our previous work
[da Silva et al., 2023] by conducting an experimental evalua-
tion using three real huge datasets acquired from SEFAZ-CE,
each one contains a set of processes with different variability
of time. We have also added three deep learning architectures
in our experiments (Section 4.2).

2 Problem definition
Definition 2.1 (Business Process). A business process refers
to a sequence of activities performed in a predefined order to
produce a product or service.

Definition 2.2 (Business Process Instance). A business pro-
cess instance is an occurrence of a business process given
by a sequence of activities p = [e1, e2, . . . , en], where each
activity ei is associated with a unique identifier and a times-
tamp of its execution. The terms activity and event inter-
changeably are used in this article.
Definition 2.3 (Prefix of a Business Process Instance).
Given a business process instance p = [e1, e2, . . . , en], a
prefix of p is any subsequence p

′ = [e1, e2, . . . , ek] of size k
where 1 ≤ k ≤ n.

A prefix represents the sequence of activities that have
been observed up to a certain point in time for a specific
process instance. To ensure efficiency and accuracy, a busi-
ness process should be defined with clarity, organization, and
consideration for the dependencies between stages, the rep-
resentation of the real model, and all possible prefixes.
Applications record the steps performed in a business pro-

cess instance in an event log. An example of a process event
log is presented in Table 1. The process instance is repre-
sented by a unique identifier (Process ID). Each row in the
log corresponds to an activity that has started at a specific
timestamp (Creation time) and is associated with an activity
(Activity), such as “Get ticket”, “Resolve request”, etc. The
process instance is completed when it reaches the activity
“Close”. For example, in Table 1, the activities “Close”, on
the last lines of process ID 1 and 2, respectively, specify that
the processes instances ID 1 and ID 2 have finished.

Table 1. Structure of an event log.
Row Process ID Activity Creation time
1 1 Set priority 2012-10-09 14:50:17
2 1 Get the ticket 2012-10-09 14:51:01
3 1 Get the ticket 2012-10-12 15:02:56
4 1 Resolve request 2012-10-25 11:54:26
5 1 Close 2012-11-09 12:54:39
6 2 Set priority 2012-04-03 08:55:38
7 2 Get the ticket 2012-04-03 08:55:53
8 2 Resolve request 2012-04-05 09:15:52
9 2 Close 2012-05-19 09:00:28

Definition 2.4 (Remaining Time Prediction). Given a set of
completed business process instancesBP, and a business pro-
cess instance p, the problem is to learn a function able to es-
timate the time required for p to reach its finish (“Close”
activity) based on the log of the previous executed activities.

To exemplify, consider the process instance whose process
ID is 1 (Table 1). Suppose the last activity registeredwas“Set
priority”. The model must predict the elapsed time between
“2012-10-09 14:50:17”, the creation time for “Set priority”
and “2012-11-09 12:54:39”, the creation time for “Close”.

3 Related Work
Some works in the literature propose solutions to the remain-
ing time prediction problem or similar problems in business
processes.
The work [Tax et al., 2017] investigates an approach based

on LSTM to build predictive models related to process mon-
itoring. The proposed model consists of two LSTM layers
with normalization layers (Batch Normalization) in between.
It has two outputs - one for predicting the time remaining
for completion and the other for predicting the next activity.
The output layer aimed at predicting the next activity refers
to a classification problem for the study of predictive process
monitoring. Each process instance type was represented as a
2-byte character, thus reducing the amount of memory allo-
cated in the solution. The Helpdesk 17 dataset was used for
model training and evaluation.
The model developed by [Navarin et al., 2017] explores

information such as start time, end time, and day of the week
on which the activity occurred, in addition to representing
each activity with One-hot Encoding, to produce a predic-
tion of the remaining time for completion of running process
instances. Similar to [Tax et al., 2017] work, [Navarin et al.,
2017] model also uses LSTM as its core architecture and the
Helpdesk17 dataset. The model architecture proposed in that
work is made up of l layers composed of an LSTM layer, n,
as well as the number of neurons for each defined layer and
the NAdam optimizer 3 followed by an output layer, where l
and n are network construction parameters.
[Venkateswaran et al., 2021] predicted the remaining time

to complete a business process based on a deep learning
model composed of two stacked LSTM layers and a dense
output layer. Process models in real-world settings may go
through changes over time. For instance, processes may be-
come longer or shorter, have fewer or more steps, or have
different priorities. Additionally, logs utilized to train the

3https://keras.io/api/optimizers/Nadam/

https://keras.io/api/optimizers/Nadam/
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models may be linked with various versions of modified
processes. The proposed solution addresses these issues by
employing invariant attributes that have a strong correlation
with the predicted value. In this way, the objective is to
alleviate distortions in the model when the distribution of
data changes, ensuring more accurate predictions over time.
Attributes are represented as vectors of embeddings, which
performs well when considering the order of the data. The
solution was evaluated with the Helpdesk 17 and BPI 12W
dataset, a subset of BPI 12 limited to event logs that con-
tain manually executed events. [Park and Song, 2020] de-
veloped a method to predict the future performance of busi-
ness processes to support proactive actions for process im-
provement. The proposedmodel is hybrid and based onCNN
and LSTM, called Long-term Recurrent Convolutional Net-
works (LRCN), which performs a combination of extracting
attributes from matrices in temporal sequences. Attributes
are represented as matrices that contain information about
business process performance. The datasets used are mainly
from BPI and Helpdesk 17 competitions. [Venugopal et al.,
2021] presented a solution to the problem of predicting the
next instant of time based on graph neural networks (GNN).
Similar to the [Tax et al., 2017] proposal, this work also con-
tributes to experiments predicting the type of upcoming ac-
tivity and the next instant of time. The matrix representation
of the graph is given by vertices as states (e) (Activities) and
transition functions (t) from that state to another under a time
window, as edges (values Ae,t of a matrix A ) of the graph.
Internally, the hidden layers deal with matrix operations in-
volving vectors representing the number of distinct activities
multiplied by the adjacency matrices representing the busi-
ness model. The presented neural network is simple, with
two dense layers and a ReLU activation layer between them.
A linear activation function with the Adam optimizer is also
used. The solution was evaluated with the Helpdesk 17 and
the BPI 12W datasets, as well as elaborated in the [Park and
Song, 2020] work. The Table 2 organizes the characteristics
of each related work and the proposed work.

4 Data and Methods
This section presents the datasets used in this work and the
pre-processing and transformations performed on them. It
also deals with the proposed deep learning architectures.

4.1 Datasets
This work uses two open datasets widely known in the lit-
erature, BPI 124 and Helpdesk 175, and three proprietary
datasets from the Treasury Office of the State of Ceará
(SEFAZ-CE, Brazil). These datasets are described below.
BPI 12: The Business Process Intelligence 2012 (BPI 12)

dataset [van Dongen, 2012] was originally made available at
the International Conference on Business Process Manage-
ment (BPM) in 2012. The dataset is a log of events from a

4https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-
75976070e91f

5https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-
4c63b3e9d5bb

Dutch financial institution between January 10th, 2011, and
March 4th, 2012. The log concerns personal loan application
processes and contains 156,424 events in 13,087 business
process instances. Each instance has 11,95 steps on average.
Helpdesk 17: The Helpdesk 17 dataset [Polato, 2017]

comprises event logs derived from a ticket management sys-
tem specifically designed to support the helpdesk of an Ital-
ian software company. It provides records of business pro-
cesses from January 13th, 2010, to January 3rd, 2014. The
log contains 4,580 process instances with 21,340 events.
Each process instance has 4,45 steps on average.
SEFAZ-CE: The dataset is not publicly available, and it

comprises business processes performed between April 1st,
2015 to December 9th, 2021. In total, there are 1,201,347
different processes and more than 7 million (7,719,966) pro-
cess events distributed across 356 different areas. From these
varied data, we choose three subsets of processes, each one
related to a different topic and variability of duration. This
dataset was anonymized, and we did not have access to the
specific content of the subjects. We estimate the mean and
the standard deviation of the remaining time for each dis-
tinct subject and the global set of processes. Regarding these
metrics, we point out that the lower the standard deviation,
the less variability in duration the set of processes has. We
also expect that more variability increases the difficulty in
predicting the remaining time for the processes of a specific
subject. Three subjects (S_25, S_50, and S_75) have been
selected to serve as experimental material based on the fol-
lowing requirements:

• The processes of S_25 dataset, with 38,738 instances,
represent the subject with the set of processes having
the standard deviation closest to the first quartile re-
garding the global standard deviation (≈ 34 days). This
subset involves processes between April 1st, 2020, and
December 9th, 2021;

• The processes of S_50 dataset, with 18,416 instances is
related to taxes, which date between October 8th, 2020,
to December 9th, 2021. S_50 represents the subject
with the set of processes having the standard deviation
closest to the median regarding the global standard de-
viation (≈ 55 days);

• The processes of the S_75 dataset, with 25,685 in-
stances, represent the subject with the set of processes
having the standard deviation closest to the third quar-
tile regarding the global standard deviation (≈ 100
days). These processes deal with the taxation regime
captured between April 8th, 2015, and September 28th,
2021.

Each process instance is represented by multiple activities
in the datasets. The variety and quantity of events in a pro-
cess is an important factor that reflects the input dimension
for each of the architectures presented in this work. Table 3
contains information about the size of the process instance
with the largest number of steps found in each dataset. The
S_75 andBPI 12 datasets have at least one process withmany
steps. The largest processes of S_25 and S_50 datasets are
similar in size. The Helpdesk 17 dataset is, in general, made
up of processes with a few steps.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
https://doi.org/10.4121/uuid:0c60edf1-6f83-4e75-9367-4c63b3e9d5bb
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Table 2. Comparison of related works.
Work Architecture type Encoding actitivy Dataset Problem type

[Tax et al., 2017] LSTM Unicode Helpdesk 17
BPI 12 W

Prediction of remaining time for completion
Prediction of next activity

[Navarin et al., 2017] LSTM One Hot Encoding Helpdesk 17
BPI 12 Prediction of remaining time to completion

[Park and Song, 2020] LRCN Matrix Representation Helpdesk 17
BPI 12, BPI 13

Prediction of remaining time for completion
Prediction of next activity

[Bukhsh et al., 2021] Transformer Token and Positional Embedding Helpdesk 17 Remaining time prediction for completion
Next activity prediction

[Venkateswaran et al., 2021] LSTM Categorical
Helpdesk 17
BPI 13, BPI 15,
BPI 18, BPI 19

Prediction of the next instant of time
Prediction of the next activity

[Venugopal et al., 2021] GNN Matrix Representation Helpdesk 17
BPI 12 W

Prediction of the next instant of time
Prediction of the type of the next activity

This work
BiLSTM
Self-attention
Transformer

Tokens
Helpdesk 17
BPI 12
S_25, S_50, S_75

Prediction of remaining time to completion

Table 3. Size of the largest process instance found in the datasets
BPI 12, Helpdesk 17, S_25, S_50 and S_75.

Dataset Size of largest process instance
BPI 12 55
Helpdesk 17 10
S_25 24
S_50 22
S_75 69

Finally, Table 4 organize the average remaining time for
completion and its standard deviation for each of the subsets
defined for the experiment. It is worth mentioning that BPI
12 and Helpdesk 17 are datasets with processes that involve
manual and automatic tasks, while the tasks in the SEFAZ-
CE dataset are manual, depending on human interaction to
advance to the next task.

Data Pre-processing

The data partitioning into training, validation, and test sets
was applied to respect the chronological order of the events.
As a result, the training set includes events occurring before
the ones in the validation set, and the validation set includes
events occurring before the ones in the test set [Lakshmanan
et al., 2020]. Details regarding the partitioning and distri-
bution of process instances and their events in each set are
organized in Table 5. To guarantee the effectiveness of our
training, we used only those processes that have been com-
pleted entirely, i.e., processes in which the last step is the
“Close” activity. After this filter, the BPI 12 and Helpdesk
17 datasets have 13,087 and 4,557 process instances, respec-
tively. Eventually, the average number of steps per process
changes, resulting in 3.65 in the Helpdesk 17 dataset and re-
maining the same in BPI 12, as this dataset is formed only by
processes that have reached completion. The other datasets,
S_25, S_50, and S_75, have respectively 6,140, 2,812, and
1,400 process instances with 38,738, 18,416, and 25,685
events.
At this stage, the labels that represent activities were to-

kenized, in which a unique numerical coding was assigned
to each type of activity. Furthermore, an indicative value is
given for the stage in which the event is. A step takes on
a value between 1...n, where n is the maximum number of
steps the process has (Step). Three attributes were created,
all representing time in days derived from the Instant of cre-

ation of the event: the duration (Duration) of the event, the
execution time of the process until the current event (Elapsed
Time) and the time remaining for the process to complete (Re-
maining time to complete). The latter represents the label for
this experiment’s training, validation, and test sets. Below,
some items regarding data partitioning are listed:

1. The composition of the training, validation, and testing
sets follows the proportion 60%, 20%, and 20%, respec-
tively;

2. Each process instance is represented by several samples
(events) in the datasets;

3. The process instances are complete. There is no part of
the same process in two or more sets;

4. Events whose “Remaining time to complete” column
has a zero value are removed from the training, vali-
dation, and test sets, as there is no need to predict the
remaining time in the last step. This is the case of the
lines corresponding to steps 4 and 5 in the example in
Table 6.

Another transformation applied consists of joining the
same activity consecutively repeated in the same process in-
stance, collapsing them into a unique activity, and adjusting
timestamps to accumulate the values of the collapsed sam-
ples. This step allows us to summarize the data, minimize its
complexity, and reduce the number of process steps. Fur-
thermore, we believe that merging consecutive steps with
identical activities enhances the recurrent model’s ability to
learn activity transitions effectively. Table 6 presents sam-
ples from the Helpdesk 17 dataset. The BP1 12 dataset has
the same structure but different values. The sequence repeti-
tion of activities in steps (Step) 4 and 5 of the process instance
of ID 1 (Table 1) allows them to be collapsed and adjusted the
data from the columns Duration, Elapsed Time and Remain-
ing time to complete with the sum of the values of the col-
lapsed rows. Furthermore, this sequence of activities (lines 1
to 3 of Table 6) can be represented as a sequence of prefixes
in matrix form (Table 7) where the number of steps in the
largest process is 6 (the BP1 12 dataset has the same struc-
ture with padding equal to 55).
In the example above (Table 7), values equal to 0 are used

as paddings (paddings), which makes it possible to standard-
ize the number of columns in the representation of the ac-
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Table 4. Average and standard deviation (in days) of the labels of the training, validation and test sets of BPI 12, Helpdesk 17, S_25, S_50
and S_75.

Average Time Remaining to completion ( ± Standard deviation)
Dataset BPI 12 Helpdesk 17 S_25 S_50 S_75
Training 11.0929 (± 13.0282) 36.1666 (± 11.1193) 23.8269 (± 42.3115) 48.6381 (± 70.2296) 57.1359 (± 109.5282)
Validation 11.2576 (± 11.2576) 37.7909 (± 9.9398) 16.2409 (± 23.2113) 19.7326 (± 25.0358) 71.3337 (± 89.6194)
Test 8.4947 (± 8.5743) 29.1493 (± 12.5011) 17.0729 (± 24.9786) 20.3092 (± 25.3953) 71.2313 (± 89.6764)

Table 5. Number of process instances (Pro. Ins.) and events related
to the partitioning of datasets.
Dataset Train Validation Test Total
BPI 12 ProT. Ins. 7,852 2,618 2,617 13,087

Events 85,963 26,865 30,509 143,337
Helpdesk 17 Pro. Ins. 2,745 896 916 4,557

Events 10,254 3,417 3,004 16,675
S_25 Pro. Ins. 3,684 1,228 1,228 6,140

Events 23,180 7,845 7,713 38,738
S_50 Pro. Ins. 1,687 562 563 2,812

Events 10,784 3,744 3,888 18,416
S_75 Pro. Ins. 840 280 280 1,400

Events 14,495 5,688 5,502 25,685

tivities of the instances of processes. This resulting matrix
replaces the Activity column (Table 6).

4.2 Proposed architectures

The architectures proposed (Figure 1) are structured in the
following way. Embedding layers codify the activities into
a vector with reduced dimension. A BiLSTM layer sup-
ports the temporal and sequential data given by the business
process. Attention layers identify the importance of certain
stages of the process, similar way to the work [Wang et al.,
2019]. The different architectures were obtained by combin-
ing one or more of these layers. The SA_BiLSTM model
(Figure 1-A) is a sequential model where the input passes
through an embedding layer and is then processed by a self-
attention layer (Self-Attention). Then, the output of this layer
is concatenated to the input temporal data. The result is a
new entry for each BiLSTM layer concatenated with the tem-
poral data layer. To evaluate the architecture, the models
were obtained from variations of the SA_BiLSTM model.
The variations are mainly based on removing some layers
or changes in the order in which the attention and BiLSTM
layers are arranged. Furthermore, experiments are carried
out with Transformer Encoding, a generic model for ingest-
ing sequences and manipulating representations through an
encoder and decoder. All models described in Figure 1 re-
ceive as input the sequences of pairs formed by the prefixes
from the previous process steps (Prefix) and the temporal
data (Duration, Elapsed Time and Step), as shown in Table 6.
‘NAdam’ optimizer was used for all proposed architectures
and the network parameters were: learning_rate=0.001;
kernel_regularizer=l2(0.01); loss=’mae’; dropout=0.1; ac-
tivation=’relu’; activation=’linear’ (output). The following
models were evaluated:
A) SA_BiLSTM. The input corresponding toPrefix is sent

to an embedding layer, which converts the data represent-
ing the activities into vectors. These vectors are sent to the
self-attention layer, which handles different parts of the ini-
tial input sequence. Then, the attention layer is connected
to a BiLSTM layer, mainly used to process data sequences

in both directions and capture long-term dependencies. This
layer can provide additional context and result in more com-
plete learning from the data. The Duration, Elapsed Time,
and Step correspond to the temporal data of each stage in the
process execution. This, in turn, is concatenated to the BiL-
STM layer, which is then linked to a dense layer. The dense
layer finally outputs the predicted value.
B) SA_DENSE. This architecture does not include a BiL-

STM layer. Its organization analyzes the behavior of the neu-
ral network without interactions between layers in the back-
ward and forward directions but maintaining the influence
of the self-attention layer, which, in turn, compares all el-
ements (process steps) of the input Prefix and modifies the
corresponding sequence positions of the output. Then, the
result of the self-attention layer is concatenated with tempo-
ral inputs to pass by the dense layer.
C) DENSE. Following the idea of reducing the complex-

ity of the model, this architecture is one of the simplest pre-
sented in this section. In addition to the absence of BiLSTM,
the attention layer is also not used here. This model resem-
bles classic machine learning models.
D) BiLSTM_SA. This version is a variation of architec-

ture A, where the attention layer comes after the BiLSTM
layer. The proposal here is to perform the attention layer
processing after BiLSTM learning.
E) BiLSTM. Similarly to architecture C, the attention

layer is removed, leaving this architecture in a slightly sim-
pler RNN configuration, as presented in [Tax et al., 2017]
and [Navarin et al., 2017] however, with an architecture that
works in both directions and with the concatenation of tem-
poral data with those related to activities.
F) TRANSFORMER_ENCODER. The second-

simplest architecture of this experiment, concerning layers,
is configured like the C architecture and uses a transforma-
tion and encoding layer followed by the output instead of an
embedding layer.
G) LSTM Tax et al. [2017]. The LSTM model proposed

in the work has a few layers, which simultaneously solve re-
gression and classification problems.
H) LSTM Navarin et al. [2017]. Also, using an LSTM

with few layers solves regression problems, such as predict-
ing the remaining time for completion of a process instance.
I) TKN_TRANSFORMER. [Bukhsh et al., 2021] The

Tokenizer Transformer uses tokenization, prefixes, and
transformers to solve the same problem presented in this
work.

4.2.1 Assessment methodology

The evaluation is based onMAE (Mean Absolute Error), cal-
culated by the sum of absolute errors divided by the sample
size (n), where yi is the observed value and ŷi is the predicted
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Table 6. Dataset samples Helpdesk 17.
Row ID Activity Step Duration Elapsed Time Remaining time to complete

1 1 1 1 0.0000 0.0000 31.0087
2 1 12 2 16.0084 0.0000 15.0003
3 1 9 3 0.0001 15.0002 15.0002
4 1 2 4 15.0002 15.0003 0.0000
5 1 2 5 0.0000 31.0087 0.0000
6 2 1 1 0.0000 0.0000 30.9822
7 2 12 2 5.8750 25.1053 25.1072
8 2 9 3 0.0019 25.1072 25.1053
9 2 2 4 25.1053 30.9822 0.0000

Table 7. Prefixes in the sample dataset Helpdesk 17 without the last instance data.
Row Prefix and Padding Temporal Features Label

1 2 3 4 5 Duration Elapsed Time Step Remaining Time to Complete
1 1 0 0 0 0 0.0000 0.0000 1 31.0087
2 1 12 0 0 0 16.0084 0.0000 2 15.0003
3 1 12 9 0 0 0.0001 15.0002 3 15.0003
4 1 12 9 2 0 15.0002 15.0003 4 0.0000
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Figure 1. Deep neural network architectures used.

value:
MAE =

∑n
i=1 |yi − ŷi|

n
(1)

It is also possible to consider evaluation by process stage,
that is, how well the learning model can predict using only
activities at a certain stage as a test set.

5 Experiments and Results
This section discusses the results of experiments with the
proposed predictive learning models. The following strate-
gies were used as baseline solutions: Dummy Regressor,
which returns the average value of the expected values in the
training set without observing the input values; Regression
with Random Forest, Linear Regression, Regression with
XGBoost [Chen and Guestrin, 2016] and LightGBM [Ke
et al., 2017]. The proposed solution and its variations were
also compared to state-of-the-art deep learning solutions for
predicting the remaining time of processes, two solutions
based on LSTM [Navarin et al., 2017; Tax et al., 2017], and
one solution based on Transformers [Bukhsh et al., 2021].
The metrics presented for these works are obtained from run-
ning new experiments using partitioning and filtering that are

different from those used in the original works. Therefore, to
enable a fairer comparison between all approaches, we aimed
for the same filtering and partitioning. Table 8 presents the
value of MAE metric and the respective 95% confidence in-
terval for all datasets.

5.1 Discussion of results
The following list discusses the features and results of each
architecture presented in this work.

5.1.1 SA_BiLSTM

By comparing this scenario with BiLSTM_SA, we can ob-
serve that the order in which the attention layer is config-
ured may not impact the result. For the BPI 12 dataset, its
MAE is 1.44 lower than the best baseline (LightGBM). For
the Helpdesk 17 dataset, the MAE is 0.29 greater than the
best baseline (LightGBM) and the third best among the pro-
posed architectures, indicating this model may not be too
good for smaller processes. SA_BiLSTM also reached the
best result for S_25 dataset, which has longer sequences than
Helpdesk 17. The S_50 has an average of events per process
similar to the S_25 dataset and configure the second-best re-
sult with this architecture. The SA_BiLSTM architecture is
still more effective for processes that involve more steps. We
attribute these results to using a recurrent layer supporting
larger sequences. Finally, the SA_BiLSTM architecture us-
ing the S_75 dataset did not produce very promising results.
S_75, in addition to having the highest average number of
events per process, the standard deviations that make up the
training, validation, and test sets are also very high (Table 4),
which may difficult the prediction.

5.1.2 DENSE

The DENSE architecture is the simplest one, based only
on dense layers. The results indicate this architecture is
the worst among the deep learning models presented in this
work. The absence of attention or recurrent layers may have
compromised achieving a promising result. This result is ex-
pected, given the nature of sequential data and the impor-
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Table 8. Model performance using the MAE metric. * Confidence interval below and without intersection. ** It was not possible to carry
out the complete experiment. The best results are in bold text.

Model BPI 12 Helpdesk 17 S_25 S_50 S_75
MAE (95% C.I.)* MAE (95% C.I.)* MAE (95% C.I.)* MAE (95% C.I.)* MAE (95% C.I.)*

Dummy Regressor 7.64 (7.58 - 7.69) 12.06 (11.77 - 12.32) 19.06 (18.65 - 19.47) 29.49 (29.00 - 29.98) 61.81 (60.02 - 63.59)
Linear Regression 6.03 (5.98 - 6.08) 12.02 (11.48 - 12.67) 11.89 (11.57 - 12.21) 20.49 (19.92 - 21.05) 50.88 (49.17 - 52.59)
Random Forest 4.89 (4.82 - 4.96) 5.52 (5.34 - 5.69) 10.37 (10.02 - 10.72) 17.30 (16.57 - 18.03) 44.89 (43.13 - 46.65)
XGBoost 5.02 (4.95 - 5.09) 5.73 (5.55 - 5.90) 10.59 (10.23 - 10.95) 18.12 (17.38 - 18.87) 44.85 (43.09 - 46.62)
LightGBM 4.84 (4.78 - 4.90) 5.41 (5.26 - 5.57) 11.32 (10.96 - 11.68) 17.97 (17.33 - 18.61) 48.88 (47.15 - 50.61)
LSTM
Tax et al. (2017) N.A.** 6.17 (5.50 - 6.33) N.A.** N.A.** N.A.**

LSTM
Navarin et al. (2017) 7.25 (7.17 - 7.34) 8.46 (8.30 - 8.62) N.A.*** N.A.*** N.A.***

TKN_TRANSF
Bukhsh et al. (2021) 4.91 (4.88 - 4.94) 5.69 (5.53 - 5.86) 9.45 (9.14 - 9.75) 10.92 (10.50 - 11.35) 47.30 (45.56 - 49.05)

SA_BiLSTM 3.80 (3.74 - 3.87) 5.70 (5.50 - 5.89) 8.89 (8.53 - 9.25) 12.83 (12.23 - 13.42) 52.08 (50.11 - 54.04)
DENSE 4.25 (4.18 - 4.31) 7.58 (7.42 - 7.75) 10.06 (9.71 - 10.42) 14.53 (13.94 - 15.13) 49.88 (47.92 - 51.85)
BiLSTM_SA 3.72 (3.65 - 3.79) 5.89 (5.70 - 6.07) 8.91 (8.55 - 9.26) 12.67 (12.07 - 13.26) 51.58 (49.62 - 53.53)
BiLSTM 3.72 (3.65 - 3.79) 5.58 (5.39 - 5.77) 8.48 (8.12 - 8.84) 12.85 (12.23 - 13.47) 46.15 (44.32 - 47.97)
SA_DENSE 3.71 (3.65 - 3.78) 5.22 (5.04 - 5.40) 8.98 (8.60 - 9.35) 13.76 (13.11 - 14.40) 47.45 (45.51 - 49.38)
TRANSF_ENCODER 4.24 (4.18 - 4.31) 6.64 (6.48 - 6.80) 9.91 (9.56 - 10.27) 14.49 (13.92 - 15.07) 51.17 (49.18 - 53.15)

tance of specific stages of process execution, which are not
prioritized in this experiment.

5.1.3 BiLSTM_SA

This architecture is a variation of the SA_BiLSTM architec-
ture and has reached similar results. For the BPI 12, S_25,
and S_75 datasets, the MAE obtained has a confidence in-
terval overlapping the best results presented in Table 8. In
such cases,SA_BiLSTM was better than almost all baselines
and architectures in the related works. This architecture has
reached the best result among deep learning models for the
S_50 dataset. Once again, the use of the BiLSTM layer was
shown to help the models to be more assertive in predict-
ing the remaining time. Concerning S_75 and Helpdesk 17
datasets, this architecture produces a MAE close to the me-
dian compared to other architectures. With larger sequences
in the log of events and larger distributions of activities, the
average absolute error was slightly smaller concerning the
baselines presented. On the other hand, it is not the best in
predicting smaller sequences with a smaller distribution of
activities (Helpdesk 17). The number of instances and the
maximum size of activities per process execution may influ-
ence the combination of self-attention layers with BiLSTM.

5.1.4 BiLSTM

Recurrent models are widely used in solving problems in-
volving data sequences to capture temporal dependencies,
such as those used in this work and related work. The BiL-
STM architecture achieved the best results in all compared
datasets, except for the S_50 dataset, being the most stable
architecture to predict the remaining time in our experiments.

5.1.5 SA_DENSE

This architecture achieved the best MAE for both BPI 12 and
Helpdesk 17 datasets, and confidence intervals comparable
to the ones of BiLSTM for the other datasets, except to the
S_50.

5.1.6 TRANSFORMER_ENCODER

This model is similar to the DENSE architecture’s organiza-
tion described in Figure 1. However, it uses a Transformer
Encoding layer instead of an embedding layer to obtain vec-
tor representations of the prefix input. Among all the pro-
posed architectures, the TRANSFORMER_ENCODER only
outperformed the DENSE. Except for S_75 dataset, where
the dense architecture (DENSE) is slightly more efficient
than TRANSFORMER_ENCODER. We hypothesize this is
due to the fact that neither architecture has layers to support
sequences.

5.1.7 LSTM [Tax et al., 2017]

This architecture requires the process instances in train, val-
idation, and test partitions to have a maximum size given by
the maximum number of activities of all process samples.
The modeling of this architecture does not allow the com-
plete execution of the experiment when there are disparities
in maximum sizes among the mentioned subsets. Conse-
quently, it was not well-suited for the experiments proposed
in this work.

5.1.8 LSTM [Navarin et al., 2017]

The architecture proposed by Navarin et al. [2017] requires
more computational resources to deal with long sequences or
sets of processes with many distinct activities, as in the case
of the S_25, S_50, and S_75 datasets. For those datasets, the
available computing environment could not complete the ex-
periments. It was possible to evaluate the case that contains
smaller processes and few distinct activities, such as the BPI
12 and Helpdesk 17 datasets. In those cases, the model does
not outperform baselines such as Random Forest, XGBoost,
and LightGBM.

5.1.9 TKN_TRANSF [Bukhsh et al., 2021]

This architecture does not require recurrent layers. In addi-
tion, it uses transformers to tokenize activities organized by
prefixes and convert temporal data to integers. It produces
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the best result when the target is the S_50 dataset. It demon-
strates to be competitive according to the results for BPI 12
and Helpdesk 17 datasets, but it did not perform as well on
the other datasets.

5.2 Discussion guided by research questions
This section aims to answer the research questions of the
work based on the analyses and conclusions about the ex-
periments carried out.

RQ1 - What are the best-suited machine learning models
or architectures for accurately predicting the remaining
time to complete a business process?

Predicting the remaining time to complete a business process
is challenging, mainly due to the variability in executing pro-
cess instances. For example, process activities may change
over time regarding efficiency, name, and even existence, as
some activities may be extinguished. These characteristics
affect the difference between the sets since the partitioning
is done following the temporal correspondence. The more
diverse the set, the more difficult it will be to have uniform
partitioning, which also impacts the learning model. From
the results, we observed that using the self-attention mech-
anism may improve the result of DENSE architecture when
applied directly to embedding vectors of activities. Further-
more, there was no improvement in the use of BiLSTM com-
bined with the attention layer. Finally, in general, BiLSTM
and SA_DENSE architectures were similar or more efficient
than the baselines and the other proposed models. BiLSTM
and SA_DENSE were also better than the solutions proposed
by the works Tax et al. [2017], Navarin et al. [2017] and
Bukhsh et al. [2021], except for the S_50 dataset which the
model of Bukhsh et al. [2021] presents a lower MEA. Fi-
nally, the XGBoost and LightGBM obtained the lower MAE
of the S_75 dataset, but their confidence interval have con-
siderable overlapping with BiLSTM and SA_DENSE.

RQ2 - What is the influence of the process stage on pre-
dictions of the remaining time to complete a business pro-
cess?

Wewant to understand if is easy to predict the remaining time
for processes in the final stages. Still, it should be harder to
predict the conclusion time for the processes in the initial
stages. To answer the RQ2 question, the stages of the pro-
cesses are varied from 1 to n to serve as input to the model,
then we obtain the MAE considering the set of processes in
each stage. In this experiment, we consider only the mod-
els that reached the best MAE in the previous experiment for
each dataset.
Figures 2, 3, 4, 5, 6 and 7 present the MAE obtained for

each stage of the process from the datasets BPI 12, Helpdesk
17, S_25, S_50 and S_75 , respectively.
For BPI 12 (Figure 2) and S_75 (Figure 7) datasets, the

behavior of the trend line observed consists of MAE decreas-
ing up to the final stages with some minor variations, which
should indicate some correlation between stage and the ca-
pability to model to predict the remaining time. It is impor-
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Figure 2. BPI 12 dataset - MAE by process stage (SA_DENSE).
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Figure 3. Helpdesk 17 dataset - MAE by process stage (SA_DENSE).

tant to note that the processes comprising these datasets are
longer sequences withmany stages, which alsomay facilitate
visually delineating this trend. However, the same trend is
not so well observed for the datasets with smaller processes.
For Helpdesk 17 dataset (Figure 3), this experiment was

run with SA_DENSE model. The results present a relatively
higher MAE value in the middle stages and slightly better
MAE values in subsequent (final) stages.
For the S_25 dataset (Figure 4), which the best model was

the BiLSTM, similarly, the trend line result per stage also de-
creases when the stage increases, and the MAE values de-
crease in the initial stages and increase in the medium-sized
stages. However, the MAE has a peak in the final stage,
which means it is harder to predict the remaining time when
these processes are close to the end. This result may indicate
more delays in the final steps of process execution.
For S_50 dataset (Figure 5), the best results were obtained

using TKN_TRANSF [Bukhsh et al., 2021] model. The trend
line obtained by the model is non-decreasing. We can also
observe a decrease of MAE up to the middle of stages, fol-
lowed by a peak in the MAE value in stages 12 to 15 — an
abrupt increase. In the last stages, the value of MAE de-
creases again.
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Figure 4. S_25 dataset - MAE by process stage (BiLSTM).

On the other hand, BiLSTM_SA architecture obtained the
second-best result for the dataset S_50. We observed its be-
havior in Figure 6. Unlike the Bukhsh et al. [2021] model,
this trend line decreases when the stage increases. However,
similar to that model, there is a peak in the final stages.
Figure 7 shows the same analysis for the S_75 dataset.

XGBoost obtained the lower MAE metric value. The be-
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Figure 5. S_50 dataset - MAE by process stage (TKN_TRANSF [Bukhsh
et al., 2021]).
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Figure 6. S_50 dataset - MAE by process stage (BiLSTM_SA).

havior of the trend line consists of decreasing up to the final
stages with some minor variations. In this case, XGBoost
reached the lower MAE. The behavior of the trend line ob-
served consists of decreasing up to the final stages with some
minor variations. It is important to note these processes com-
prise longer sequences with many stages, which may facili-
tate visually delineating the trend line.
Finally, in general, we observe that the prediction error in-

creases in the first stages of the process. After a few stages,
the error keeps varying and decreases in later stages. This be-
havior may indicate that if there is more information about
the execution of the process and if it is closer to the final
state, it becomes easier to predict the remaining time. This
behavior may also indicate that the models can better distin-
guish the activities carried out toward the end of the process
execution.

RQ3 - How does the best model proposed in this work
compare with those proposed in related works?

The models presented in this work produce similar results.
Still, using an attention layer produces results with a lower
average absolute error despite being within the confidence
interval presented in Table 8. The architectures proposed in
this work that use LSTM and Attention Layers technically
have the same ability to predict the remaining time to com-
plete a business process. The models presented in related
works differ in the complexity of LSTM [Tax et al., 2017]
and [Navarin et al., 2017] and in the existence of a LSTM to
support the sequences [Bukhsh et al., 2021], although both
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Figure 7. S_75 dataset - MAE by process stage (XGBoost).

works use embeddings. The best model presented in this
work can produce results that outperform related work and
other more traditional machine learning strategies.

RQ4 - Is the model error influenced by the distribution
of the remaining time needed to complete the processes?

We evaluated three datasets, each related to a specific topic
and with completion time with different deviations. Our hy-
pothesis is that the sets of processes with larger deviations
should be more challenging, since they comprise processes
with less regular behaviors, compared to the public databases
used in this work. Furthermore, since the partitioning crite-
rion for the training, validation, and test sets is temporal, this
irregularity of the processes may also be reflected in differ-
ences between the processes in these data sets. For exam-
ple, processes that occur later may have different flows even
though they belong to the same topic. This will probably
impact the learning of the models too.
For the data sets evaluated, S_25 had the smallest devia-

tions in the remaining time. For this data set, all the mod-
els evaluated had a lower MAE than the models that used
S_50 and S_75 datasets. The best MAE value for S_25 was
8.48. Similarly, using the S_50 dataset, the models per-
formed worse than using S_25, the best MAE among all pro-
posed models being 12.67. Finally, the performance of the
models for the S_75 data set was the worst among all, with
the best MAE obtained being 46.15. It is also observed that
the margin of error of the models was also greater for the
more dispersed data sets.

6 Conclusions and Future Work
This article investigated different approaches for predicting
the time remaining to complete a process. Among the ap-
proaches evaluated in this work, deep learning and the self-
attention layer deal well with logs of real events, regard-
less of having automated and manual instances in the same
dataset or business process instances with several activities
or completely different natures. As future work, it is impor-
tant to consider other datasets, explore logs from different
competitions aimed at predictive process monitoring, verify
how more recent architectures can contribute to improving
the solution to this problem, compare other algorithms and
models classics with the current ones, mix these architec-
tures such as the proposals of [Ma et al., 2023] and continue
with the availability of a database and repository with the ex-
periments developed to support new practices, research and
reproductions.
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