
Journal of Information and Data Management, 2024, 15:1, doi: 10.5753/jidm.2024.4290
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Inter-MOON: Enhanced Middleware for Interoperability
between Relational and Blockchain-based Databases
Rafael Avilar Sá [Universidade Federal do Ceará | rafael.sa@lsbd.ufc.br]
Leonardo O. Moreira [Universidade Federal do Ceará | leonardo.moreira@lsbd.ufc.br]
Javam C. Machado [Universidade Federal do Ceará | javam.machado@lsbd.ufc.br]

 Laboratório de Sistemas e Banco de Dados, Universidade Federal do Ceará, Campus do Pici - Bloco 952, Fortaleza,
CE, 60440-900, Brazil.

Received: 22 March 2024 • Published: 18 November 2024

AbstractMulti-model architectures enable the querying of data from different sources through a unified interface,
providing interoperability among databases. However, support for blockchain-based databases is still scarce. Inter-
MOON is a new approach that aims to promote the interoperability of blockchain-based and relational database
systems through the virtualization of blockchain assets in a relational environment, allowing for the execution of all
four basic SQL DML commands. Through experimentation, results indicate that Inter-MOON provides near total
support for SQL SELECT query syntax and exhibits performance comparable to or better than similar tools. This
work is an extension of the original work that introduces Inter-MOON.

Keywords: Databases, Blockchain, Database Interoperability, Data Transformation, Middleware, SQL

1 Introduction

The blockchain, originally conceived as part of the Bitcoin
electronic cash system [Nakamoto, 2008], allows storing
data without a trustworthy third party to create an immutable,
irrefutable, and tamper-proof distributed linked list. How-
ever, blockchains are characteristically slow at writing opera-
tions [Zheng et al., 2018]. This is partly done on purpose due
to the usage of computationally-intensive security algorithms
such as Proof-of-Work (PoW) [Gervais et al., 2016]. On the
other hand, while many relational databases offer great per-
formance, they cannot easily produce the same level of secu-
rity and integrity as blockchains. Therefore, they have dif-
ferent priorities and divergent data models, each presenting
unique challenges.
Given the diverse characteristics of data and the variety

of available storage solutions, enhancing the interoperability
of heterogeneous data systems has become imperative [Bab-
cock et al., 2002; Stonebraker and Cetintemel, 2018]. Fed-
erated databases, multistores, and polystores exemplify this
trend. Despite the increasing adoption of blockchain technol-
ogy [Gadekallu et al., 2022], enhancing the interoperability
of blockchain with other systems remains a challenge [Bel-
chior et al., 2021;Meyer and dos SantosMello, 2022;Maciel
et al., 2023].
The approach to data Management on relatiOnal

database and blOckchaiN (MOON) [Marinho et al., 2020]
is a tool meant to act as a singular entry-point for database
queries by applications using both blockchain-based and re-
lational databases. It is a middleware that enables querying
both data stores using only SQL by mapping the SQL syn-
tax into appropriate blockchain (BC) operations. However,
MOON contains limitations regarding accepted SQL syntax,
performance, and interoperability between blockchain and
SQL. It does not support all DML operations or consider sce-

narios in which entities may change over time.
In this work, we present Inter-MOON, a new approach

based on MOON and focused on enhancing interoperabil-
ity between blockchain-based and relational databases via
virtualizing blockchain assets in the relational environment.
It supports non-distributed queries containing single SQL
DML statements and allows for querying any blockchain-
based or relational entity defined in the Inter-MOON en-
tity schema. Our approach addresses challenges like how
to query, modify, or delete blockchain data using SQL. In
a supply chain scenario, for instance, it enables the execu-
tion of standard SQL queries across both data stores, facilitat-
ing comprehensive querying while maintaining consistency.
This versatility extends to other applications where interoper-
ability between blockchain and existing relational databases
is desirable, including sectors such as healthcare and the IoT
[Guo and Yu, 2022]. In summary, our contributions are:

1. Exploration of interoperability of relational and
blockchain databases.

2. Proposal and development of Inter-MOON, a novel
approach to interoperability between blockchain-based
and relational databases with improved SQL gram-
mar support, blockchain asset mapping, database sup-
port, query processing speed, blockchain asset retrieval
speed, integrity, and reliability.

3. Testing and comparison of MOON, Inter-MOON, and
another available open-source polystore solution.

This work represents an extension of the original work
titled ”Improving Interoperability between Relational and
Blockchain-based Database Systems: A Middleware ap-
proach” [Sá et al., 2023]. Extensions include the addition
of a background section (Sec. 2), further exploration of re-
lated works, updated experimental results, a more in-depth

https://orcid.org/0009-0007-7533-2703
mailto:rafael.sa@lsbd.ufc.br
https://orcid.org/0000-0003-3276-8893
mailto:leonardo.moreira@lsbd.ufc.br
https://orcid.org/0000-0002-8430-9421
mailto:javam.machado@lsbd.ufc.br

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

description of the proposed approach, and the publication of
a repository containing a prototype of the proposed approach.

2 Background
In this section, we will describe some basic concepts relevant
to the body of this work.

2.1 Blockchain
In the Bitcoin paper, [Nakamoto, 2008] describes an elec-
tronic payment system based on cryptographic proof instead
of trust, supported by a peer-to-peer distributed ledger tech-
nology. This ledger, which came to be called Blockchain, es-
sentially takes the form of a linked list of blocks that contain
transactions validated by the network members, connected
by cryptographic hashes calculated using a Proof-of-Work
(PoW) algorithm.
Blockchain has seen continuous research, with many

works attempting to apply the technology to areas such as
healthcare, supply chain, information systems, Internet-of-
things, databases, security, privacy, and voting [Krichen
et al., 2022; Javaid et al., 2021; Guo and Yu, 2022; Gamage
et al., 2020]. Other research tackles different approaches to
consensus mechanisms, hashing functions, smart contracts,
and other properties of blockchain as a data model [Guo and
Yu, 2022]. Scalability is still an open issue in blockchain
research [Gamage et al., 2020; Zhou et al., 2020].
The following is a general description of some technical

terms related to blockchain architecture used throughout this
work:

• Assets: Digital objects representing various forms of
data, including digital representations of physical ob-
jects or pure data such as text, files, or tokens. Theymay
be stored either on the blockchain (on-chain) or outside
of it (off-chain), in IPFS networks, or similar. If stored
off-chain, the blockchain will often store a hyperlink to
these assets instead.

• Transactions: Contain information regarding the state
and ownership of assets. Each transaction will have a
unique ID (identifier) in the form of a hash.

• Metadata: This represents contextual information re-
garding the transaction. This information can include
details such as the timestamp of the transaction. Usu-
ally, metadata is not immutable, unlike assets and trans-
actions.

2.2 Blockchain-based databases
Generally speaking, a blockchain-based database is a
database that implements blockchain features, such as
tamper-proof mechanisms, consensus, decentralization, or
user-owned assets [McConaghy et al., 2016]. Examples in-
clude BigchainDB [Bigchain and Gmb, 2018], ChainifyDB
[Schuhknecht et al., 2021], ChainSQL [Muzammal et al.,
2019], and ProvenDB1. They often employ two main compo-
nents: a blockchain networking service and a decentralized

1https://www.provendb.com/litepaper. Accessed: Feb 27,
2024

database. The blockchain data will be stored in the database,
which can be SQL, NoSQL, or another kind of database. The
blockchain networking service will implement a consensus
mechanism and replication the database data across the net-
work. Some consider blockchain-based databases preferable
alternatives to blockchain in contexts outside of digital cur-
rencies due to providing properties like advanced querying
mechanisms and high-rate transaction output to blockchain
[Tseng et al., 2020].

3 Related Work
For multistores, MISO [LeFevre et al., 2014] focuses on the
optimal materialization of data in heterogeneous big data en-
vironments, using both RDBMS and HDFS (Hadoop). Inter-
MOON is not meant for big data workloads and uses virtual
tables created on the RDBMS store to minimize processing
on the blockchain component.
CloudMdsQL [Bondiombouy et al., 2016] is a cloud-

based multistore system with a SQL-like language that en-
ables querying of relational and NoSQL sources while taking
advantage of each source’s native functions. We apply native
SQL instead, focusing on blockchain-based DBs rather than
generalized NoSQL.
[Duggan et al., 2015] introduces the BigDAWG polystore,

which enables heterogeneous data retrieval using custom
markup. It presents the concept of islands of information
and uses a subset of each query language associated with a
data model. On the other hand, Polyphony-DB [Vogt et al.,
2018] conceptualizes a self-adaptive system with data repli-
cation and partitioning. [Singhal et al., 2019] also presents
the building blocks of Polystore++, which envisions a highly
performance-oriented polystore solution.
This work utilizes a ’one-size-fits-all’ approach to query

languages using SQL, while polystores generally strive for
mixed query languages. Moreover, none of these systems
consider blockchain-based databases, a primary concern in
this work. Finally, this work also showcases experimental
results and a prototype, while the others are vision papers. To
the best of our knowledge, no known federations, polystores,
or similar offer explicit support for blockchain solutions.
In querying blockchain using SQL, [Yue et al., 2019] ex-

plores three different methods for storing and querying Bit-
coin data through relational databases: a local SQL database,
through the cloud, and third-party web-based interfaces.
[McGinn et al., 2018] and [Spagnuolo et al., 2014] tackle
a similar task, but using Neo4j instead of SQL. [Han et al.,
2023] enables query processing of SQL SELECT operations
for smart contracts in Ethereum-based blockchains by us-
ing an SQLite database to store smart contract transactions.
These works highlight a desire to explore blockchain data in
more detail, and the preference for using databases.
[Zhu et al., 2020] introduces SEBDB, a blockchain

database with a SQL-like query language that allows for
CREATE, INSERT, and SELECT clauses to create a ta-
ble, send a new transaction, and get query results, respec-
tively. [Nathan et al., 2019] proposes a blockchain relational
database by developing a BC layer on top of the PostgreSQL
DB. Both works apply the relational model to blockchain ob-

https://www.provendb.com/litepaper

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

jects, similar to ours. However, we propose a tool that en-
ables interoperability between existing technology already in
use. In contrast, SEBDB offers an entirely new blockchain-
based database solution and [Nathan et al., 2019] an abstrac-
tion layer that enables blockchain-like behavior in a rela-
tional database.
Finally, [Marinho et al., 2020] introduces MOON, a

middleware that enables SQL queries to be executed on
blockchain and relational databases. This work is based on
MOON, and key changes include (1) support for DELETE
and multi-valued INSERT operations, (2) support for muta-
ble blockchain schema, (3) comprehensive handling of sub-
queries and aggregations in SELECT operations, (4) opti-
mized latency during data fetching, and (5) an updated ar-
chitecture with improved interoperability, integrity, and re-
silience. These changes encompass the 3 main qualities de-
fined for interoperability in Section 4.1.
Table 1 compares our approach to similar works. We have

categorized each work based on several criteria, such as the
type of approach, query language, and blockchain querying
support. Full blockchain support means it supports the full
range of basic DML commands (SELECT, INSERT, UP-
DATE, DELETE) on the blockchain. Partial support allows
interaction but not the full range of commands. This catego-
rization shows how our approach fills a relatively unexplored
niche.

Work Query
language

Blockchain
Support

Approach

[LeFevre
et al., 2014]

SQL-like No Multistore

[Duggan et al.,
2015]

Mixed No Polystore

[Bondiombouy
et al., 2016]

SQL-like No Multistore

[Vogt et al.,
2018]

Mixed No Polystore

[Nathan et al.,
2019]

SQL Partial Database

[Singhal et al.,
2019]

Mixed No Polystore

[Zhu et al.,
2020]

SQL-like Partial Database

[Marinho
et al., 2020]

SQL Partial Middleware

Inter-MOON SQL Full Middleware
Table 1. Comparison table of related works.

4 The Inter-MOON Approach
Our approach, denominated Inter-MOON, can be summa-
rized as a middleware that allows for the execution of SQL
DML queries to blockchain entities. Since blockchain has no
standard query language, API is the most general way to exe-
cute queries. However, due to its adherence to immutability,
most blockchain APIs will not offer any functions that can
delete or update preexisting data.
Therefore, our approach is to map blockchain entities to

the relational data model using temporary virtual tables by
a process we call virtualization (See Sec. 4.4). A relational

schema is defined for each blockchain entity so that assets
can be easily differentiated and optimize the table-building
step. Through the Inter-MOON interface, it is also possible
to delete or update data by using lookup tables (called Index
Tables. See Sec. 4.3) that reference blockchain hashes. This
approach was chosen as it allows us to map all SQL DML
operations to blockchain entities.

The Inter-MOON (Fig. 1) approach comprises three ma-
jor parts: the middleware, the SQL DB, and the Blockchain
DB. The middleware is further divided into several modules
with separate functions. The Communicator accepts and for-
wards SQL queries to the Scheduler, which enqueues them
for proper processing. The SQL Analyzer, Index Manager,
Mapper, and Schema Configuration all function in tandem to
extract information from SQL queries, track blockchain as-
sets using Index Tables, and query and virtualize them into
the relational environment.

Application

Develops

Uses

End User

Admin

Inter-MOON

Communicator Scheduler

SQL Analyzer Index Manager Mapper

SQL Client BC Client

Schema Configuration File
catalog.json

Environment Configuration File
.env

EditsEdits

Sends
request

Developer

Logger

Logs
requests

Relational

...
Node 1

Replica 1

Node N

Replica n

Blockchain-based

...
Node N

Ledger
Replica n

Node 1

Ledger
Replica 1

.log

Figure 1. Overview of the Inter-MOON architecture.

This architecture is similar to MOON, with two major
changes. The first is the removal of the Client Module. In
MOON, it is a bridge present in the application used to send
the query SQL and DB credentials over to MOON. In Inter-
MOON, the Communicator directly receives SQL, and envi-
ronmental configuration files hosted by the middleware are
used to store credentials. This change is meant to elimi-
nate the need to send sensitive information, like access keys,
through the network alongside every request, as it is fair to
assume that the middleware host will have ownership of said
keys and that they will remain the same for every request.

The second is the addition of a Logger module to log write
requests received by the middleware. Considering Inter-
MOON’s use of Index Tables, the Logger can utilize the re-
lational database’s own continuous archiving and recovery
features to create regular backups and logs of the Index Ta-
ble data. In the event of failure, data loss is minimized, and
restoration of the blockchain indexes is facilitated, empow-
ering data integrity and interoperability. This design also
avoids introducing additional logging overhead while har-
nessing the data protection and recovery features inherent to
the underlying relational database system.

Of note is that Inter-MOON is not a federation but a mid-
dleware that enables cross-querying blockchain-based and re-
lational entities through SQL. Entities are kept separate in
their respective data models, with no data replication. Like
in polystores, the autonomy of each DB is preserved, and
the granularity of each store is left untouched. For example,
BigchainDB is document-based, using a local MongoDB in-
stance to save transaction data.

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

4.1 Interoperability

In literature, the concept of interoperability is frequently di-
vided into levels [Hasselbring, 2000]. In this work, we adopt
a broad definition of interoperability, referring to it as the
overall ability of a system to comprehend and engage with
others. We consider two levels: Interoperability between
Inter-MOON and its clients at the application level and In-
teroperability among the storage engines at the middleware
level. Additionally, we identify three qualities that compose
interoperability in the second level, which is the focus of this
work:

• Support - The middleware can communicate with data
storage engines.

• Generality - The middleware’s capacity to understand
and accurately map queries to their correct engine.

• Efficiency - The middleware’s efficiency in finding and
joining data in each storage engine.

In the proposed Inter-MOON architecture (Fig. 1), the
Communicator demonstrates interoperability at the first
level, allowing Inter-MOON to receive and answer client
requests. For the second level, the SQL and Blockchain
clients allow the middleware to interact with storage engines
(Support), while the Mapper, SQL Analyzer, Index Manager,
and Schema Configuration modules all work together as de-
scribed above (Sec. 4), and in doing so fulfill Generality and
Efficiency.
As mentioned, this paper focuses on interoperability at the

middleware level. Inter-MOON improves interoperability
in this context by increasing the number of supported DBs
(Section 4.2), the quality and number of supported SQL com-
mands (Section 4.4), and optimizing data retrieval (Section
4.3). Our approach is generally applicable as long as both
the relational DB driver follows the Python DB-API inter-
face and the blockchain-based DB exposes a basic API for
storage and querying (See Sec. 4.2).

4.2 Support for Different Data Stores

To improve support, we must increase the number of data
storage engines supported by the middleware and the qual-
ity of the offered support. For relational DBs, our ap-
proach is reminiscent of the Django [Holovaty and Kaplan-
Moss, 2009] and Laravel [Stauffer, 2019] designs for mul-
tiple database engine support. In short, it is a generic
database driver object, which contains an adapter implement-
ing database access functions (Fig. 2). The generic driver
structure is analogous to the popular decorator design pattern
for software architecture, while the drivers are to the adapter
pattern.

PostgreSQLAdapter

MySQLAdapter

One of... ...
GenericDatabaseDriver

+ adapter: GenericAdapter

Figure 2. Simple rendition of the generic database driver.

The Inter-MOON middleware was developed using
Python. Python’s DB-API, a standard protocol for designing
database access libraries, greatly optimizes the development
of the generic driver. Listing 1 shows a basic pseudo-code
implementation. As per Fig. 1, connection settings can be ob-
tained from the environmental configuration. This structure
promotes maintainability, decoupling, and database support,
provided adapters are developed following Python’sDB-API
specification.

import psycopg2
class GenericDatabaseDriver:

def __init__(self, adapter):
self.adapter = adapter

def connect(self, *args, **kwargs):
return self

.adapter

.connect(*args, **kwargs)

driver = GenericDatabaseDriver(psycopg2)
with driver.connect("config.cfg") as conn:

conn.execute("SELECT * FROM users;")

Listing 1: The Generic Database Driver basic structure. It
holds an adapter object which represents the driver of a
database engine.

As for blockchain, the lack of a unified data model is a
current research issue [Meyer and dos Santos Mello, 2022;
Yuan and Wang, 2018] that introduces a considerable chal-
lenge in creating a base interface for querying and access-
ing blockchain DB data in a similar way to the one specified
above for relational DBs. Therefore, Inter-MOON consid-
ers blockchain assets to be similar to key-value pairs, where
the key is the cryptographic hash and the value is the inter-
nal, immutable asset data. With this consideration, a sim-
ilar approach can theoretically still be used, as long as the
blockchain offers an API that exposes the following func-
tions: (1) open a connection to the blockchain, (2) query
one asset by hash, (3) query multiple assets using a list of
hashes, and (4) send over assets for verification and append-
ing. These comprise the basic blockchain operations that
Inter-MOON utilizes.

4.3 Efficiency Optimizations

Inter-MOON utilizes what we call Index Tables (Fig. 3) to
track the blockchain hash and the ID of each blockchain en-
tity. These tables must be created by the Admin (Fig. 1)
in the RDB, one for each expected blockchain entity. Be-
cause relational DBs implement efficient indexing mecha-
nisms, they allow for inherently fast lookups of blockchain
IDs. After Inter-MOON receives a request that involves
blockchain entities, the middleware will query the Index Ta-
bles for the blockchain hashes of each entity. Then, it will
fetch the asset data from the blockchain using that list of
hashes.
MOON [Marinho et al., 2020] did similarly. However,

when fetching asset data from the blockchain, it did so, each
asset one at a time. Consequently, the data-fetching process
grew slower as the number of assets increased, following a
non-linear growth curve. See Algorithm 1 for an overview.

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

lab_results_index

bc_hash bc_id

<hash> 758

... ...

lab_results
Blockchain Entity Index Table

Figure 3. Index Table example for a Lab Results entity.

Algorithm 1 index searching algorithm in MOON.
Require: Set I = {i1, i2, i3, ..., in} of blockchain indexes,

given |I| > 0.
Ensure: Set A = {a1, a2, a3, ..., an} of blockchain assets.
1: A← ∅
2: n← 0
3: N ← |I|
4: while n < N do
5: i← I(n)
6: B ← get_asset_by_index(i)
7: A← A ∪B
8: n← n + 1
9: end while

get_asset_by_index(i) represents a request sent to the
blockchain network to fetch an asset of index i. As the num-
ber of requests increases, the network overhead present in
each request accumulates, and response times grow. In a
single network trip, there are 3 instances of present latency,
Lreq ,Lin, andLres for the request, in-network, and response
latency respectively, totaling Lsum = Lreq + Lin + Lres

for the total network latency produced by every usage of
get_asset_by_index(i).

Inter-MOON, towards improving this behavior, optimizes
Lsum by executing one trip only for each query. See Fig. 4
for a visual representation, and consider (1) to be Lreq , (2)
to be Lin, and (3) to be Lres.

Request

Inter-MOON Blockchain DB

Response

bc.assets.get({

 hash: {$in: <hash list>}

})

[{

 _entity: 'contracts',

 id: 451257,
 user_id: 758,
 date: '2026-05-01',
 ...

}, ...]

Fetch data

1

2

3

Figure 4. Inter-MOON data fetching example.

This approach requires more computational power from
the network and the Inter-MOONmiddleware host to process
and return all necessary assets in one trip. Further optimiza-
tion can be achieved by using batch-loading to retrieve an X
number of indexes per trip, maintaining lower latency while
reducing processing load. Suppose a set or range of primary
keys is specified in the query. In that case, another optimiza-
tion is to retrieve only the assets of those identifiers rather
than all assets of each involved entity.

4.4 Generality of Query Processing
According to the ISO/IEC 9075-1 specification, SQL-data
statements can perform queries and insert, update, and delete
information [Melton, 2016]. Consequently, towards interop-
erability on a querying level, the Inter-MOON middleware
must be able to correctly interpret and reproduce SQL-data
statements, or DML statements, in either system (blockchain
or relational). We limit our support to queries written using
standard SQL syntax and only containing one SQL statement
per request. In this work, DDL commands are not consid-
ered. Alg. 2 shows our proposed querying algorithm for
Inter-MOON.

Algorithm 2 Inter-MOON querying algorithm.
Require: SQL query string
Ensure: Processed query or blockchain data
1: operation, entities← tokenize(query)
2: data← ∅
3: while entity ∈ entities do
4: if entity is a blockchain asset then
5: data← data ∪ fetch_blockchain_data(entity)
6: end if
7: end while
8: if data is empty then
9: return Forward query to relational database
10: else
11: virtual_data← virtualize(data)
12: execute_operation(operation, virtual_data)
13: end if

In summary, we first (Line 1) extract the operation and
entities involved in the given SQL query. Assuming at least
one of said entities belongs to the blockchain (Line 4), we
fetch the necessary data from it, execute the virtualization
procedure, and then the operation. Our approach to each type
of supported DML operation will be explained further in this
section.
The first step is to extract and process information from

received SQL queries. The SQL Analyzer module shown
in the Inter-MOON architecture (Fig. 1) is responsible for
this. It uses a tokenizer mechanism to observe statements as
groups of tokens, such as keywords, identifiers, functions, or
conditionals, assigned based on the token’s semantic mean-
ing inside of its group. This helps prevent ambiguity and
allows easier handling of nested subqueries. For example, in
the statement depicted in Fig. 5, conditionals can be found by
searching for any groups beginning with a WHERE clause,
while entities can be found by looking for any Identifiers af-
ter a FROM or JOIN keyword that is not a subquery. If a
subquery is found instead, recursion can be used to go inside
the subquery group to find nested Identifiers.

DML Select
Wildcard

Keyword FROM
Identifier lab_results

Clause WHERE
Identifier lab_name

Operator =
Identifier "ASOIF"

Keyword Limit
Identifier 1
Semicolon

SELECT * FROM lab_results WHERE lab_name = "ASOIF" LIMIT 1;

Figure 5. Inter-MOON SQL Analyzer tokenizer example.

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

In contrast, MOON used a simple lazy search algorithm
to find the first matching Ms token (eg. “SELECT”) or char-
acter literal (eg. brackets, comma) of index i given a query
string Qs where Ms = Qs(i) or Ms ⊂ Qs. A match was
made when Ms ̸= ∅. This was used, for example, to find the
kind of operation being requested (SELECT, INSERT, UP-
DATE), entities, attributes, or the presence of conditionals.
As such, Inter-MOON’s technique is less error-prone and en-
ables proper handling of subqueries.
As for virtualization, we define it as the process in which a

blockchain asset is queried from the blockchain and instanti-
ated into session-available temporary tables in the relational
database. This way, they can interact as if they were rela-
tional objects. To support this technique, Inter-MOON ex-
pects theAdmin to create a schema for each blockchain entity
(Fig. 6). It will be used to track each entity and its attributes.
Blockchain entities are virtualized in the RDB for blockchain
read and write operations, and the blockchain API driver is
also activated for write operations.

{
 entity: 'contracts',
 attributes: [
 {name: 'id', type: 'integer'},
 {name: 'user_id', type: 'integer'},
 {name: 'date', type: 'datetime'},
 {name: 'file', type: 'string'},
],
 primary_key: ['id'],
 foreign_key: [{
 name: 'user_id',
 ref: {name: 'users', attr: 'id'}
 }],
 source: 'blockchain'
}

<Contracts>
Entity Schema

catalog.json

Figure 6. Inter-MOON blockchain Schema example.

One contribution of Inter-MOON is that this schema can
be mutable. While blockchain must offer immutability, it
only concerns stored information, not necessarily the struc-
ture that any piece of information should have. To achieve
this, the aforementioned virtual tables are built using both the
attributes present in the queried assets and the schema. When
an asset of a given blockchain entity contains an attribute not
found in its schema, the attribute is ignored. When the oppo-
site is true, the value of the missing attribute is set to NULL.
This allows for the virtualization of assets using either a new
or old version of the same schema, provided each attribute
has a unique name. It also helps promote further interoper-
ability by bringing the blockchain schema applied by Inter-
MOON closer to the relational data model.
Upon receiving a query, Inter-MOON expects it to fall

into one of the following scenarios: (1) SELECT, IN-
SERT, UPDATE, or DELETE with only relational entities,
(2) SELECT, INSERT, UPDATE, or DELETE with only
blockchain entities and (3) SELECT with both blockchain
and relational entities. For (1), Inter-MOON simply for-
wards the query to the RDB and sends back the response. For
(2), there are separate approaches depending on the type of
SQL statement, explained further below. The approach for
(3) is similar to the one used in (2) for SELECT.
For SELECT in (2) and (3), Inter-MOON supports all

common SQL tokens applicable to SELECT statements by

always virtualizing needed blockchain entities in the RDB.
This includes joins, aggregations, and subqueries. The query
is then executed and results are returned as tuples. To see
how Inter-MOON handles optimization, see Section 4.3.
For INSERT, while MOON only supports simple INSERT

statements without subqueries, multi-valued INSERTs are
also supported by Inter-MOON (See Lst. 2). We consider
INSERT to be categorically equivalent to a blockchain AP-
PEND, with multi-valued equivalent to several APPENDs.
Attributes are extracted from SQL and used as the asset data,
and inside the blockchain, data is stored in its given type, de-
fined in the schema, to preserve integrity. See Fig. 7 for a
visual rendition of this mapping technique.
INSERT INTO table_name [AS alias] [(

column_name [, ...])]
{ VALUES ({ expression | DEFAULT } [, ...])
[, ...] }

Listing 2: Supported syntax for SQL INSERT.

tx = bc.sign_tx({
 operation: 'create',
 owner: <owner_public_key>
 asset: {
 __entity: 'table_name',
 [column: value]
 [, ...]
 }
})
bc.append(tx)

Blockchain
SIGN & APPEND Operations

INSERT INTO
 table_name (column [, ...])
VALUES
 (value [, ...]) [, ...]

SQL
INSERT Operation Maps to

Figure 7. Inter-MOON blockchain mapping of an SQL INSERT operation.

Blockchains have inherent limitations when performing
DELETE or UPDATE operations due to their append-only
nature. For UPDATE operations, a new transaction is cre-
ated with updated data and a pointer to the old asset. The
expected syntax is similar to standard UPDATE (See Lst. 3).
UPDATE table_name [*] [[AS] alias]

SET { column_name = { expression | DEFAULT }
} [, ...]
[FROM from_item [, ...]]
[WHERE condition]

Listing 3: Supported syntax for SQL UPDATE.

As for DELETE, our proposal is a soft-delete mechanism
in which the deleted blockchain asset’s index is removed
from the Index Tables, preventing retrieval through Inter-
MOON. Conditionals may be used to refine the deletion crite-
ria (See Lst. 4). To record this deletion within the blockchain
context, we can append a new asset (like in UPDATE de-
scribed above) with a status: DELETED label. This ap-
proach offers a pseudo-DELETE functionality while main-
taining blockchain consensus and immutability (See Fig. 8).
DELETE FROM table_name [[AS] alias]

[WHERE condition]

Listing 4: Supported syntax for SQL DELETE.

While these approaches preserve consensus mechanisms,
scalability becomes a concern when dealing with many as-
sets. The scalability issue is an ongoing research topic in
blockchains [Zhou et al., 2020]. Some studies aim to explore
mutability in blockchains, which would further align them

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

tx = bc.sign_tx({

 operation: 'create',
 owner: <owner_public_key>

 asset: {
 __entity: 'table_name',
 __previous: <previous_asset_hash>,

 __status: 'DELETED'
 [, ...]
 }

})
bc.append(tx)

Blockchain
SIGN & APPEND Operations

DELETE FROM table_name

[...]

SQL
DELETE Operation Maps to

Figure 8. Inter-MOON blockchain mapping of an SQLDELETE operation.

with relational systems [Politou et al., 2019]. However, de-
veloping a new blockchain or blockchain-based technology
is beyond the scope of this work.

5 Experiments
A prototype of the Inter-MOON middleware was developed
using Python 3.6.9. Three experiments were prepared to test
Inter-MOON regarding performance and support for the SQL
querying syntax.

5.1 Comparing the performance of MOON&
Inter-MOON

The first experiment aimed to compare the performance of
MOON and Inter-MOON, focusing on response speed, mea-
sured by the round-trip time from client request to response.
A synthetic dataset was generated with a Patients entity
stored on an RDB and Lab Results on the blockchain DB.
(Fig. 9). The testing environment consisted of Ubuntu
18.04.6 VMs on a local network (Fig. 10). Table 2 describes
each VM in detail.. VM-1 hosted instances of both MOON
and Inter-MOON, running one at a time. VM-2 utilized
Postgres 10.23 for SQL, and BigchainDB 2.2 for blockchain
nodes. A separate machine with Ubuntu 22.04, 4 GB RAM,
and an Intel i5-4300 2.60 GHz CPU simulated the client.

Lab Results (100 rows)
varchar uid
integer patient_id
varchar content_base64
date datetime
varchar lab_name
integer lab_site
integer expired

Patients (100 rows)
integer id
varchar name
varchar email
varchar phone
date birth_date

Figure 9. Entity schema used for the first experiment.

Figure 10. Testing environment.

Four queries (Table 3) were executed on MOON first and
then on Inter-MOON. Inter-MOON was expected to provide
significantly improved response speeds in queries involving
many entities (Q2 and Q3) while maintaining similar but
slightly faster speeds in other kinds.

Name Role RAM Disk
Read/Write
Speed (GB
p/ second)

VM-1 Middleware host 4 GB 7.5/0.8
VM-2 SQL database host 2 GB 6/0.8
VM-3 ∼ 8 BC network nodes 1 GB/each 5/0.4

Table 2. Summary of the virtual machines used in the first experi-
ment.

Query SQL
Q1 INSERT INTO lab_results (<...columns>)

VALUES (<...values>);
Q2 SELECT * FROM lab_results;
Q3 SELECT * FROM lab_results JOIN patients

ON lab_results.patient_id = patients.id;
Q4 UPDATE lab_results SET expired = 1 WHERE

uid = <uid>;
Table 3. Set of queries used in the first experiment.

Results (Fig. 11) show that Inter-MOON was generally
much faster. In Q1, the results were in the same ballpark. In
Q2 and Q3, they were about 10 times higher. In Q4, there
was an improvement of about 5.5 times instead. UPDATE-
type transactions, which is the case for Q4, are more com-
putationally expensive and latency-inducing, as they involve
several trips to both database systems in order to read, update,
and write the updated information.

Figure 11. Graphical comparison of the Avg. Response Speed of 100 query
executions between MOON and Inter-MOON.

5.2 SQL Syntax Support
In the second experiment, the goal was to evaluate Inter-
MOON regarding SQL syntax support in read operations to
illustrate the viability of our approach. The TPC-H2 deci-
sion support benchmark was used for this experiment, as it
is an industry-tested standard with various queries that show-
case critical business needs. We also compared Inter-MOON
against the BigDAWG polystore to show how a similar tool
fares in this regard. BigDAWGwas chosen as it is one of the
few available open-source tools that show similar character-
istics to our work: a unified interface with support for SQL
and NoSQL data stores that can be simultaneously queried
using a single request. Both systems were populated with a 1
GB scale factor workload of the benchmark data and then 20

2https://www.tpc.org/tpch/. Accessed: Feb 27, 2024.

https://www.tpc.org/tpch/

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

of its 22 queries were executed using a simple Python script.
Execution results were compared against the expected output
given by the benchmark. Twowere ignored as they contained
no unique keywords or operations not found in other queries
and took too much time to run, which obstructed testing, con-
sidering execution speed was not a metric in this experiment.
The metric was simply the factor of successful queries over
the total number tested: SupportScore(S) = Qsuccess/20.
Successful, in this case, means the query was properly exe-
cuted, and the results matched the expected output.
Inter-MOON was capable of running 19 queries, attaining

a score of 0.95, an improvement over the result presented
in the original work of 0.9 with 18 queries [Sá et al., 2023].
BigDAWG successfully ran 6, scoring 0.3 (Table 4). Both
systems failed to run a query that created and then utilized
a view. BigDAWG, additionally, demonstrated issues when
executing queries containing a mix of nested subqueries, ag-
gregation, and sorting. Results indicate that BigDAWG sup-
ports only a small subset of SQL, while Inter-MOON could
understand much of the standard syntax.

System Successful queries S Score
Inter-MOON 19 0.95
BigDAWG 6 0.3

Table 4. Support score for Inter-MOON and BigDAWG.

5.3 Cross-model Query Performance
The last experiment evaluated Inter-MOON’s cross-model
querying performance in a realistic scenario where requests
were continuously sent to the middleware for processing.
Once again, the BigDAWG polystore was chosen for com-
parison. BigDAWG polystore was used for comparison;
however, since BigDAWG does not support blockchain,
blockchain entities were stored in Accumulo, a key-value
NoSQL data store, while Inter-MOON stored them in
BigchainDB. The environment used Docker container setups
provided by the BigDAWGproject3 and a custom-built setup
for Inter-MOON, with separate containers for Inter-MOON,
PostgreSQL 9.6, and BigchainDB 2.2. Both setups were run
on the same machine used in the first experiment (See Sub-
section 5.1), although only one setup was active at a time.
A supermarket sales history dataset4 was inserted into both

BigchainDB (Inter-MOON) and Accumulo (BigDAWG),
with synthetic customer data inserted into the SQL databases.
JMeter 5.55, running on a separate machine, monitored and
executed the test plan. This plan involved executing a simple
JOIN query (Table 5) using data from both data models, with
1000 threads and a ramp-up time of 1000 seconds, simulat-
ing a constant stream of transactions. The evaluated metrics
were average latency, standard deviation, and failure count.
Table 6 shows the mean, median, and standard deviation

of the recorded latency of both Inter-MOON and BigDAWG

3https://github.com/bigdawg-istc/bigdawg. Accessed: Feb
27, 2024.

4https://www.kaggle.com/datasets/aungpyaeap/
supermarket-sales. Accessed: Feb 27, 2024.

5https://jmeter.apache.org/. Accessed: Feb 27, 2024.

Customers (1000 rows)
integer c_id
varchar c_name
varchar c_email
varchar c_gender
varchar c_phone
date c_birth_date
varchar c_type

Sales (1000 rows)
integer s_id
decimal s_unit_price
integer c_id
...

Figure 12. Entity schema used for the third experiment. Only the relevant
attributes from the Sales entity are being shown here.

SELECT c_name, s_unit_price
FROM customers c JOIN sales s ON c.c_id = s.c_id
ORDER BY s.s_unit_price DESC LIMIT 10;

Table 5. Query used in the third experiment.

considering the whole workload, while Fig. 13 shows a com-
bined histogram. We can see that neither system provides
results that seem to follow a normal distribution. For Big-
DAWG in particular, we note a very unbalanced distribution
with high deviation.

System Mean
Latency

Median
Latency

Std.
Deviation

Inter-MOON 892.48 913.0 94.25
BigDAWG 892.45 574.0 1187.87

Table 6. Mean, median, and std. deviation for latency in both sys-
tems. Values are rounded down to two decimal places.

Both Inter-MOON and BigDAWG demonstrated diffi-
culty in reaching higher throughput. Inter-MOON (Fig. 14)
provided an overall consistent latency of 800-890 ms, with
zero errors. BigDAWG (Fig. 15) provided lower average
latency but much higher deviation and a total of 45% fail-
ure rate, slightly below half of all queries. As the flood
continues, BigDAWG accumulates failures (Yellow line) in
cascade, which heavily impacts latency. After some ad-
ditional testing with lower ramp-up time, both tools show
much worse performance, with BigDAWG increasing the
failure rate even more and Inter-MOON showing exponen-
tially higher latency. This indicates the existence of concur-
rency issues when obtaining data from separate data models
simultaneously. However, more testing needs to be done
to confirm this issue. In conclusion, while Inter-MOON
showed better reliability than BigDAWG and stable perfor-
mance, we cannot fully claim it is better or worse than Big-
DAWG regarding performance in this scenario.

6 Conclusion
In this work, we detailed our approach to providing inter-
operability between relational databases and blockchains by
developing Inter-MOON, an extension of MOON. Experi-
mental results showed that Inter-MOON provided average
response times of 5 to 10 times faster than MOON in most
tested queries, representing common SQL DML operations.
Along with increased performance, DELETE operations and
nested queries and aggregations are now fully supported.
Data integrity is also enhanced, alongside database support
with the generic database driver, which allows Inter-MOON

https://github.com/bigdawg-istc/bigdawg
https://www.kaggle.com/datasets/aungpyaeap/supermarket-sales
https://www.kaggle.com/datasets/aungpyaeap/supermarket-sales
https://jmeter.apache.org/

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

Figure 13. Histogram comparison of query latency from Inter-MOON and
BigDAWG. This graph considers a bucket size of 20 and a 5% outlier rate.

Figure 14. Inter-MOON Avg. Latency and Std. Deviation over time.

to use many different RDBs. Finally, Inter-MOON sur-
passed BigDAWG in SQL syntax support and provided more
consistent performancewith fewer errors, although due to the
large number of errors BigDAWG showed during testing, it
cannot be said that Inter-MOON is either better or worse than
BigDAWG concerning performance.
For future works regarding the interoperability of

blockchain and relational models, blockchain support for
SQL DDL statements and other remaining commands not
covered by Inter-MOON, such as DTL (BEGIN, COMMIT,
and ROLLBACK), functions, and stored procedures, could
prove fruitful. Another viable approach is to explore NoSQL
alongside relational and blockchain, as blockchain can be
considered similar to NoSQL as a data model. Finally, the
scalability issues plaguing blockchain, discussed briefly in
this work, still present a great obstacle to interoperability and
integration.

Acknowledgements

I am grateful to LSBD (Laboratório de Sistemas e Bancos de Dados)
for offering funding and crucial resources to enable this research,
as well as to my colleagues and professors for their invaluable guid-
ance and support.

Availability of data and materials

A prototype of the proposed approach for Inter-MOON was devel-

Figure 15. BigDAWG Avg. Latency, Std. Deviation and Failure Count
over time.

oped and published to a GitHub repository6. The datasets generated
via scripts can also be found in the linked repository. Any external
datasets are also linked via footnotes when mentioned.

References
Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom,
J. (2002). Models and issues in data stream systems. In
Proceedings of the Twenty-First ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems,
PODS ’02, page 1–16, New York, NY, USA. Association
for Computing Machinery. DOI: 10.1145/543613.543615.

Belchior, R., Vasconcelos, A., Guerreiro, S., and Correia,
M. (2021). A survey on blockchain interoperability:
Past, present, and future trends. Acm Computing Surveys
(CSUR), 54(8):1–41.

Bigchain, D. and Gmb, H. (2018). Bigchaindb 2.0: The
blockchain database. white paper.

Bondiombouy, C., Kolev, B., Levchenko, O., and Valduriez,
P. (2016). Multistore big data integration with cloudmd-
sql. Transactions on Large-Scale Data-and Knowledge-
Centered Systems XXVIII: Special Issue on Database-and
Expert-Systems Applications, pages 48–74.

Duggan, J., Elmore, A. J., Stonebraker, M., Balazinska, M.,
Howe, B., Kepner, J., Madden, S., Maier, D., Mattson,
T., and Zdonik, S. (2015). The bigdawg polystore system.
ACM Sigmod Record, 44(2):11–16.

Gadekallu, T. R., Huynh-The, T., Wang, W., Yenduri, G.,
Ranaweera, P., Pham, Q.-V., da Costa, D. B., and Liyan-
age, M. (2022). Blockchain for the metaverse: A review.
arXiv preprint arXiv:2203.09738.

Gamage, H., Weerasinghe, H., and Dias, N. (2020). A sur-
vey on blockchain technology concepts, applications, and
issues. SN Computer Science, 1:1–15.

Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritz-
dorf, H., and Capkun, S. (2016). On the security and per-
formance of proof of work blockchains. CCS ’16, page
3–16, New York, NY, USA. Association for Computing
Machinery. DOI: 10.1145/2976749.2978341.

Guo, H. and Yu, X. (2022). A survey on blockchain
technology and its security. Blockchain: Re-

6https://github.com/rafero1/inter-moon. Accessed: Feb 27,
2024

https://github.com/rafero1/inter-moon

Inter-MOON: Enhanced Middleware for Interoperability between Relational and Blockchain-based Databases Sá et al. 2024

search and Applications, 3(2):100067. DOI:
https://doi.org/10.1016/j.bcra.2022.100067.

Han, J., Seo, Y., Lee, S., Kim, S., and Son, Y. (2023). De-
sign and implementation of enabling sql–query process-
ing for ethereum-based blockchain systems. Electronics,
12(20):4317.

Hasselbring, W. (2000). Information system integration.
Communications of the ACM, 43(6):32–38.

Holovaty, A. and Kaplan-Moss, J. (2009). The definitive
guide to Django: Web development done right. Apress.

Javaid, M., Haleem, A., Pratap Singh, R., Khan, S.,
and Suman, R. (2021). Blockchain technology ap-
plications for industry 4.0: A literature-based review.
Blockchain: Research and Applications, 2(4):100027.
DOI: https://doi.org/10.1016/j.bcra.2021.100027.

Krichen, M., Ammi, M., Mihoub, A., and Almutiq, M.
(2022). Blockchain for modern applications: A survey.
Sensors, 22(14). DOI: 10.3390/s22145274.

LeFevre, J., Sankaranarayanan, J., Hacigumus, H., Tatemura,
J., Polyzotis, N., and Carey, M. J. (2014). Miso: Soup-
ing up big data query processing with a multistore system.
In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’14, page
1591–1602, New York, NY, USA. Association for Com-
puting Machinery. DOI: 10.1145/2588555.2588568.

Maciel, R. S., Valle, P. H., Santos, K. S., and Nakagawa, E. Y.
(2023). Systems interoperability types: A tertiary study.
arXiv preprint arXiv:2310.19999.

Marinho, S. C., Costa Filho, J. S., Moreira, L. O., and
Machado, J. C. (2020). Using a hybrid approach to data
management in relational database and blockchain: A case
study on the e-health domain. In 2020 IEEE International
Conference on Software Architecture Companion (ICSA-
C), pages 114–121. IEEE.

McConaghy, T., Marques, R., Müller, A., De Jonghe, D., Mc-
Conaghy, T., McMullen, G., Henderson, R., Bellemare,
S., and Granzotto, A. (2016). Bigchaindb: a scalable
blockchain database. white paper, BigChainDB, pages 53–
72.

McGinn, D., McIlwraith, D., and Guo, Y. (2018). To-
wards open data blockchain analytics: a bitcoin perspec-
tive. Royal Society open science, 5(8):180298.

Melton, J. (2016). Iso/iec 9075-1 information technology-
database languages-sql-part 1: Framework (sql/frame-
work). ISO/IEC, 2016(E):9075–1.

Meyer, J. V. and dos Santos Mello, R. (2022). An analysis
of data modelling for blockchain. In Information Integra-
tion and Web Intelligence: 24th International Conference,
iiWAS 2022, Virtual Event, November 28–30, 2022, Pro-
ceedings, pages 31–44. Springer.

Muzammal, M., Qu, Q., and Nasrulin, B. (2019). Renovat-
ing blockchain with distributed databases: An open source
system. Future generation computer systems, 90:105–
117.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. Decentralized Business Review, page 21260.

Nathan, S., Govindarajan, C., Saraf, A., Sethi, M., and Jay-
achandran, P. (2019). Blockchain meets database: Design
and implementation of a blockchain relational database.

arXiv preprint arXiv:1903.01919.
Politou, E., Casino, F., Alepis, E., and Patsakis, C. (2019).
Blockchain mutability: Challenges and proposed solu-
tions. IEEE Transactions on Emerging Topics in Comput-
ing, 9(4):1972–1986.

Sá, R. A., Moreira, L. O., andMachado, J. C. (2023). Improv-
ing interoperability between relational and blockchain-
based database systems: A middleware approach. In
Anais do XXXVIII Simpósio Brasileiro de Bancos de Da-
dos, pages 115–127. SBC.

Schuhknecht, F. M., Sharma, A., Dittrich, J., and Agrawal,
D. (2021). chainifydb: How to get rid of your blockchain
and use your dbms instead. In CIDR.

Singhal, R., Zhang, N., Nardi, L., Shahbaz, M., and Oluko-
tun, K. (2019). Polystore++: accelerated polystore system
for heterogeneous workloads. In 2019 IEEE 39th Inter-
national Conference on Distributed Computing Systems
(ICDCS), pages 1641–1651. IEEE.

Spagnuolo, M., Maggi, F., and Zanero, S. (2014). Bitiodine:
Extracting intelligence from the bitcoin network. InFinan-
cial Cryptography and Data Security: 18th International
Conference, FC 2014, Christ Church, Barbados, March
3-7, 2014, Revised Selected Papers 18, pages 457–468.
Springer.

Stauffer, M. (2019). Laravel: Up & running: A framework
for building modern PHP apps. O’Reilly Media.

Stonebraker, M. and Cetintemel, U. (2018). “One Size Fits
All”: An IdeaWhose TimeHasCome andGone, page 441–
462. Association for Computing Machinery and Morgan
& Claypool.

Tseng, L., Yao, X., Otoum, S., Aloqaily, M., and Jararweh, Y.
(2020). Blockchain-based database in an iot environment:
challenges, opportunities, and analysis. Cluster Comput-
ing, 23:2151–2165.

Vogt, M., Stiemer, A., and Schuldt, H. (2018). Polypheny-db:
towards a distributed and self-adaptive polystore. In 2018
IEEE International Conference on Big Data (Big Data),
pages 3364–3373. IEEE.

Yuan, Y. and Wang, F.-Y. (2018). Blockchain and cryp-
tocurrencies: Model, techniques, and applications. IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
48(9):1421–1428. DOI: 10.1109/TSMC.2018.2854904.

Yue, K.-B., Chandrasekar, K., and Gullapalli, H. (2019).
Storing and querying blockchain using sql databases. In-
formation Systems Education Journal, 17(4):24.

Zheng, Z., Xie, S., Dai, H.-N., Chen, X., and Wang, H.
(2018). Blockchain challenges and opportunities: A sur-
vey. International Journal of Web and Grid Services,
14(4):352–375.

Zhou, Q., Huang, H., Zheng, Z., and Bian, J. (2020). Solu-
tions to scalability of blockchain: A survey. Ieee Access,
8:16440–16455.

Zhu, Y., Zhang, Z., Jin, C., Zhou, A., Qin, G., and Yang, Y.
(2020). Towards rich qery blockchain database. In Pro-
ceedings of the 29th ACM International Conference on In-
formation & Knowledge Management, pages 3497–3500.

	Introduction
	Background
	Blockchain
	Blockchain-based databases

	Related Work
	The Inter-MOON Approach
	Interoperability
	Support for Different Data Stores
	Efficiency Optimizations
	Generality of Query Processing

	Experiments
	Comparing the performance of MOON & Inter-MOON
	SQL Syntax Support
	Cross-model Query Performance

	Conclusion

