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Abstract This study proposes a method for identifying potential routes of disease spread in Brazil, using mobility
and graph databases based on open data on cities and transport. The approach incorporates and compares data from
different Brazilian monitoring agencies on road, waterway, and air connections, to enhance the understanding of
inter-municipal public transport networks. Additionally, the study adapts the Dijkstra algorithm in Neo4j’s Data
Science module and creates a tool called Epiflow, which helps visual exploration. The proposed approach was
validated using COVID-19 data of two variants (alpha and gamma). The results revealed a robust correlation with the
alpha variant, whereas inconclusive findings emerged from the gamma variant data. This underscores the hypothesis
that the available mobility data in the northern region, which is a rather remote area of the country, could not account

for the occurrences of this variant.
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1 Introduction

According to the World Health Organization (WHO), until
November of 2022, more than six million people had died
due to COVID-19 WHO [2022a]. It is hard to ignore the
dramatic effects that the pandemic has brought to the world.
The problems impact diverse areas, including health, educa-
tion, and the economy. In short, the fallout of an epidemic
disease is tremendous, influencing virtually every sector and
population.

Another factor that heightens the likelihood of new pan-
demics arising is human mobility Mu et al. [2021]; Bajardi
etal.[2011]; Peixoto et al. [2020]. Today, the world is highly
connected by various means of transportation. In 2019, about
38.9 million flights were performed in the world according
to Statista [2022]. In Brazil, about 1.39 million interstate
bus trips were performed in 2019 according to Ministério da
Infraestrutura [2020]. In the face of this potential hazard, re-
cent studies address the movement of humans, and its con-
sequences on spreading infectious diseases Mu et al. [2021];
Bajardi et al. [2011]; Peixoto et al. [2020]. Such studies are
aided by the massive amount of data available today, which
makes following human displacements easier.

Based on the context of epidemics and human mobility,
the present article is an extension of the conference paper
Oliveira et al. [2023] published in the Proceedings of the
Brazilian Symposium on Databases 2023. This extended ver-
sion provides more details regarding the previous study and
adds news datasets and experiments aimed at exploring an
approach using city and transport data arranged in a graph

structure to examine how infectious diseases spread in Brazil.
The study also culminated in elaborating a visualization tool
called Epiflow, which allows users to explore potential dis-
eases spreading throughout the country. In order to describe
and discuss this process, the article is organized into six sec-
tions. Section 1, Introduction, defines the scope of the study
and its significance, along with its objectives. Section 2, Lit-
erature Review, presents the prevalent techniques for track-
ing disease spread. Section 3, Methodology, describes the
data, computation techniques used, and the developed appli-
cation. Section 4, Evaluation and Results, covers the vali-
dation process and its outcomes. Section 5, Discussion, dis-
cusses the article’s discoveries and limitations. Lastly, Sec-
tion 6, Conclusion, summarizes the study’s main findings
and proposes future works.

1.1 Background and significance

To prevent other pandemics from arising, a domain called
Genomic surveillance emerged. In tandem with traditional
epidemiological approaches, Genomic surveillance aims to
monitor pathogens continually and analyze their genomic
similarity and disparities WHO [2022b]. In March 2022,
WHO released a ten-year strategy WHO [2022b] to increase
initiatives around the globe related to Genomic surveillance.
According to the organization, COVID-19 has brought to
light the implications of such actions by showing the im-
portance of tackling epidemic risk at early stages. In this
context, an initiative named ZESOP' (Alert-Early System of
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Outbreaks with Pandemic Potential) was formed in Brazil.
ZSOP is a data-driven system that hopes to alert the country
at the early stages of potential respiratory viral disease out-
breaks. According to them, one of the major challenges the
initiative faces is deciding where to collect samples to look
for pathogens.

Given this scenario, the current study introduces an ap-
proach designed to explore and comprehend the spread dy-
namics of infectious diseases by leveraging human mobility
data and city connections within a graph solution. This en-
deavor aims to facilitate the formulation of sampling strate-
gies and other public policies geared towards mitigating dis-
ease outbreaks at early stages.

1.2 Aim and Objectives

The present study aims to develop an approach based on
cities and transport data to identify possible routes an infec-
tious disease can take during its spreading process. It ex-
pects to analyze the propagation behavior in the Brazilian
territory, utilizing graph structure and travel probability be-
tween cities.

To accomplish the main goal, the study posed three spe-
cific objectives.

1. To identify useful datasets and perform the ETL process
on the chosen data (city, health service, and transporta-
tion data);

2. To propose a solution that recommends and ranks which
cities should be investigated in case of finding evidence
of infectious disease in a particular city;

3. To develop a system capable of identifying propagation
routes to specific cities.

2 Literature Review

The purpose of this section is to present studies that address
spatial disease spreading, primarily from the perspective of
human mobility.

Many studies Mu et al. [2021]; Bajardi et al. [2011];
Peixoto et al. [2020] indicate human mobility as a significant
factor in the spatial spread of infectious diseases. As a result,
we have found a considerable amount of studies employing
models of spacial transmission, in particular, the metapopu-
lation model. Metapopulation is one of the simplest models
of spatial modeling Keeling and Rohani [2008]. The basic
idea behind the model is to divide the population into sub-
populations that have their own internal dynamics and even-
tually interact with each other. Usually, each city is consid-
ered a subpopulation, and the flow of people between them
is the interaction. Even though this model is widely used,
its downside is the need to find the proper division of a sub-
population since the model assumes that each subpopulation
is homogeneous. In addition, it is important to estimate the
flow between connections correctly Balcan ef al. [2010].

Another possible approach is the Agent-based model. In
this model, each individual is considered an agent interact-
ing with another. Based on the interactions between agents,
it is possible to define the behavior of the disease being

de Oliveira et al. 2025

transmitted. During the COVID-19 pandemic, Wei et al.
[2021] implemented an intercity multi-agent model. Accord-
ing to the authors, the model could estimate early infections
in China with high precision. However, it is important to
highlight that this approach is computationally costly once it
requires tracing the behavior of each individual. This might
be impracticable when the population observed increases on
a global scale.

Effective Distance is another spatial model worth mention-
ing. The concept introduced by Brockmann and Helbing
[2013] states that it is possible to calculate an effective dis-
tance that represents the connectedness between cities. In
other words, cities with smaller effective distances are more
connected and more likely to propagate infectious diseases to
one another. Based on this idea, Sadekar ez al. [2021] created
an infectious diseases hazard map in India.

The spatial models presented until now (except for Ef-
fective Distance) incorporate classical epidemiological mod-
els into their computations, which consider disease behav-
ior in their estimation. However, there are simpler ap-
proaches, such as calculating the flow probability between
cities EpiRisk [2022]; Gilbert et al. [2020]; Nakamura and
Managi [2020]. The work of Gilbert et al. [2020], for in-
stance, calculated the vulnerability of African countries dur-
ing the COVID-19 pandemic. Unlike other approaches, such
models do not require a deep knowledge of disease-spreading
behavior and are computationally less expensive.

In light of the previous studies, the present work focused
solely on human mobility between cities rather than disease
characteristics to reach its objectives. The solution uses a
computationally non-costly approach like the one introduced
by Gilbert et al. [2020]. Similarly to their work, we use
traveling probabilities to track disease-spreading spatial be-
havior. This allows us to create a tool that provides quick
feedback to users, helping them explore different aspects of
the problem. Unlike previous studies, which majorly concen-
trate on air transportation at a global scale, we consider land,
air, and water transportation at a Brazilian level. As a result,
our analysis should provide a more accurate representation
of the spread of disease in Brazil.

3 Data and Methodology

In this section, we will discuss the data used in the study and
the ETL process that was performed on it. Furthermore, we
will outline the tasks that were conducted to achieve the ob-
jectives of the study. Finally, a brief explanation of the visu-
alization tool called Epiflow will be provided.

3.1 ETL process and Data

To implement the algorithms and the application described
in the upcoming sections, an ETL (extract, transform, load)
process (Figure 1) was performed on the data. Initially, the
data was extracted from various governmental agency repos-
itories. Subsequently, it underwent a series of transforma-
tions, including cleaning, integration, and estimation of miss-
ing data. Finally, in the load phase, the data was stored in the
chosen databases.
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Figure 1. Flow diagram of the ETL methodology adopted.

Table 1. Transport datasets information.

Transport modalities ~ Data Sources

No. of connections

No. of municipalities Transformations

Road and air
Road, water and air

Dataset 1
Dataset 2

ANTT, ANAC
IBGE, ANAC

123,978
131,646

4,994
5,387

Data Regression
Estimation of passengers by vehicle

The present study utilized the data provided by Brazilian
governmental institutions: the Brazilian Institute of Geogra-
phy and Statistics (IBGE?); Unified Health System (SUS3);
and transport regulatory agencies - National Civil Aviation
Agency of Brazil (ANAC*) and National Land Transporta-
tion Agency (ANTT?). Unfortunately, most of the data sup-
plied by these agencies were not ready for use. Consequently,
it underwent a transformation phase, largely utilizing the
Python library Pandas Reback et al. [2020]. After the trans-
formations were performed, the data could be utilized in this
study. The data characteristics and the transformations per-
formed will be presented as follows. For more details about
the data, please consult the project data dictionary®.

3.1.1 City data

Almost all city data was obtained from IBGE. The insti-
tute provided vital information such as estimated population,
gross domestic product (GDP), number of hospital beds per
inhabitant, and level of influence of Brazilian cities. In total,
the city data amounts to 5570 municipalities with 31 features.

3.1.2 Health-related data

The health data was acquired from the agencies IBGE and
SUS. Three types of data were collected from these sources:
the flow of patients in the Brazilian territory (27750 rows);

2IBGE: https://bit.ly/regic_ibge
https://bit.ly/area_municipality_ibge
https://bit.ly/population_ibge
https://bit.ly/api_ibge

3SUS: https://bit.ly/health_region_sus

https://bit.ly/reference_hospitals

4ANAC: https://bit.ly/data_anac

SANTT: https://bit.ly/data_antt

®Epiflow data dictionary:  https://bit.ly/epiflow_data_

dictionary

the territorial division of health regions (450 rows); and ref-
erence hospitals’ (262 rows). This information enabled us to
explore the flow of ill people in the country and consequently
track the propagation of emerging infectious diseases as de-
scribed in subsection 3.3.

3.1.3 Transport data

Transportation data encompasses information regarding the
number of passengers utilizing various public transportation
systems between two cities, including road transport (e.g.,
buses, vans), water transport (e.g., boats), and air transport
(e.g., airplanes). To achieve this, we compiled two datasets
using different transformations and sources. We opted for
two datasets due to distinct limitations inherent to each. By
comparing these datasets, our aim is to gain a more compre-
hensive understanding of the transport networks and to deter-
mine which dataset aligns more closely with real-world data.
This comparison will facilitate a better grasp of which public
data can offer superior assistance in both current and future
research endeavors. Table 1 delineates the characteristics of
both datasets. The subsequent sections will delve into the
formulation of each dataset and elucidate the essential trans-
formations required for our research.

Dataset 1 The first dataset comprises the data collected
from two Brazilian transport regulatory agencies, ANAC and
ANTT. Both sources provide information regarding the num-
ber of airplane and bus passengers in 2019 within the Brazil-
ian territory. As these are the primary means of transporta-
tion used for long trips in Brazil Ministério da Infraestrutura
[2020], it is possible to affirm that this data covers a signifi-
cant portion of passengers who travel using public means in

7The hospitals within this network can also be referred as to Sentinel
Service.
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the country. However, after a data exploration, it was discov-
ered that the number of passengers between some city pairs
was reported inadequately. The reason behind this issue is
that ANTT does not require bus companies to collect data on
trips that occur within the same state, leading to an underesti-
mation of these records. To address this problem, a machine
learning regression model was used to estimate these values.
The regressor chosen was the XGBoost regressor®. This re-
sulted in the estimation of all bus trips within the same state,
as well as some interstate journeys. Note that this issue did
not affect airplane data.

Dataset2 The second dataset comprises data sourced from
two Brazilian agencies, IBGE and ANAC. In contrast to the
first dataset, this one substitutes the data from ANTT with
that of IBGE to ascertain about land passenger flow between
cities. The inclusion of IBGE data provides an added advan-
tage as it incorporates information on both road and water
transportation, thereby offering insights into the movement
of people in regions where water transportation is significant,
such as cities located in the northern part of the country.

The data from IBGE was gathered in 2016 through sur-
veys conducted at bus and waterway terminals, as well as at
other intercity transport points. This provided a comprehen-
sive view of the intercity public transport network. However,
the dataset had one limitation - it did not directly provide the
number of passengers that traveled through a connection in
a year. Instead, it provided the average number of vehicles
(normalized by bus) that traveled through the connection in
a week. Therefore, it was necessary to convert the vehicle
counts to the number of passengers. This was achieved by
multiplying the number of people transported in a vehicle
per trip (22) by the average number of weekly trips and the
number of weeks in the year®. Once again, this type of trans-
formation did not affect the air passenger data since it was
already in its correct format.

3.2 Databases and data modeling

Both relational and non-relational databases, PostgreSQL
PostgreSQL [2022] and Neo4j Neo4j [2022], were employed
to develop Epiflow. PostgreSQL was utilized to quickly load
general information, such as state, city, and health region
names, into the application. At the same time, Neo4j was
responsible for modeling the city network and storing the re-
lationships between cities. The latter was chosen due to its

8The XGBoost regressor was chosen due to its high performance in a
variety of problems and robustness to outliers. The model utilized 47 fea-
tures (no feature selection was applied), which included mainly the city and
city connection attributes found in the data provided by IBGE. During the
learning process, a total of 19378 observations were used and were divided
into a train set (75%) and a test set (25%). A k-fold cross-validation with
five folds was used while tuning the model, and ten folds were utilized to
obtain the final model’s MSE metrics for testing purposes. The MSE and
R? metrics for the test set were also calculated. The model’s metrics are as
follows: MSE mean (10 k-fold) = 0.407; MSE std (10 k-fold) = 0.024; MSE
(test set) = 0.409; R2 (test set) = 0.617.

9The number of passengers estimated per vehicle was 22. This value
represents the average number of passengers per bus, sourced from the Na-
tional Department of Transport Infrastructure (DNIT) dataset Orrico Filho
et al. [2019]. Thus, the calculation of passengers per year is: 52 X
no. of vehicles by connection x 22. This calculation applies to both road
and water transportation, as IBGE has normalized the data to bus terms.

de Oliveira et al. 2025

native graph storage, processing, and vast open-source data
science library Neo4j GDS [2022]. In this work, we will fo-
cus on Neo4j (graph). Figure 2 shows the Neo4j database
schema utilized in the study.

aaussVIOS!

TRANSPORT_FLOW
TRANSPORT_FLOW

& %
%
3 City. g
g §
2 ToangporT riow H
& % B
4
o o REO gy
$ = Nt %,

Figure 2. Graph schema of the database utilized in the study. The col-
ored circles in the schema represent the entities modeled in the Neo4j
database. City, Municipality, State, PopulationArrangement, and
Hierarchy represent information regarding the official territorial division
within Brazil, while HealthRegion and ReferenceHospital store infor-
mation regarding the Brazilian health system. The arrows in the schema
illustrate the relationships between these entities.

Besides the Brazilian cities, the graph structure also in-
cludes other nodes that store information about the studied
network, as shown in the graph schema in Figure 2; never-
theless, we will focus on the relationship between cities be-
cause they are the ones that provide the information needed
to identify cities at risk and calculate propagation routes in
the application. As the graph is directed, the relationship
between cities has a source and destination. As we can see
in Figures 2 and 3, the relationship between cities included
two types of edges: TRANSPORT_FLOW and HEALTH_FLOW.
TRANSPORT_FLOW comprises data related to bus, water and
air transportation. This relationship has five attributes: air,
bus, water, total (air + bus + water) flow in probability terms,
and the total number of individuals traveling in this con-
nection annually. On the other hand, HEALTH_FLOW rep-
resents the flow of patients between cities (probability of
a patient seeking a health service in another city) and has
two attributes: high-complexity health service flow (high-
cost treatments that usually involve hospitalization) and low
and middle-complexity health service flow (medical appoint-
ments and exams, minor surgeries etc). The attributes regard-
ing flow were represented in probability terms as it is more
appropriate to estimate the risk of disease propagation. Sec-
tion 3.3 will explain how these probabilities were obtained.

3.3 Identifying cities at risk

Human mobility plays a vital role in the spread of infectious
diseases, as previously discussed. With this premise as a
starting point, we define cities at risk as the ones with the
highest probability of receiving people from cities where evi-
dence of infectious diseases was found. This approach draws
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Figure 3. Examples of the Neo4j graph structure. (a) The network structure
of all cities connected to Manaus-AM. (b) Illustrates two Brazilian cities
connected by transport and health service flow.

inspiration from previous projects EpiRisk [2022]; Gilbert
et al. [2020] due to being a computationally inexpensive
method of determining areas susceptible to pathogen propa-
gation. Calculating this probability is straightforward: it en-
tails understanding the volume of people traveling from one
city to another, as depicted in Equation 1. Leveraging data
obtained from transport agencies and regression analysis, we
were able to compute the probability of travel between cities.
This probability also serves as an indicator of the risk that a
particular city may face if evidence of pathogens is detected
in one of its connections.

Pr(AtoB) = No. of passengers from city A to city B

Total no. of passengers from city A
€]
While the computation presented in equation 1 was neces-
sary to determine traveling probabilities based on passenger
flow, the flow of patients using health services in another city
was obtained directly from IBGE, which had statistics on the
subject. We consider that both flows are essential to identify
cities at risk. However, explorations of propagation routes
relied solely on passenger flow, as discussed further in the
next section.
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3.4 Identifying propagation routes

The purpose of this section is to explain how the probabilities
of passenger flow stored at the edges of the graph were used
to determine the most probable propagation route to a certain
city or set of cities.

The edges of the graph store probabilities of travel, thereby
allowing us to identify the path with the highest likelihood
of occurrence. This computation is facilitated by Dijkstra’s
algorithm Dijkstra [2022], initially designed to find the short-
est path between two nodes in a weighted graph. For Dijk-
stra’s shortest path search algorithm, three factors are cru-
cial: edge costs, total cost, and the function used. The edge
cost represents the weight of each edge, the total cost is the
summation of all edge weights along the path (initially 0,
increasing as we traverse the graph), and the function em-
ployed is typically summation. However, over the years, al-
gorithm variants have been proposed to tackle different prob-
lems. Finding the most probable path, for instance, is one of
them. These variants tinker with some algorithm character-
istics like costs and function. Due to this, the version used in
this work was slightly modified to find the most likely path.
The modifications were the following:

1. A multiplication function was used instead of a sum
function to calculate the total cost (since we are work-
ing with probability values, and we want to calculate the
probability of events happening at the same time).

2. The initial cost, instead of being 0, was -1 (to prevent
multiplication resulting in 0 and to force negative re-
sults);

Figure 4 illustrates how the algorithm with these changes
works. If someone in city A decides to go to city C, the most
probable path will be A — B — C instead of A — C
because the probabilities are 0.5- 0.5 = 0.25 and 0.2, respec-
tively. However, since Dijkstra chooses the shortest path, it
is necessary to change the initial cost to —1, so the answer to
the problemis —1-0.5-0.5 = —0.25and —1-0.2 = —0.2. In
the end, —0.25 is the shortest path as well as the maximum
probability as a negative value.

0.20

[ ciys |

Figure 4. The directed graph shows tilree connected cities with their travel-
ing probabilities.

The study utilized the built-in Neo4;j’s Dijkstra implemen-
tation Neo4j GDS [2022]. However, it was necessary to mod-
ify the library’s open-source source code '° to add the men-
tioned changes.

19Neodj Graph Data Science - Github: https://github. com/neo4j/
graph-data-science
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3.5 Epiflow application

To showcase the study’s objectives, the team created a Dash
Dash [2022] application named Epiflow. This interactive vi-
sualization tool allows the user to visualize the results of the
tasks described in the previous sections. Therefore, it serves
as a tool for exploring different disease-spreading scenarios.
The application has two main functionalities: (1) To visual-
ize the flows (transport and health service) originating from
a selected city (Figure 5(a); (2) To trace possible spreading
routes from a selected city to other cities (Figure 5(b)).

,,,,,,

EpiFlow @

Fluxo de transporte Fluxo ser

............

] 2 Nivelde Andise
EpiFlow & .. e Acrsiencia

Fluxo de transporte

(b)

Figure 5. Epiflow screens: (a) Visualization of the transport flow. (b) Visu-
alization of spreading routes to specific cities.

In the screen shown in Figure 5(a), the Epiflow app indi-
cates which cities are at higher risk if some disease starts
spreading from Rio Branco in the state of Acre. Brasilia
(55.88%), Cruzeiro do Sul (8.82%), and Manaus (8.33%)
emerge as the top three at-risk cities as we can see in the
barplot. Despite not sharing borders with Rio Branco, these
cities receive a significant flow of people from it, according
to the data.

The subsequent screen (Figure 55(b)) of the app displays
the main paths that a disease would likely take if it started
spreading from Acrelandia. For instance, the route Acrelan-
dia — Rio Branco — Brasilia was determined to be the most
probable, with a 41.91% likelihood. This makes sense be-
cause there is a notable movement of people from Acrelandia
to Rio Branco and from Rio Branco to Brasilia in the utilized
data.

As demonstrated, after selecting the state and city, the app
can present the cities at higher risk and the most probable
transmission routes.
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4 Evaluation and Results

After implementation, we evaluated our approach with data
series from two COVID-19 variants highly disseminated in
Brazil, alpha and gamma. Alpha was the first variant intro-
duced in Brazilian territory. Most of the data indicates that
the city of Sdo Paulo was the country’s entry point of this
variant. That is an assumption that we will hold during this
evaluation. Regarding the gamma variant, we will consider
its epicenter as the city of Manaus, as this variant originated
in this region, according to genetic surveillance Faria ez al.
[2021].

4.1 Cities at risk

We evaluated the system’s ability to identify cities at risk us-
ing the Spearman rank correlation metric. This metric helped
us measure the relationship between the cities suggested by
the system and the actual data. Initially, we ranked each
region based on the number of COVID cases reported out-
side the epicenter, using a ranking system to measure which
Brazilian regions the COVID variant reached first. Moving
average thresholds!! were used to determine whether a re-
gion had enough cases to enter the ranking list. Ranks will
lower as a region takes longer to reach the threshold. Once all
regions were ranked, we calculated the correlation between
the ranks and the probability provided by the system. Since
there was not sufficient data available at the city level for
both variants, we assessed the system’s effectiveness by ana-
lyzing the disease’s spread on a state level. This adjustment
was necessary to evaluate the system’s proposed approach.
The results for both epicenters can be found in Table 2.

According to Table 2, all the computed values for the vari-
ant Alpha show a strong correlation between the locations at
risk identified by the system (in our case, states at risk) and
the ranked list of states. However, no statistically significant
values were found when validating with the gamma variable
since p > .05, so no inferences could be made. These re-
marks apply to both flow datasets.

4.2 Propagation route

In order to validate the most probable route, we use the same
approach as when validating cities at risk (see subsection 4.1).
However, in this study, we will only verify the probability of
disease spreading, not the chosen path per si. Hence, we can-
not determine if the suggested path is the most probable, but
we can evaluate it in terms of disease-spreading probability.
Once again, the considered epicenters were Sao Paulo and
Manaus. We calculated the most probable routes from these
cities to all other state capitals in Brazil. Then, the study em-
ployed Spearman’s rank correlation to determine the correla-
tion between the ranking of capital cities'? (explained in sub-

'The calculation of the moving average used a window size of 7. This
method aims to reduce anomalies in the reported case numbers over time.
Exploratory data analysis performed in the current study revealed that there
is a concentration of reported cases on certain days of the week due to health
agencies’ procedures, which could jeopardize the evaluation of the results.

12We related each state’s confirmed cases to its capital city during the
evaluation for verification purposes. This assumption is reasonable because
the majority of cases reported at the beginning of the pandemic are, in
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Table 2. Spearman’s correlation between the system’s probability of locations at risk vs. the actual spread of COVID-19

Moving average threshold

Variant 0.5

Alpha 1(24) = -.87, p = .000
Dataset 1 Gamma r(18) =-.38,p=.110

Alpha 1(24) = -.86, p = .000
Dataset 2 Gamma r(11) =-.40, p=.099

1.0
1(24) =-.82, p =.000
r(18) =-.20,p = .410
1(24) =-.82, p =.000
r(11)=-.27,p=.281

1.5
1(24) =-.84,p =.000
r(18) =-.19, p = .440
1(24) =-.84, p =.000
r(11)=-27,p=.284

Table 3. Spearman’s correlation between the system’s path spread probability vs. the actual spread of COVID-19

Moving average threshold

Variant 0.5

Alpha r(24) =-.82, p =.000
Dataset 1 Gamma 1(24) = -.40, p = .042

Alpha 1(24) =-.83, p =.000
Dataset 2 Gamma r(24)=-.28,p=.165

1.0
r(24) = -.83, p = .000
1(24) = -.14, p = 496
1(24) = -.84, p = .000
r(24) =-.13,p= 523

15
r(24) = -.81, p=.000
r(24)=-.11, p=.584
r(24)=-.77, p = .000
r(24) = -.09, p = .664

section 4.1) and the likelihood of a disease spreading along
a particular route. The results are found in Table 3.

In Table 3, for both datasets, there is a strong correlation
between the likelihood of disease transmission through a par-
ticular route and the actual data of the alpha variant. Addi-
tionally, for Dataset 1 using a threshold of 0.5 cases, there is
a moderate correlation (r(24) = —.40,p = .042) between
the system’s reported probability of disease transmission and
the gamma variant spreading data. However, this inference
only applies to the threshold of 0.5 on Dataset 1. All the other
values for the variant gamma are inconclusive since they are
not statistically significant (p > .05).

5 Discussion

Based on the collated results, some interesting conclusions
can be drawn regarding identifying cities at risk and disease
propagation routes within the Brazilian territory. This sec-
tion will reflect upon these findings and the research pro-
cess. Furthermore, the work’s implications and limitations
will also be discussed.

The evaluation results on both datasets show a clear corre-
lation between human mobility (computation of travel proba-
bilities) and the order in which the alpha variant spread to dif-
ferent Brazilian states. However, the same correlation could
not be established for the gamma variant data due to the lack
of statistically significant results. Regarding the propagation
route (pathways), there is a moderate to strong correlation
between the study’s estimated probabilities and the order in
which the alpha variants first spread to the Brazilian capitals.
Nevertheless, once again, we were not able to conclude in
this area while validating with the gamma variant.

Regarding the different moving average thresholds (0.5,
1.0, 1.5) utilized to evaluate the two proposed approaches,
we were only able to identify a threshold of 0.5 yielded
higher correlation values. This suggests that using fewer
cases might be more effective in identifying new propagation
areas. However, it is essential to note that further data and

fact, related to the capitals and travel flows are directed towards the cap-
ital city, with other destinations also including the state capital as part of
their itinerary.

additional statistical tests are required to draw any definitive
conclusions. These findings underscore the complexity of
understanding the dynamics of pathogen spread and refining
methodologies for this purpose.

Another relevant aspect of research is the two datasets uti-
lized. In this area, we observed two main findings. The first
finding was that the analysis of both datasets yielded com-
parable outcomes for assessing alpha and gamma variations.
Notably, strong correlations were evident for the alpha vari-
ant across both datasets, while findings for the gamma vari-
ant were inconclusive. These results surprised us, as we had
anticipated a significant correlation in Dataset 2 for evaluat-
ing the gamma variant, given that this variant emerged in a
region highly dependent on water transportation. However,
we presume that the scarcity of information regarding road
connections in the northern region of Dataset 2 may have con-
tributed to the diminished correlation for the gamma variant
despite integrating data from both road and waterway net-
works. The second finding is that the comparable outcomes
across both datasets underscore their similar coverage and
portrayal of inter-municipality flow dynamics. This suggests
that transformations applied, such as data regression employ-
ing XGBoost in Dataset 1, did not significantly alter the data
behavior. As a result, these transformations can serve as a
valuable resource for rectifying issues stemming from miss-
ing or under-reported data in comparable datasets.

Despite some unexpected results, the findings are in line
with the work of Gilbert ef al. [2020]. The results confirm
that it is possible to determine areas at high risk of infec-
tious diseases using travel probabilities. Furthermore, the
current study approach allowed the development of a visu-
alization tool that permits the final user to explore different
perspectives and configurations of the problem. While sim-
ilar visualization tools exist EpiRisk [2022]; Sadekar et al.
[2021], they typically only cover global or other countries’
areas. Our tool focuses on Brazilian cities, allowing us to
understand the limitations and unique characteristics of the
Brazilian dynamics. As a result, we verified that the Brazil-
ian transportation data, particularly the land and water data,
is relatively scarce, which deeply affected the results found
in the study. Despite these challenges, our approach offers a
lightweight solution for identifying regions at risk.
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However, the study’s results have limited generalizability
due to several constraints. Firstly, there are some gaps in
the mobility and validation data. The mobility data used is
flawed and likely underestimates the numbers. Sometimes,
even data provided by IBGE and transportation agencies, par-
ticularly ANTT data, had to be disregarded for not represent-
ing reality. Furthermore, the study did not consider car trips,
which are highly prevalent in some locations, especially in
the countryside. For instance, we believe that adding water
transport data with more precise values for the number of peo-
ple traveling by water can bring better results for the gamma
variant since the country’s northern region highly uses this
type of transport. Furthermore, while the study addresses dis-
ease transmission due to transportation, it does not examine
the dynamics of disease transmission within confined spaces
like buses and airplanes, where individuals share close quar-
ters for extended periods and can potentially spread diseases.
Although this is an important aspect to consider, the primary
focus is on how transportation can facilitate the spread of dis-
eases by facilitating the movement of people from one city
to another.

Regarding the validation data, we noticed that certain
records lacked information on the city where the case was re-
ported, only indicating the state. This makes it harder to track
disease behavior at a finer level, particularly at the munici-
pality level. Secondly, the study assumed traveler’s flow to
be constant throughout the year. Nevertheless, it is common
sense that some flows are seasonal, varying throughout the
year, for example, during the holidays. This factor may have
affected the validation with the gamma variant, as the 2019
transport data used may not match reality during a pandemic.
Lastly, the evaluation of the computed path probabilities was
based on the assumption that COVID-19 was introduced and
emerged in the country only from one city. This assump-
tion may be the best alternative for validation; however, at
least for the variant alpha, this might not be a reality since
Brazilian borders were not closed immediately after the first
reported case. These limitations may impact the findings of
the present study.

6 Conclusion

The findings of this study emphasize the importance of using
human mobility to identify high-risk areas for infectious dis-
eases and track their spread in Brazil. By analyzing Spear-
man’s correlation, we discovered a direct link between the
system’s travel probabilities and the spread of the alpha vari-
ant across different Brazilian states. However, due to data
limitations, the correlation for the gamma variant was incon-
clusive.

Moreover, we found that using multiple datasets is crucial
to overcome issues like missing data and underrepresented in-
formation. However, while evaluating the gamma variable,
we concluded that there is still room for improvement in ob-
taining data on human mobility in some parts of Brazil, par-
ticularly less density areas like the north of Brazil.

Hence, further research is needed to establish better mobil-
ity and validation data throughout Brazil. The methodology
of the present study could be replicated with more accurate
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information, such as using better mobility flow models, ge-
olocalized data from mobile phones, or other databases with
additional types of transportation like cars. The same applies
to the validation data. It would be interesting to validate the
proposed approach with data from other Brazilian epidemic
diseases, such as Zika and Chikungunya. By doing so, we
may be able to evaluate the proposed approach better and
potentially build a more comprehensive infectious diseases
database. The use of graphs for modeling is also an impor-
tant domain of investigation. There are several algorithms,
such as Ford-Fulkerson, Centrality Metrics, and trajectory
prediction methods, that can be utilized for graph analysis.
These algorithms may provide more effective solutions to the
problem at hand. In addition, the question of how we can inte-
grate disease behavior with knowledge graphs to make better
suggestions and predictions remains to be answered. Further-
more, researching different visualization types to communi-
cate results information to end-users is also necessary.

The current study and developed application are in their
initial stages, and there is ample opportunity for improve-
ment in the interface level, model and algorithms used. By
doing so, we can create an easy-to-use tool to assist decision-
making in tracking disease spread in its early stages and help
prevent pandemics.
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