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Abstract This paper presents a denial constraint (DC) discovery approach for detecting faults in utility companies’
electric transmission lines. Transmission lines rely on a protection system that continually streams and stores wave-
form data with three-phase current and voltage information. Considering that those data are stored in a relational
database, we use the high expressive power of DCs to capture the expected behavior of a transmission line, as they
are ideal for representing rules in databases. Since defining DCs in our scenario requires expensive domain exper-
tise and, worse, is an error-prone task, we use a state-of-the-art algorithm to discover reliable DCs. Unfortunately,
the amount of data in the studied scenario makes state-of-the-art DC discovery algorithms impractical due to the
long execution times. In response, we propose a novel DC discovery approach using streaming windows to address
this issue. Our hypothesis is that DCs discovered in pre-fault windows significantly differ from those in post-fault
windows and can be used as a fault detection approach. We use this intuition to detect faults without human inter-
vention (i.e., an unsupervised method). The extensive experimental evaluation on a dataset with diversified fault

events shows that our approach can detect faults with 100% accuracy.
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1 Introduction

Electrical power systems rely on transmission lines to deliver
electrical power to customers. These lines usually travel long
distances and are exposed to several elusive glitches and tran-
sient events that can disturb electrical power transmission.
These events include, for example, storms and fire under the
lines. Unfortunately, such disturbances cause faults that end
up interrupting the electrical supply. Generally speaking, a
fault can be defined as any abnormal condition in the compo-
nents of a power system, such as an increase in current flow
to one or more phases [Prasad et al., 2018; Furse et al., 2021;
Ensina et al., 2024].

Electrical substations are the interface between the trans-
mission lines and the distribution grid. The substations
contain a protection system to guarantee the stability of
the network and minimize any possible damage caused by
faults [Singh and Vishwakarma, 2015]. The goal of the pro-
tection system is to accurately and quickly detect the fault
and enable the repair and restoration of the faulty line as soon
as possible [Aleem et al., 2015]. Such systems contain a pro-
tection relay or a digital fault recorder that samples line sig-
nals to produce a data stream with sample points. Each point
represents information on the distribution of load into three
phases (A, B, and C) for the current and voltage signals in the
circuit. The sample points are stored in a relational database
and can be queried to represent waveforms of changing cur-

rents. Figure 1 shows an example of electric current signal
waveforms with the incidence of a fault near 0.05 seconds.
As can be observed, a failure affects the normal operating
condition of the power system, which contains balanced and
symmetrical loads, e.g., similar amplitudes of the current sig-
nal among the phases during the pre-fault cycles.
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Figure 1. Waveforms of a faulty transmission line, involving the phase A

and the ground (AG).
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There are three essential tasks in fault diagnosis: detection,
classification, and location. Of course, an effective classifi-
cation and location rely on accurate fault detection. So it is
possible to segment the oscillography into pre-fault and post-
fault cycles, as represented in Figure 1. Such segmentation
is required by several machine learning-based approaches
found in the specialized literature. Thus, detecting the fault
inception is crucial to allow the execution of the other two
tasks since the segmentation, as mentioned above, is intrin-
sically dependent on this instant for a correct demarcation,
which can directly affect the methods’ performances for fault
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classification and location.

As highlighted by Ferreira et al. [2016], some proposals
for fault diagnosis assume that the detection phase is accom-
plished by the protection system itself (e.g., protection re-
lays). Although such an approach works well for online ap-
plications, it is not valid for offline applications. It requires
an approach to identify the failure inception since a fault
record presents pre-fault and post-fault signals, as demon-
strated in Figure 1. Developing an integrated tool including
the three essential tasks in fault diagnosis is still a challenge.
However, treating each task individually enables some ad-
vantages, such as high cohesion and independence among
them, which can result in better generalization and adaptabil-
ity capabilities. Due to these advantages, we investigate the
fault detection task individually.

We present a novel unsupervised approach to detect faults
based on denial constraints (DCs), acting as an offline ap-
plication. Since DCs are ideal for representing the complex
data business rules in databases [Chu ef al., 2013], we use
the formalism to represent the expected behavior of a trans-
mission line so that it is possible to detect faults when there
is a deviation from this behavior. For example, consider the
following constraint, often found in transmission lines: “The
electric current and voltage among the phases in a transmis-
sion line must be similar.” A DC capturing such constraint,
denoted as (1, can be expressed as follows: “There are no
two records in the database where the electric current values
differ between the phases A and B, and one of the records has
a bigger phase A voltage.” We defer the formal definition of
DCs to Section 4.

Our method differs from traditional approaches based on
machine learning algorithms by eliminating the need for fea-
ture extraction, as we directly utilize the raw data. Addition-
ally, our method is unique in that it is the first to detect faults
based on an important data management technique, i.e., de-
nial constraint. Thus, our approach enables the direct identi-
fication of fault inception from the database for the specific
event of interest without loading the entire time series into
dedicated systems.

The computational costs of DC discovery are directly in-
fluenced by the size of the dataset, specifically, the number of
rows and columns it contains [Chu ef al., 2013]. As a result,
in our context, the sheer amount of data generated by the pro-
tection system makes traditional DC discovery impractical
due to the long runtimes. In response, we contribute with an
approach for discovering DCs in streaming windows. We hy-
pothesize that DCs discovered in pre-fault windows greatly
differ from those in post-fault windows and can be used to
detect faults. A fault in a transmission line is detected by
comparing the ratio of DC violations in each window to an
expected threshold. It is noteworthy that this paper is an ex-
tension version of the work published originally in Tamalu
et al. [2023]. In this paper, we increased the discussion about
the related work (Section 2), added more details about our
method (Section 4), and included and analyzed more results
about our approach (Section 5.3), especially concerning the
variation of fault parameters.

The main contributions of this work are summarized as
follows:
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+ A DC discovery approach for streaming data;

* An application of DCs and DC discovery for fault de-
tection in electric transmission lines;

* Anunsupervised method for fault detection as an offline
application;

* An empirical evaluation showing that our approach de-
tects faults in transmission lines for all fault events as-
sessed (100% of accuracy).

This paper is organized as follows. Section 2 describes
the related work. Section 3 describes the database used in
this study. Section 4 reports the proposed method for fault
detection based on DC. Section 5 presents and discusses our
results. Finally, Section 6 concludes this work.

2 Related Work

The literature contains several methods for fault detection.
Typically, traveling wave (TW)-based methods are used in
industry to address the problem of fault analysis, including
the detection step [Shakiba ef al., 2023]. However, most re-
cent methods are primarily based on machine learning, as
demonstrated in recent reviews carried out by Kanwal and
Jiriwibhakorn [2023] and Shakiba et al. [2023].

The authors in Ferreira et al. [2020] used six neural net-
works for fault detection using voltage and current repre-
sentation for a single transmission line terminal (bus). Be-
lagoune et al. [2021] proposed an LSTM-based method for
fault diagnosis, including the detection task. Coban and Tez-
can [2021] used Discrete Wavelet Transform (DWT) on the
measured single terminal current signals before fault detec-
tion, in which the three-level wavelet energy values obtained
for each of the three-phase currents were used as input fea-
tures for the detector based on the SVM algorithm.

Chen ef al. [2018] presented a method for fault detection
in power transmission lines based on a sparse convolutional
autoencoder, automatically learning features from a dataset
of voltage and current signals. In turn, Asadi Majd et al.
[2017] used the kNN algorithm with a sliding window with
a length of a half cycle moved on the squared normalized
current waveform of each phase to detect the fault inception.

Another technique widely used for fault diagnosis is the
Wavelet Transform (WT) and its variants, such as Wavelet
Packet Transform (WPT) and Discrete Wavelet Transform
(DWT). Adly et al. [2020] used the WPT coeftficients to cre-
ate a logical decision about the occurrence or not of the fault.
Similarly, Masood et al. [2017] decomposed the current sig-
nal by the DWT technique, comparing the resulting coeffi-
cients with a pre-defined threshold value to determine the
fault inception.

On the other hand, Gilbert and Morrison [1997] discussed
about statistical approaches for fault detection, such as calcu-
lating the median using a sliding window over voltage or cur-
rent oscillographies. Other approaches can be found in spe-
cialized surveys and reviews [ Yadav and Dash, 2014; Mishra
and Ray, 2018; Raza et al., 2020; Kanwal and Jiriwibhakorn,
2023; Shakiba et al., 2023].

The machine learning methods discussed earlier rely on
supervised learning, which presents a drawback since they
depend on labeled data to train the algorithms. In contrast,
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our approach overcomes this limitation by operating without
supervision, meaning it does not require labeled data. Conse-
quently, it can detect faults autonomously. This paper intro-
duces a novel approach based on denial constraints (DCs),
typically employed to represent intricate data relationships
in databases. The proposed approach employs DCs for fault
detection without employing a traditional machine learning
algorithm.

3 Fault Database

The Fault Analysis Database (FADD) is a public dataset with
several fault simulations [Ensina ef al., 2022]. These events
were based on the IEEE 9-bus power system [Hoidalen et al.,
2019], which approximates a real power system. For this pur-
pose, we used the ATPDraw and ATP (Alternative Transient
Program) to model the system and run all simulations, pro-
viding representative time series of failures. These tools are
widely used in the research community for electrical circuit
studies, particularly in power systems considering the inves-
tigation about fault analysis and their effects.

We use a transmission line with the following properties:
500 kV, 414 km, and 60 Hz. In special, this specification rep-
resents the longest transmission line in a network of a pub-
lic electric utility company in Brazil (Energy Company of
Parana — COPEL). The available data represent voltage and
current signals for each of the three phases at both terminals
for a sampling rate of 10 kHz. The oscillography of each
simulation starts without failure, which occurs in distinct in-
stants inserted into the same cycle. Also, the fault parameters
used in the simulations are as follows:

» Type: AG, BG, CG, AB, AC, BC, ABG, ACG, BCG,
ABC;

* Location: 1to 100% of line extension, with intervals of
1%,;

» Resistance: 0.01 to 200 €2, with intervals of 10 €;

* Inception time, in seconds (s): 0.091 s, 0.093 s, 0.095 s,
0.097 5,0.099 s, 0.101 s, 0.103 s, and 0.105 s.

In particular, the letters A, B, and C represent each of the
three phases of a transmission line, while the letter G corre-
sponds to the ground action in a fault. The combination of ini-
tials indicates faults involving multiple phases or the ground.
For example, AG indicates a fault involving the phase A
and the ground, as well as AB represents a fault between
the phases A and B without the action of the ground. For
more technical details, see the following references [ Yadav
and Dash, 2014; Aleem ef al., 2015; Grainger et al., 2016].

The FADD repository contains 168,000 fault events com-
bining each of the previously mentioned parameters. The
available archives ensure reproducibility of the results and
the generation of new fault events considering other values
of the parameters. All simulation data are available in our
repository’.

'https://1drv.ms/u/s' ArMEeMx4MYDNimHVxiDx3b4CI3iL7e=
8GEXg7
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4 Denial Constraint Approach

The goal of a DC is to identify conflicting relationships of
combinations of column values with sets of predicates. A
DC specifies a conjunction of predicates that cannot be true
for any pair of tuples. We use the formalism of a predicate,
asp: t.X 0t'.Y, where X,Y are columns of a table r with
schema R; t,t’ is a pair of distinct tuples of r; and 6 € {=, #
, <, <,>, >} is a comparison operator, see Chu ez al. [2013]
for additional DC definitions. We can specify a DC ¢ as
follows:
eVt er,=(p1 Ao  Apm)

Using the above notation, we express our example rule, as
v1 : Vit € r(tJA <= t'.JANtIB <= t'IB A
t.VA >= t'.VA), where I A is the current at phase A, IB
is the current at phase B and V' A is the voltage at phase A.

w1 1 Vta,tg € 1,7(taJA <= tgJA Aty IB <=
tgIBAt,.VA>=13.VA)

Fault detection with the DC approach is divided into three
parts: data streaming and processing windows (Section 4.1),
discovery of DCs (Section 4.2) and fault detection using
these DCs (Section 4.3).

4.1 Data Streaming and Processing Windows

We use data streaming notation to represent the signals of
current and voltage converted by an oscilloscope [Braverman
and Ostrovsky, 2010]. A data stream is a finite sequence of n
observations T' = {xzg, z1,...,Z,_1} read in an increasing
order of the index 7, as 0 < 7 < m. A single data observation
x; contains information of electric current and voltage from
the three phases of the transmission line at the i index.

The transmission line signal is humongous, generating gi-
gabytes of data per second. For example, the dataset used
in our experiments stores about 96 GB of data. We pro-
pose splitting the stream into small finite sets, called W;
windows, to facilitate DC discovery. We use two different
window types: a fixed-size tumbling window and a sliding
window. A tumbling window is a non-overlapping batch of
the data stream, such as W, N W, = () which enables DC
discovery with small runtimes. A sliding window traverses
a number of tumbling windows to detect faults using the dis-
covered DCs. Sliding windows overlap data observations
WynNWy ={z:2ze€ WyAx e Wi}

4.2 Denial Constraint Discovery

The FADD dataset (Section 3) contains twelve attributes with
voltage and current values for the three phases for both ter-
minals of the transmission line regarding a given instant of
time of the time series. In this scenario, we used only the
data available for a single terminal (six attributes), aiming to
avoid the requirement of data synchronization between both
sides of the transmission line in a real operation system.

DC discovery is one of the most computationally expen-
sive data profiling tasks, so care must be taken with such
processes [Chu et al., 2013; Abedjan ef al., 2015]. Instead
of discovering the DCs using the entire dataset, we discover
DCs in tumbling windows (batches with 1,000 samples). We
use the state-of-the-art DC discovery algorithm, DCFinder,
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as provided by Pena et al. [2019]. Our goal is to discover the
DCs and capture the expected behavior of a transmission line
without and with faults in pre-fault and post-fault windows,
respectively. We selected a subset of fault events to use in
discovering DCs. So, we used a subset of 1,000 simulations
from FADD dataset (Section 3) for this purpose with the fol-
lowing diversified and representative fault parameters:

« Faulttype: AG, BG, CG, AB, AC, BC, ABG, ACG,
BCG, ABC;

 Fault location: 1%, 25%, 50%, 75%, and 100% of line
extension;

 Fault resistance: 0.01 €2, 50 2, 100 2,150 €2, and 200
Q;

* Fault inception time: 0.095 s, 0.097 s, 0.103 s, and
0.105 s.

4.3 Fault Detection

We use the term (¢,¢') }~ to denote that the pair of tuples
t,t' violate the DC . Our fault detection mechanism is based
on the degree of approximation shown in Equation 1, which
measures the ratio of the number of tuple pairs violating a DC
divided by all the tuple pairs in a batch [Chu et al., 2013].

M) erl 0,0 B
= - ™

We calculate the degree of approximation of the batch sam-
ples with the DCs previously discovered for each sliding win-
dow in previous steps. Then, we compare the degree of ap-
proximation with a threshold value to determine the occur-
rence or not of a fault. A fault is detected if the degree of ap-
proximation of a window is higher than the threshold value.
In this scenario, there are two parameters to be considered:
the window length and the threshold of the degree of approx-
imation. The values evaluated in this work are presented as
follows:

* Window length (w): 50, 100, 200, 400, and 800;

+ Degree of approximation threshold (DAT): 0, 1x1072,
1x10~4, 5x10~4, 1x1073, 5x1073, 1x102, 2x1072,
4x10~2, and 6x10~2.

To measure the effectiveness of our approach, we use the
precision (Equation 2) and F1-Score (Equation 3) as evalu-
ation metrics. We calculated each of these metrics in every
window of every simulation.

. TP
Precision = TP L FP PP 2)
TP
F1— Score = —————= 3)

TP+ FN—2&-FP

In the above equations, TP, FP, and FN represent, respec-
tively, the values of True Positive, False Positive, and False
Negative. Figure 2 depicts an overview of the approach. We
observed the sliding window depicted in blue color when run-
ning across the batches without faults in white color and pur-
ple color when running across the batches with faults in or-
ange color. We also observe the degree of approximation and
the evaluation by batch with DAT of 0.2.

Tamalu et al. 2025

5 Results and Discussion

We present in this section the results for the discovery of de-
nial constraints and evaluation of the performance of these
DC:s for fault detection, acting as an offline application.

5.1 Discovery of Denial Constraints

During the initial phase, we executed DCFinder on the sim-
ulations without employing batching or partitioning tech-
niques. This led to the identification of 140,879 unique DCs,
with an average of approximately 1,300 DCs per simulation.
However, the substantial number of DCs posed a challenge
as it rendered subsequent stages of the process, such as ob-
taining coverage metrics and evaluating the constraints, im-
practical due to the extensive time required. Moreover, with-
out data batching, it was not feasible to differentiate con-
straints discovered in fault-free samples, which are crucial
for fault detection.

By batching selected simulations in groups of 1,000 sam-
ples, 153,052 unique DCs were discovered, resulting in an av-
erage of around 555 DCs per batch. This high number of dis-
covered DCs allowed for the distinction between constraints
present in samples without faults and those with faults, over-
coming previous limitations.

Finally, the application of batching and partitioning (use
of voltage and current samples only from a single terminal
of the transmission line) reverberates in a drastic reduction in
the number of DCs, finding 695 unique DCs and an average
of approximately 18 DCs per batch, which demonstrates the
relevance of the number of attributes, as it determines the size
of the predicate space. Even more important, the partitioning
process enables the discovery of constraints with predicates
with attributes of a single bus. So, fault detection with these
DCs does not require synchronization of data collected on
both transmission line terminals, which is more consistent
with a real operating environment.

From the 695 constraints found, 100 were found in batches
with samples without fault presence, and 694 were found in
batches with failure samples, i.e., only one DC was found ex-
clusively in batches without failure, while the other 99 con-
straints of the batches without fault also appeared in batches
with failure samples. This proportion in the number of times
a DC was found in batches with and without fault varied a lot;
for example, we obtained a constraint that was found in all
500 batches without fault and which was also found in only
62 batches with failure, since another DC that was found in
all batches with no failure was also found in 3,386 batches
with fault. The mean coverage of each of the 100 DCs found
in batches without fault also varied. Trivial constraints with
only one predicate obtained an average coverage of 1.0, other
trivial ones with only two predicates had an average cover-
age of approximately 0.5, while non-trivial constraints varied
between approximately 0.666 and 0.833.

The lengths of these 100 constraints ranged between two
and six predicates, being the vast majority (79%) with five
or six predicates. Disregarding the most trivial constraints
(with one and two predicates), the shortest length was four;
thus, the majority succinctness was 1 x 10°, 0.666, and 0.833.
Analyzing which types of dependency the constraints found
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Figure 2. Fault detection with sliding windows and DC violations by batch.

represented, we noticed that we obtained a large amount of
bidirectional order dependencies, such as: ¢, : Vi, t, €
r,2(tp IC <= t, . IC Nt JA <= t, JANt,.IB <=
ty.IB)

which is coherent since the three phases have symmetric and
balanced current values during the normal operating state.
So, the ordering by the current of one of the phases must also
order the values of another phase, even if in a different direc-
tion (ascending or descending). We also had unique combi-
nations of trivial columns: ¢y : Viz,t, € r,—(t;.VA =
ty. VANt IC =t,.1C).

In turn, other dependencies did not fit any known def-
inition, but presented a pattern where there is a predicate
with the equality operator and two others with the inequal-
ity operators, such as: ¢, : Vig,t, € r,—(t,.IC <=
ty IC Nt VA <= t, VANt IA = t,.IA). The com-
plete set with all DCs found is available as a supplementary
material®.

5.2 Performance of the Proposed Approach

We used different simulations for the discovery of DCs and
fault detection. The performance of our approach, consider-
ing the F1-Score measure, is shown in Figure 3. The per-
formance of our approach increases for higher values of the
window length together with lower values of the degree of
approximation threshold. This suggests that DCs discovered
at larger window sizes better capture the behavior of a trans-
mission line and perform better in detecting DC violations.
We did not present performance results for window sizes
larger than 800 due to the increase in the computational cost
for larger windows, at the same time that there is no signifi-
cant performance gain compared to w = 800. We did some
additional experiments and observed that no performance

Zhttps://github.com/leandroensina/FaultDetection DC_SBBD

gain was achieved for these cases. On the other hand, smaller
window sizes demonstrate worse results, which would be
even lower for w < 50. It is also possible to observe in
Figure 3 that values higher than 6 x 10~2 for the DAT in-
dicate a considerable performance loss for all combinations
with window sizes.

In general, the pair of parameters composed of w = 800
and DAT = 0 initially seems to be the best configuration.
However, if we analyze the precision measure (Figure 4), we
identify that this pair is the only one that presented FP sug-
gesting possible overfitting. The occurrence of FPs is a prob-
lem in the fault detection context since it indicates that a win-
dow without electric fault data contains an anomaly. Thus,
the absence of FP is essential to guarantee the accuracy of
data for posterior fault classification and location tasks by
machine learning approaches. This can impact in a perfor-
mance loss for fault classification and location tasks, which
these activities are directly related to the instant of the fault
inception, determined by the fault detection task in an oscil-
lography. Thus, it is essential the absence of FP in order to
the data segmentation for a posterior fault classification and
location be as accurate as possible.

In response, we consider w = 800 and DAT =1 x 1075
as the best pair of parameters for our approach. This pair of
parameters does not present any FP and holds an F1-Score
of 98.41%. It is crucial to mention that our method identi-
fied the fault incidence for all test cases (accuracy of 100%),
but for some events our approach did not recognize the ini-
tial batch that contained the first failure samples as faulty,
which penalized the performance and justifies the F1-Score
0f98.41%. Thus, our method detected the fault incidence for
all test events, but not necessarily in the first batch that the
failure began.
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Figure 3. F1-Score for fault detection for each pair of parameters windows length and degree of approximation.
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Figure 4. Precision for fault detection for each pair of parameters windows length and degree of approximation.

Also, this pair of parameters requires only about 20 sam-
ples to determine the fault inception after its real beginning,
as can be observed in Figure 5, where the smaller the value,
the better the performance. We discovered 695 DCs in all
the simulation data, where 100 were discovered in pre-fault
windows and 694 in post-fault windows. DCs discovered
in pre-fault windows significantly differ from those in post-
fault windows and perform best in discovering faults.

In other words, we discover the DCs present in time series
without anomalies and use these DCs with sliding windows
and the degree of approximation to detect anomalies. This
strategy can also be used in several other areas of study that
have time series and different attributes, such as IoT and the
stock market.

The degree of approximation takes into account the num-
ber of pairs of tuples that violate a DC, but there are other pos-
sible metrics that we let for future work, such as the amount
of tuples involved in violations and the minimum amount of
tuples that need to be removed for the constraint not to be
violated.

We also compared the performance of our method against
two related works previously described in Section 1 [Asadi
Majd et al., 2017; Coban and Tezcan, 2021]. Both works
were selected because they represent two methods based
on the machine learning approach, which is widely adopted
for fault detection, demonstrating accurate performances and
versatility to other transmission lines than the one in which
they were proposed. It is worth mentioning that we replicated
both methods using the same dataset used to evaluate our ap-
proach. The results demonstrate that both approaches based
on supervised machine learning algorithms also detected the
fault for all test events (accuracy of 100%), just like the pro-
posed unsupervised approach.

However, our method does not require supervision (i.e.,
labeled data) to infer the fault (anomaly) incidence, in other
words, a human specialist delimiting if each sample or data
window represents a failure for the algorithm training. This
aspect can also reverberate in a better generalization of the
proposed approach compared to supervised methods for fault
detection. The utilization of supervised machine learning
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Figure 5. Average of samples for fault detection after the real fault inception for each pair of parameters.

methods might necessitate separate training for each super-
vised transmission line. This is due to the variations in volt-
age and current signal amplitudes observed during the opera-
tion of each transmission line, influenced by factors such as
generator power fluctuations, transmission line length, and
voltage [Ensina et al., 2022]. Consequently, it is likely that
these approaches will require an individual model for each
supervised line.

On the other hand, our approach can indiscriminately iden-
tify faults despite these factors since the transmission lines
present predominantly properties like symmetrical and bal-
anced voltages/currents until the inception of a fault. Thus,
the DCs found in this work are valid to use in other trans-
mission lines (e.g., other datasets) for fault detection. The
DCs are based on the correlation among the behavior of the
voltage and current waveforms, according to the properties
previously mentioned, and not by features extracted from the
signals or predefined threshold values (e.g., constants).

Methods relying on feature extraction, such as those based
on machine learning algorithms, may encounter challenges
when confronted with varying feature values from other
transmission lines exhibiting different amplitudes of voltage
and current signals. This can lead to a lack of generalization
capacity, as mentioned in Ensina et al. [2022]. Instead, the
proposed approach aims to eliminate the need for feature ex-
traction, seeking to improve the method’s capacity to adapt
effectively to new, previously unseen data originating from
other power systems (different datasets). Further exploration
of this analysis is planned for future investigations.

The primary limitation of our approach lies in the compu-
tational expense associated with initially discovering the De-
nial Constraints (DCs). However, once these DCs are identi-
fied, the average time required for the approach, using a win-
dow length of w = 800, to calculate the degree of approxi-
mation and perform classification amounts to approximately
331.54 milliseconds (ms). It is noteworthy that the runtime
cost exhibits a linear pattern concerning the window length,

with times ranging from 20.75 ms for w = 50, 40.39 ms for
w = 100, 78.37 ms for w = 200, 159.17 ms for w = 400,
up to 331.54 ms for w = 800.

Figure 6 shows that our method could detect the fault
occurrence in all simulations when using windows length
greater than or equal to 200 with a D AT less than or equal
to 1 x 1074,

Intuitively, we initially thought that smaller windows
would have their degrees of approximation more sensitive
to changes in the number of violations than larger windows,
which did not happen as can be observed. In order to clar-
ify the reason for this behavior, we sought to make addi-
tional analysis to answer this question. We hypothesize that
larger windows include more samples and, consequently,
more pairs of tuples that constitute a violation, while smaller
windows have fewer pairs of tuples that represent a violation.
Therefore, combining larger windows with a lower DAT
leads to a reduction in the number of false negatives.

5.3 Analysis for the Fault Parameter Varia-
tion

In this section, we analyze our method considering the in-
fluence of the variation of each fault parameter. The re-
sults correspond to the best configuration for our approach
such as previously discussed and justified (w = 800 and
DAT =1 x1075).

Table 1 shows the results for different fault inception times,
demonstrating similar performances among them and, conse-
quently, that this parameter does not significantly affect our
method. This parameter is important because it represents
the uncertainty associated with the time when a fault starts.
It is noteworthy that the values for this parameter differ from
those reported in Section 4.2 since we used different fault
events for DC discovery and to assess the method.
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Figure 6. Average of simulations in which no faults were detected.

Fault inception time  F1-Score Precision
0.091 s 0.9845 1.0000
0.093 s 0.9839 1.0000
0.099 s 0.9844 1.0000
0.101's 0.9837 1.0000

Table 1. Performance evaluation for different fault inception time.

Table 2 presents the results individually for each fault type.
In this analysis, we can observe distinct behaviors among
some fault types, especially regarding CG, AB, and AC types,
which demonstrated worse results, with the F1 score being
lower than 98%. Nonetheless, it is crucial to emphasize that
these results represent the overall performance considering
all windows obtained from the oscillography. In other words,
for these types of faults, it was not possible to identify the
occurrence of the fault in the first windows, requiring ad-
ditional windows to actually recognize the failure inception.
The results reported in the last section demonstrated that our
method achieves 100% accuracy, i.e., our method identified
the anomaly inception for all fault events but not necessarily
in the first data windows.

Table 2. Performance evaluation for each fault type.

Similar findings can be identified in Tables 3 and 4, which
report the performance of varying fault resistance and lo-
cation, respectively. Faults that are closer to the terminal
used for data collection, as well as faults with lower resis-
tances, present more significant changes in the behavior of
the three-phase current signal (i.e., higher post-fault ampli-
tudes), which we expected would be easier to detect by our
method. Curiously, the results were inferior for these scenar-
i0s, requiring extra sliding windows to identify the fault.

Table 3. Performance evaluation for different fault resistances.

Fault resistance F1-Score Precision
1Q 0.9794 1.0000
50 Q 0.9734 1.0000
100 © 0.9831 1.0000
150 © 0.9908 1.0000
200 Q2 0.9936 1.0000

Table 4. Performance evaluation for different fault locations.

Fault location F1-Score Precision
1% 0.9635 1.0000
25 % 0.9851 1.0000
50 % 0.9863 1.0000
75 % 0.9917 1.0000
100 % 0.9935 1.0000

Fault type F1-Score Precision
AG 0.9801 1.0000
BG 0.9860 1.0000
CG 0.9665 1.0000
AB 0.9754 1.0000
AC 0.9611 1.0000
BC 0.9972 1.0000

ABG 0.9951 1.0000
ACG 0.9899 1.0000
BCG 0.9922 1.0000
ABC 0.9962 1.0000
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6 Conclusion and Future Work

This paper presented a DC-based approach for accurate fault
detection in electric transmission lines. Since DCs capture
complex rules in databases, we used them to represent the
behavior of transmission lines with and without faults. We
showed that the DCs discovered in pre-fault windows signif-
icantly differ from those in post-fault windows and can be
used to detect faults. The results demonstrated accuracy and
precision of 100% for this task, requiring only about 20 sam-
ples to determine the inception of the fault with a window
size of 800 and a degree of approximation of 1 x 1075,

Future works include (1) the evaluation of the method us-
ing more failure events from the FADD dataset and examples
of real fault data. Considering the DC algorithm employed
in our approach, future works also include (2) testing the C-
FASTDC algorithm [Chu et al., 2013] as it allows discover-
ing DCs with constant values not covered by the DCFinder;
(3) applying our DC approach in other data streaming appli-
cations to detect elusive events, like IoT and stock market;
(4) assessing the predicates of the DCs for the fault classifi-
cation task.
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