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AbstractThe exploratory analysis of evolutionary informationwithin a phylogenetic tree database is a crucial task in
the field of bioinformatics. Phylogenetic trees are constructed by exploring multiple evolutionary and tree construc-
tion methods. For instance, methods like Maximum Parsimony, Maximum Likelihood, and Neighbor-Joining may
yield slightly different trees due to their distinct approaches to inferring phylogenies (e.g., distance and character-
based methods). Therefore, analyzing evolutionary data often entails identifying frequent subtrees within a given
set of phylogenetic trees. However, this identification process can be computing-intensive, depending on the size of
the input tree database. In this manuscript, we introduce the NMFSt.PNotebook, which aims to simplify the compar-
ison of multiple phylogenetic trees for identifying frequent subtrees in the database. Our experiments demonstrate
that NMFSt.P produces results comparable to the baseline approach while bringing the advantage of flexibility for
the scientist.
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1 Introduction

With the rapid evolution of technologies integrating Biol-
ogy with Computer Science, e.g., high-throughput DNA se-
quencing techniques coupled with High-Performance Com-
puting (HPC) environments (e.g., clouds and clusters), the
volume of available biological data has increased exponen-
tially [Ocaña and de Oliveira, 2015]. This increase in data
availability has had a significant impact on the field of phy-
logenetics, enabling the generation of large-scale phyloge-
netic trees [Goloboff et al., 2009] through the execution
of standalone applications or complex scientific workflows
[Guedes et al., 2017; Ocaña et al., 2011]. Analyzing these
phylogenetic trees is crucial for elucidating the evolutionary
relationships among organisms, providing essential insights
for subsequent tasks.
Several programs, systems, and services can be used

for creating phylogenetic trees, each applying a specific
evolutionary method, e.g., maximum parsimony, neighbor-
joining, and maximum likelihood [Tommy Tsan-Yuk Lam
and Tang, 2010]. Since each program/method has its char-
acteristics, the same input phylogenetic tree database can
produce different relationships depending on the adopted
program/method [Puigbò et al., 2019]. Choosing the most
suitable program/method for a given input database of phy-
logenetic trees may be a challenge, as it depends on var-
ious factors such as the number of sequences, sequence
sizes, etc. Therefore, scientists often explore several pro-
grams/methods in their experiments, thus generating multi-
ple phylogenetic trees based on different methods. Extract-
ing practical knowledge from this database of trees is then a

top priority.

Some approaches aim to extract information from the phy-
logenetic tree database by obtaining a consensus tree [Bryant,
2003]. However, this type of tree may not be able to return
frequent subtrees, which can indicate the existence of evo-
lutionary patterns. For example, Figure 1 presents two hy-
pothetical phylogenetic trees named (A) and (B) that have a
common subtree (C) that may indicate an evolutionary pat-
tern. Despite providing important insights, finding frequent
subtrees is an NP-hard problem [Amir and Keselman, 1997]
and may involve comparing several hundreds of trees. The
identification of frequent subtrees can be considered a large-
scale problem. It is often modeled as a scientific workflow
and executed using workflow systems [de Oliveira et al.,
2019]. However, using workflow systems requires a non-
trivial learning curve since each existing system has features
that the scientists must understand to model and execute their
workflows. Since these workflows often need to be executed
in HPC environments, this adds another layer of complexity,
which can ultimately limit their efficient usage.

This manuscript introduces the NMFSt.P (Notebook for
Mining Frequent Subtrees in Parallel) to streamline the pro-
cess of identifying frequent subtrees without requiring work-
flow systems or developing complex implementations on
the users’ part. Our notebook can detect frequent patterns,
specifically subtrees, within the input tree topologies. Build-
ing upon prior work by our research group, which focused
on modeling phylogenetic analysis workflows and subtree
mining using existing workflow systems, the NMFSt.P ex-
tends this framework. Implemented in Python, it leverages
the Parsl library [Babuji et al., 2019] to introduce the neces-
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Figure 1. Hypothetical example of two phylogenetic trees and a subtree.

sary parallelism for efficient task execution. By adopting the
NMFSt.P, scientists can identify, from the generated phyloge-
netic tree database, which subtrees are shared among differ-
ent phylogenetic trees. To evaluate the proposed notebook,
we used a database comprising 200 phylogenetic trees de-
rived from protozoan genes and constructed using various
methods. The findings showed promising results, reinforc-
ing the effectiveness of the approach.
This manuscript is an extension of work originally re-

ported in the Proceedings of the Brazilian e-Science Work-
shop (BreSci) [Ferrari et al., 2023] held in Belo Horizonte,
MG - Brazil, on September 2023. We enriched the ex-
perimental evaluation with a brand-new experiment in this
extended version and improved the background and re-
lated work sections. We organized the remainder of this
manuscript into five sections following this introduction.
Section 2 provides background knowledge, while Section 3
delves into related work. Section 4 offers detailed insights
into the proposed notebook, NMFSt.P. Section 5 presents
the experimental results, and finally, Section 6 concludes the
manuscript and outlines potential future work.

2 Background Knowledge
This section discusses important concepts regarding this
manuscript, i.e., sequence alignment, methods for inferring
phylogenies and phylogenetic trees. It is widely acknowl-
edged that DNA and RNA sequences are represented as
strings of letters, each corresponding to a nucleotide base.
Specifically, these letters denote Adenine (A), Cytosine (C),
Guanine (G), Thymine (T), and Uracil (U or Ura) [Setubal
and Meidanis, 1997]. While DNA sequences employ A, C,
G, and T, RNA sequences use U instead of T during tran-
scription.
In the case of proteins, which are built as chains of amino

acids, they are usually labeled as a string of letters, where
each amino acid is represented as a letter [Setubal and Mei-
danis, 1997]. There are 20 standard amino acids found in
biological chemistry, coded as A (Ala) for Alanine, C (Cys)
for Cysteine, D (Asp) for Aspartic Acid, E (Glu) for Glu-
tamic Acid, F (Phe) for Phenylalanine, G (Gly) for Glycine,
H (His) for Histidine, I (Ile) for Isoleucine, K (Lys) for Ly-
sine, L (Leu) for Leucine, M (Met) for Methionine, N (Asn)
for Asparagine, P (Pro) for Proline, Q (Gln) for Glutamine,
R (Arg) for Arginine, S (Ser) for Serine, T (Thr) for Threo-
nine, V (Val) for Valine, W (Trp) for Tryptophan, and Y (Tyr)
for Tyrosine. Typically, text files are employed to represent

these sequences in a computational environment, albeit with
various possible formats. This manuscript adopts the FASTA
format [Markel and Leon, 2003].
In FASTA format, each sequence is preceded by a line

starting with the “>” symbol, followed by the sequence name.
For instance, in Figure 2, the string represents a fragment
of a DNA sequence. Figure 3 represents a fragment of the
FASTA file that represents a protein from Plasmodium falci-
parum, a species of malaria-causing parasite. Additionally,
for DNA and RNA sequences, it is noteworthy that there are
several letters outside the set {A, C, G, T, U}. This occurs
when the genetic codes cannot be resolved with the desired
confidence level, prompting the format to accommodate am-
biguous representations. In this context, R denotes either G
or A, Y denotes either T or C, K denotes either G or T, M
denotes either A or C, S denotes either G or C, W denotes
either A or T, B denotes G, T, or C, D denotes G, A, or T, H
denotes A, C, or T, V denotes G, C, or A, and N denotes any
of the four bases.

>gi|186704|Keratin Homo sapiens keratin
CCCAGGGTCCGATGGGAAAGTGTAGCCTGCAGGCCCACACCTCCCC
CTGTGAATCACGCCTGGCGGGACAAGAAAGCCCAAAACACTCCAAA
CAATGAGTTTCCAGTAAAATATGACAGACATGATGAGGCGGATGAG
AGGAGGGACCTGCCTGGGAGTTGGCGCTAGCCTGTGGGTGATGAAA
GCCAAGGGGAATGGAAAGTGCCAGACCCGCCCCCTACCCATGAGTA
TAAAGCACTCGCATCCCTTTGCAATTTACCCGAGCACCTTCTCTTC
ACTCAGCCTTCTGCTCGCTCGCTCACCTCCCTCCTCTGCACCATGA

Figure 2. A fragment of a FASTA file containing a DNA sequence.

>pfnc|PfNF135_050016300
MLSLKNVKSNDEVNDIRNANDTFNKYSRSIIPMEHNIIVLPCECK
TSIIKNTFLDILSPMKIPFCKINNTNVQNTTNVFSLRKKKKTLRC
ENILNQNKGNTKNDKEQNDNLITCHNNFKSFNSNYLDTYSIIGGT
YKNTYFKNKMDNKYFTIEIERKYDIINEDKNPFDYYTYVAMKNQH
RNYLALKNIPYIEKQIMNCRDLNSVYINKNIVIPEIQYKHNKKTK
ITKRDLIEYNCIKDNANDFFNLNTEISNTLVKDNMISRIINENEL
KKNQSLSLIDDRKKSIARNISEKNNQIIYNSKQHFNIFDDIRPSI
KKNIKKKKKNLGVCYLNLNNLSCQFLMTCDKT

Figure 3. A fragment of a sequence in FASTA format representing a protein
from Plasmodium falciparum.

However, derivingmeaningful insights only from the inde-
pendent analysis of sequences poses a significant challenge.
By comparing sequences, scientists can identify potential
evolutionary relationships among them. Consequently, these
sequences must undergo alignment. Sequence alignment
entails the arrangement of sequences to identify regions of
similarity, which can potentially correspond to evolution-
ary relationships. The basic concept underlying sequence
alignment is organizing multiple (and different) sequences
in rows, aligning them one above the other so that similar
bases are positioned vertically. When sequences are homol-
ogous, they show a certain level of similarity. Differences
in bases at specific sequence positions denote mutations, in-
sertions, or deletions. Additionally, gaps may be introduced
into the sequence to ease alignment.
The sequence alignment task is tedious and error-prone to

accomplish manually, especially for large sequences. Thus,
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a plethora of software implements sequence alignment tasks,
each with specific characteristics, some based on database
searches such as BLAST [Altschul et al., 1990] and HM-
MER [Durbin et al., 1998]. On the other hand, other pro-
grams are based on pairwise alignment, such as BLASTZ
[Schwartz et al., 2003] and CUDAlign [de O. Sandes et al.,
2014]. Finally, some software performs multiple sequence
alignment such as MAFFT [Katoh et al., 2017], ClustalW
[Chenna et al., 2003], ProbCons [Do et al., 2004], MUSCLE
[Edgar, 2004] and T-Coffee [Notredame et al., 2000].
To construct a phylogenetic tree, a fundamental concept

in the context of this manuscript, the sequences must be re-
lated in some manner. One approach is establishing relation-
ships among sequences based on a shared ancestor, thus iden-
tifying a phylogeny. The general structure of a phylogenetic
tree is depicted in Figure 4. Phylogenetic trees consist of a
root and numerous branches. Nodeswithin the tree represent
points where two branches converge, indicating all descen-
dant branches’ most recent common ancestor. The scale of
the tree denotes the degree of relatedness between branches.
At the terminus of the tree, one encounters leaves, also re-
ferred to as tips, representing individual sequences or taxa.
While trees can be represented textually, they are more ef-
fectively visualized using cladograms or phylograms. Phy-
lograms offer the advantage of illustrating both evolution-
ary direction and genetic distance. The creation of a phy-
logenetic tree requires the identification of phylogenies be-
tween sequences. Various methods exist for inferring phylo-
genies. Well-known methods include Neighbor-Joining (NJ)
[Saitou and Nei, 1987], Maximum Likelihood (ML) [Nixon,
2001], and Maximum Parsimony (MP) [Farris, 1970], all of
which can be applied within the notebook proposed in this
manuscript. These methods employ distinct algorithms to in-
fer evolutionary relationships, allowing researchers to derive
phylogenetic trees from sequence data.

Figure 4. The structure of a phylogenetic tree, with its root, branches,
leaves, and nodes.

NJ is a distance-based method that clusters two sequences,
often referred to as neighbors, according to a distance ma-
trix. Its primary advantage lies in its speed, making it a good
choice for large datasets. However, it does not guarantee
that the resulting tree accurately represents the evolutionary
relationships among the sequences. ML consumes a dataset
of aligned sequences and extensively explores all possible
trees based on this alignment. While ML offers high accu-
racy in inferring evolutionary relationships, it is computing-

intensive due to the exhaustive exploration of (maybe exten-
sive) tree space.
On the other hand, the MPmethod assumes that evolution-

ary changes are infrequent and seeks to minimize the number
of such changes in the resulting phylogenetic trees. It selects
the tree with the fewest evolutionary changes as the solution.
However, a drawback of MP arises when sequences show a
high mutation rate, leading to potentially inaccurate tree con-
struction.

3 Related Work
Several papers in the literature have proposed workflows
and methodologies for identifying frequent subtrees within
phylogenetic tree databases [Guedes et al., 2017; Vilella
et al., 2009; Deepak and Fernández-Baca, 2014]. For in-
stance, Guedes et al. [2017] introduce SciPhyloMiner,
a workflow designed within the parallel workflow system
SciCumulus [de Oliveira et al., 2012]. SciPhyloMiner
uses the Dendropy application [Sukumaran and Holder,
2010] for performing subtree mining. However, despite
representing a step forward, SciPhyloMiner faces limita-
tions in its parallelism strategy. Since Dendropy is non-
parallelizable, the most computing-intensive activity of the
workflow cannot be distributed across multiple machines.

Similarly, Vilella et al. [2009] propose the
EnsemblCompara GeneTrees workflow, which en-
compasses multiple activities, including multiple sequence
alignment, tree construction, and subtree clustering. This
workflow identifies frequent subtrees within large gene fam-
ilies, enabling the exploration of evolutionary relationships
among gene sequences across different species. Unlike
NMFSt.P, designed as a Jupyter Notebook for ease of use
and extension, the approaches mentioned earlier constrain
users to specific workflow systems. This constraint may
limit their applicability across different contexts.
In addition to workflows, numerous papers in the litera-

ture proposemethods for identifying frequent subtreeswithin
phylogenetic trees, which can be integrated into NMFSt.P.
For instance, Deepak et al. [2014] introduce the Evominer
algorithm, a parallel algorithm designed to identify frequent
subtrees. The authors compared performance with other
state-of-the-art solutions, demonstrating that Evominer out-
performs them by two orders of magnitude. Unlike NMFSt.P,
Evominer assumes that the trees are already available and
the sequences are aligned. Similarly, Deepak and Fernández-
Baca [2014] propose MfstMiner, a tool tailored for identify-
ing all maximal frequent subtrees within databases of phy-
logenetic trees. A maximal frequent subtree is one with the
largest possible number of leaves (tips).
Addressing the challenges surrounding the identification

of Maximum Frequent Subtrees (MFASTs) in phylogenetic
tree databases, Ramu et al. [2012] propose a method that
efficiently processes datasets with over 1,000 taxa and hun-
dreds of trees, setting it apart from existing approaches. Fur-
thermore, Rasmussen and Guo [2022] present methods for
tree reconciliation, along with tree forests (MAFs), that can
be combined and restructured. Additionally, Molloy and
Warnow [2019] introduce the NJMerge approach, estimat-
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ing a consensus tree by analyzing various trees and subtrees.
These methods offer several approaches to subtree identifica-
tion, each with its strengths and weaknesses, providing valu-
able options for integration into NMFSt.P.

4 The Proposed Approach: NMFst.P
The NMFSt.PNotebook is designed for identifying recurring
patterns in phylogenetic tree databases, e.g., frequent sub-
trees in the topologies of phylogenetic trees. The NMFSt.P
implements a well-defined workflow composed of seven ac-
tivities, as depicted in Figure 5. The first four activities
are part of the SciPhy sub-workflow, previously defined by
Ocaña et al. [2011].
Initially, a Sequence Validation is performed using the

Biopython library (https://biopython.org/) to ensure
that the input files are in the expected format, i.e., FASTA
format. After that, theMultiple Sequence Alignment activity
is invoked. In the current version of NMFSt.P, ClustalW
is defined as the standard tool for performing the alignment,
but the notebook allows for the program to be replaced by an-
other by the scientist. The alignment result is saved in a file
with ALN extension, which will be later used to construct the
phylogenetic tree. Next, the Evolutionary Model Selection
activity defines the evolutionary model to be used. In the
current version, this choice is also made by the Biopython
library. By default, the chosen model is Neighbor Joining
(NJ), a method for phylogenetic reconstruction from DNA
or protein sequences Saitou and Nei [1987], but the user can
explore other models if necessary.
In the Phylogenetic Tree Construction activity, programs

responsible for tree generation are invoked. The user can
explore well-known programs such as RAxML and MrBayes
or use the Biopython library. From the generated trees, the
process of identifying frequent subtrees can then be initiated.
The first activity is Subtree Generation, which identifies all
possible subtrees in each phylogenetic tree. Each subtree is
saved in a file, allowing for finer-grained post-analysis. Al-
gorithm 1 presents the process of generating possible sub-
trees and is invoked for each phylogenetic tree generated in
the Tree Generation activity. Algorithm 1 iterates over a set
of phylogenetic trees and identifies the possible subtrees in
this set. This activity can be parallelized since the identifica-
tion of subtrees in a specific tree does not depend on others
(e.g., bag-of-tasks parallelism [Zhang et al., 2019]).

Once all possible subtrees of each tree have been gener-
ated, NMFSt.P classifies each subtree by size in the Subtree
Mapping activity. Additionally, NMFSt.P generates a sub-
treematrix (the procedure of which is presented in Algorithm
2), which will be used in Similarity Calculation activity. It is
important to emphasize that the generated matrix,m_subtree,
is a sparse and symmetricmatrix, sincewhenwe calculate the
transpose matrix m_subtree, we obtain the matrix m_subtree
itself.
The entire notebook was implemented in Python and is

available on the institutional GitHub repository at the follow-
ing URL https://github.com/UFFeScience/NMFSt.P.
Since identifying frequent subtrees can be computing-
intensive, NMFSt.P has been adapted to leverage the Parsl

Algorithm 1: SubTreeGen - Subtree Generation
Input: path ▷ Path of the Phylogenetic Tree
Output: row_subtree ▷ List of generated subtrees paths

1 tree← load(path, “nexus”) ▷ Load phylogenetic tree in Nexus
format

2 row_subtree← [] ▷ List with subtree paths
3 ▷ Iterating over all subtrees
4 foreach clade in find_clades(tree) do
5 subtree← BaseTree.Tree(clade)
6 if count_terminals(subtree) > 1 then
7 filepath_out← write(subtree, “nexus”) ▷ Saves the

subtree in Nexus format and returns the saved subtree
path

8 row_subtree.append(filepath_out)
9 end
10 end
11 return row_subtree ▷Returns the list with the paths of the

identified subtrees

Algorithm 2: SubTreeMatrixGen - Construction of
the Subtree Matrix
Input: path ▷ Path of identified subtrees
Output: m_subtree ▷ Array with all subtrees

1 m_subtree← []
2 foreach file in path do
3 if file.name != nil then
4 m_subtree.append(sub_tree(file.path, file.name));
5 end
6 end
7 return m_subtree;

Algorithm 3: SimCalcFST - Similarity Calculation
Input: m_subtree ▷ Symmetric array containing the identified

subtrees
Output: fst_db ▷ Frequent Subtree Database (FST)

1 fst_db← {}
2 n_column← num_columns(m_subtree)
3 n_row← num_rows(m_subtree)
4 max_fst← 0
5 g_fst← 0
6 for i← 1 to n_row do
7 for j← to n_column do
8 for k← 1 to n_row do
9 for l← to n_column do
10 if i != k then
11 if max_fst ≤ sim(m_subtree[i][j],

m_subtree[k][l]) then
12 max_fst← sim(m_subtree[i][j],

m_subtree[k][l])
13 end
14 sim_fst← sim(m_subtree[i][j],

m_subtree[k][l])
15 if sim_fst ≥ 1 then
16 fst_db[g_fst][m_subtree[i][j].
17 append(m_subtree[k][l])
18 g_fst← g_fst + 1
19 end
20 end
21 end
22 end
23 end
24 end
25 return fst_db;

https://biopython.org/
https://github.com/UFFeScience/NMFSt.P
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Figure 5. The Workflow executed by NMFSt.P.

library, enabling parallel execution of the notebook. It is im-
portant to note that the public version of NMFSt.P does not
yet include parallel capabilities, as we are currently adapt-
ing the script to seamlessly function across various envi-
ronments, including local computers, clouds, and clusters.
Using Parsl, scientists can indicate where the code should
be executed in parallel using annotations, known as decora-
tors. These annotations, implemented as Annotated Func-
tions (i.e., apps), allow for the concurrent execution of iden-
tified apps while respecting the data dependencies within
the workflow implemented in the notebook. For instance,
@python_app decorators can be added to subtree generation
and similarity calculation activities. This approach enhances
the efficiency of NMFSt.P by leveraging parallel computing
capabilities to speed up the analysis process.

5 Experimental Evaluation
In this section, we provide an experimental evaluation of
NMFSt.P, analyzing the results from two perspectives: (i)
biological and (ii) computational. From a biological stand-
point, the experiment aims to verify whether NMFSt.P can
effectively identify frequent subtrees from a database of phy-
logenetic trees. On the computational front, the experiment
aims to evaluate the performance of parallel execution in
NMFSt.P and compare it against a baseline.

5.1 Environment Setup

For the experiments conducted in this manuscript, both
NMFSt.P and the approach proposed by Guedes et al. [2017],
i.e., SciPhyloMiner, were executed on Google Cloud Plat-
form (GCP). GCP stands out as one of the leading cloud
providers in the market. Among the various types of
virtual machines offered by GCP, we opted to use the
c3d-standard-60 type. This virtual machine configura-
tion has 60 vCPUs, 120 GB of RAM, and 20 Gbps of band-
width, and it costs US$ 1.0651 per hour in the spot market.
Such specifications suit CPU-boundworkloads that do not re-
quire large memory allocations, aligning with the workflow
requirements executed by NMFSt.P.
Regarding software, the virtual machine is configured

with the following versions: ClustalW version 2.1 for se-
quence alignment and programs RAxML 7.2.8 and MrBayes
3.2.6 for phylogenetic tree generation. Additionally, Biopy-

thon version 1.81 is included to support various bioinformat-
ics tasks.

5.2 Experiment Setup
The dataset used in our experiments comprises 200 multi-
fasta files. We selected a subset of multi-fasta files con-
taining protein sequences from orthologous genes found
in malaria-causing parasites for our input dataset. This
dataset, obtained in fasta format, was sourced from
RefSeq (ftp://ftp.ncbi.nih.gov/refseq/release/
protozoa/), as defined by Ocaña and Dávila [2011].

5.3 Results Discussion
From a biological standpoint, NMFSt.P produced the
same trees as generated by the baseline approach, i.e.,
SciPhyloMiner differing only in the output format. While
the output type generated by NMFSt.P is a database of simi-
larities, the baseline approach outputs a list of subtrees with a
frequency above a user-defined threshold θ. Overall, the an-
alyzed genes presented similar phylogenetic trees using both
RAxML and MrBayes as presented in Figure 6, indicating con-
sistent relationships among taxa, achieving the same conclu-
sion obtained by Guedes et al. [2017], the baseline approach.
From a computational perspective, we ran NMFSt.P on a

c3d-standard-60 virtual machine, varying the number of
cores used in each execution. Additionally, we evaluated
the baseline approach’s performance, which was run in the
same environment but used a parallel workflow system, i.e.,
SciCumulus, to execute the workflow.
Figure 7(a) illustrates the makespan of both NMFSt.P and

the baseline, measured in hours for each different configu-
ration used. It is evident that for both approaches, the total
makespan decreases as more cores are added to the execu-
tion, as expected. However, SciPhylominer demonstrates
superior performance compared to NMFSt.P. This difference
in performance can be attributed to the different execution
engines used by each approach. While SciPhylominer ex-
ecutes on top of SciCumulus, a workflow system optimized
for cloud environments, NMFSt.P runs on top of the Jupyter
Notebook engine. As noted by Colonnelli et al. [2022], the
overhead introduced by the interactive execution mode in
notebooks may become non-negligible in specific scenarios.
We analyzed the speedup (Figure 7(b)) and the par-

allel efficiency (Figure 7(c)) for both NMFSt.P and

ftp://ftp.ncbi.nih.gov/refseq/release/protozoa/
ftp://ftp.ncbi.nih.gov/refseq/release/protozoa/
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Figure 6. Phylogenetic trees created by RAxML and Mr.Bayes within NMFSt.P.

Figure 7. Analysis of (a) Makespan, (b) Speedup and (c) Efficiency for both NMFSt.P and SciPhylomics.

SciPhylominer. We observed that the speedup, defined
as the ratio of computing time for sequential execution to
that for parallel execution, deviates significantly from linear
speedup for both approaches. This deviation is primarily at-
tributed to segments of the workflow that are not paralleliz-
able, commonly referred to as blocking activities, requiring
sequential execution even with multiple available cores. Ad-
ditionally, the optimal efficiency, calculated as the speedup
divided by the number of execution units (in this context,
vCPUs) for both approaches, was attained using 16 vCPUs.
This aspect highlights an area for potential improvement in
future versions of NMFSt.P.

6 Conclusions and Future Work
Currently, many experiments in the field of bioinformatics
generate large databases of phylogenetic trees. Analyzing
such phylogenetic trees and identifying frequent subtrees can
indicate the presence of evolutionary patterns. However,
this task is not straightforward as it may require compar-
ing hundreds of trees. In this manuscript, we introduce a
Jupyter Notebook called NMFSt.P, which aims to provide a
user-friendly workflow for identifying frequent subtrees in
a database of phylogenetic trees. NMFSt.P was evaluated
through a case study that identified frequent subtrees in trees
generated from 200 multi-fasta files of malaria-causing par-
asites. The results were equivalent to those of the baseline
approach, both in biological and computational terms, with
the advantage of user-friendly accessibility. Future work in-
cludes integrating provenance capture tools into NMFSt.P us-

ing DfAnalyzer provenance library [Silva et al., 2020] and
conducting experiments with larger datasets to evaluate scal-
ability.
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