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Abstract In the realm of time series prediction modeling, the window size (w) is a critical hyperparameter that
determines the number of time units included in each example provided to a learning model. This hyperparameter
is crucial because it allows the learning model to recognize both long-term and short-term trends, as well as sea-
sonal patterns, while reducing sensitivity to random noise. This study aims to elucidate the impact of window size
on the performance of machine learning algorithms in univariate time series forecasting tasks, specifically address-
ing the more challenging scenario of larger forecast horizons. To achieve this, we employed 40 time series from
two different domains, conducting experiments with varying window sizes using four types of machine learning
algorithms: Bagging (Random Forest), Boosting (AdaBoost), Stacking, and a Recurrent Neural Network (RNN)
architecture, more specifically the Long Short-Term Memory (LSTM). The results reveal that increasing the win-
dow size generally enhances the evaluation metric values up to a stabilization point, beyond which further increases
do not significantly improve predictive accuracy. This stabilization effect was observed in both domains when w
values exceeded 100 time steps. Moreover, the study found that LSTM architectures do not consistently outperform
ensemble models in various univariate time series forecasting scenarios.
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1 Introduction

The forecasting of time series is an important task with appli-
cations in many areas, including economics, finance, health,
engineering, social sciences, and climatology [De Gooijer
and Hyndman, 2006]. Time series can be defined as se-
quences of terms ordered over time, usually at regular inter-
vals, and can provide valuable information about trends, pat-
terns, and behaviors of dynamic systems over time. By study-
ing time series, one can uncover hidden information and pre-
dict future behaviors, enabling informed decision-making
and the improvement of efficiency and effectiveness. Ana-
lyzing these series can also help identify changes in seasonal
patterns or extreme events, such as peaks or drops in a series,
which can be valuable for risk prevention or mitigation.
Despite all these applications, modeling a time series fore-

casting problem can present challenges in understanding how
hyperparameters affect predictions. In addition to consider-
ing the definition of the window size (w), the number of past
observations used as input to predict future values, it is neces-
sary to explore a variety of hyperparameters of the adopted
model, such as learning rate, number of hidden layers, fil-
ter sizes, among others. Moreover, it is important to prop-
erly define the multi-step forecasting strategies [Taieb et al.,
2012] and the forecasting horizon size [Hamzaçebi et al.,
2009]. Another crucial consideration is choosing appropri-
ate transformations to deal with possible nonlinearities, sea-
sonality, trends, and other characteristics of the time series
[Salles et al., 2019]. In other words, time series modeling

requires careful analysis of several factors to ensure accurate
and reliable forecasts.
Specifically regarding the window size (w), this hyperpa-

rameter is important in time series forecasting because it de-
fines the number of time units that are present in each exam-
ple during the training process of a model, and it influences
the accuracy and stability of the forecast [Azlan et al., 2019].
Choosing an appropriate window size is crucial for captur-
ing long-term and short-term trends and seasonal patterns
without making the model sensitive to random fluctuations
or leading to overfitting. Often, the ideal choice of window
size needs to take into account the complexity of the time se-
ries, the size of the dataset, the model used, and the available
computational capacity.
Despite the importance of defining the window size, there

are not many articles that address the study of the real im-
pact of window size on time series forecasting using differ-
ent models and a large forecast horizon. In this context, this
article aims to study the impact of window size on time se-
ries forecasting. For this purpose, two real datasets were
used, one from retail and one from urban mobility, with a
total of 20 time series each, totaling 120,280 time units to be
modeled in a forecasting problem. The evaluation was con-
ducted using four classes of machine learning algorithms: a
Bagging algorithm (Random Forest); a Boosting algorithm
(AdaBoost); a Stacking algorithm; and a Recurrent Neural
Network architecture (LSTM).
This work is an extended version of [Freitas et al., 2023].

In this extension, we have expanded the related works sec-
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tion with a more comprehensive review of the literature on
the influence of window size on time series forecasting. Ad-
ditionally, we included a detailed analysis of the Partial Auto-
correlation Function (PACF) to help estimate the appropriate
window size. We show that, although useful, the PACF does
not provide a precise view of the exact window size to be
used, making it necessary to conduct additional experiments
to determine the ideal value.
This article is organized as follows: in Section 2, the state

of the art related to this research is presented; in Section 3,
the researchmethodology is detailed; in Section 4, the results
of the tests conducted are presented; and finally, in Section
5, the conclusions of this research are outlined, along with a
discussion of future work.

2 Related Works
Time series forecasting is a critical task with applications in
various domains, such as finance, healthcare, and engineer-
ing. It involves predicting future values based on historical
data, and its accuracy depends on multiple factors, including
data characteristics and model hyperparameters. While there
are limited studies directly addressing the impact of window
size on time series forecasting, it is important to understand
how various hyperparameters influence forecasting models.
This section begins by discussing works that, like ours, ex-
plore the effects of hyperparameter variation in time series
prediction, progressively narrowing the focus to the specific
role of window size.
Several studies have analyzed the impact of hyperparame-

ter tuning and feature selection on forecasting performance.
Feature selection often involves determining which past ob-
servations (lags) are most relevant for forecasting. Huber
and Stuckenschmidt [2020] analyzed the forecasting of retail
products by adding special dates and holidays to the models,
and also examined the effect of increasing the forecasting
horizon in both single-step and multi-step approaches. Abol-
ghasemi et al. [2020] developed a model to forecast product
demand that takes into account systematic events, such as
a product promotion or a change in weather. At the end of
the tests, the model presented in the article performed better
when the new features were added.
Similarly, the forecast horizon can influence the opti-

mal window size, as longer horizons may require captur-
ing longer-term dependencies in the data. Nikolopoulos and
Fildes [2013] studied the incorporation of climate data to see
how it impacts the sales forecast of a beer company using an
econometric model. At the end of the study, the climate ad-
justment mechanism improved the company’s forecast. Teix-
eira and Fernandes [2011] studied the impact of adding the
risk of insolation, total monthly hours of sunshine, on the
forecast of hotel occupancy in Portugal. The mean relative
error was reduced by about 0.5
A common challenge in time series forecasting is the

length of the forecast horizon, which is often limited to just
one step ahead. This limits the application of models in sit-
uations requiring long-term planning. According to Cheng
et al. [2006], long-term forecasts tend to have higher errors
because the bias and variance of past forecasts affect future

forecasts, resulting in accumulated error.
Directly related to window size, Chandra et al. [2021]

evaluated the performance of some deep learning models
with multi-step forecasting of seven time series. The mod-
els used were LSTM, bidirectional LSTM, encoder-decoder
LSTM, and a convolutional neural network. The steps (1
to 10) were varied, and after the tests, the best results were
from the bidirectional LSTM and the encoder-decoder LSTM.
Their study indicates that model architecture and the amount
of past information (window size) can significantly impact
forecasting accuracy, especially in multi-step forecasting.
In a study on stock price forecasting, Shynkevich et al.

[2017] tested the combination of forecast horizon and win-
dow size using three models. The forecast was treated as
a classification problem to determine whether stocks would
rise or fall. The results indicated that the optimal window
size is close to the size of the forecast horizon.
According to Kil et al. [1997], determining the window

size is crucial for time series forecasting as it significantly
influences model performance. Frank et al. [2000] analyzed
the impact of window size on two time series using two mod-
els: the Multilayer Perceptron (MLP) and the Radial Basis
Function (RBF). The study demonstrated that small windows
do not produce as significant results as larger windows. How-
ever, an optimal window size was identified, and increasing
the size beyond this value can result in a decrease in forecast
accuracy. Nonetheless, the study is limited by using only
two time series and focusing more on neural networks, with-
out using ensemble models, for example.
Braga et al. [2019] conducted an extensive comparison be-

tween machine learning models, such as Random Forest and
a Boosting algorithm (AdaBoost), and deep learning mod-
els (LSTM), highlighting the efficiency and accuracy of tra-
ditional models in scenarios with limited data. However,
the article does not focus on window size nor clearly define
whether the forecasting is done in a multi-step or one-step
manner.
Some recent studies have specifically investigated the im-

pact of window size on time series forecasting. Bergström
and Hjelm [2019] investigated the impact of the window size
on the forecasting of the American stock index S&P500 us-
ing LSTM networks. By evaluating five different window
sizes and employing the Root Mean Squared Error (RMSE)
as a performance metric, the authors found that a window
size of ten days yielded the most accurate predictions. How-
ever, the study was limited to the S&P 500, LSTM and a
specific time period, and further research is needed to gen-
eralize these findings to other datasets and time frames. On
the other hand, Liu et al. [2022], used the SWLHT (Short
Window Long Horizon Transformer) highlights the impor-
tance of the window size and how this choice directly im-
pacts the model’s ability to capture patterns in time series
data and make accurate predictions. They used the Trans-
formermodel to test forecasts with small windows and larger
forecast horizons on four time series of transformer temper-
ature, and their experiments indicated that smaller windows
combined with larger forecast horizons can lead to better pre-
dictions. Additionally, Ughi et al. [2023] compared the per-
formance of Transformer models with simpler models (such
as MLP) by testing four variations of window size across six
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series from different domains.
While these studies contribute to understanding the role of

window size, they are often limited to a small number of time
series or specific models. The present article advances time
series research by conducting experiments with more than
one time series, in two different domains, and with varying
amounts of annotations. It also progresses by studying the
impact of window size in a more challenging scenario, where
the forecast horizon is larger. This is particularly important
as a significant portion of the articles in the literature conduct
experiments with only one-step ahead predictions.

3 Methodology
This section details the datasets used and explains the data
modeling conducted for this research. Two datasets were
utilized: one for bus boarding counts and another for retail
product sales. These datasets exhibit distinct patterns and
were modeled as input for several machine learning models
to predict future boarding counts and sales quantities.

3.1 Datasets
The first dataset concerns time series of retail store product
sales in the supermarket sector, located in Fortaleza (Ceará).
The data were obtained from a major retailer through a re-
search project in partnership with the University of Fort-
aleza. Sales information for twenty products from the A
curve (items with the highest contribution to store revenue)
was collected from January 2, 2017, to April 30, 2019, to-
taling 849 days. Sales data for products, measured in units
or kilograms, were aggregated daily for each analyzed prod-
uct, forming the final time series. Product identifiers were
anonymized. The months from January 2017 to December
2018 were set aside for training, and January 2019 to April
2019 for testing. Figure 1A illustrates a daily sales time se-
ries of an A curve product over a sample of 240 days.”
The other dataset concerns time series of passenger board-

ings on the twenty most heavily used bus lines within the
public transportation system in the city of Fortaleza (Ceará).
Bus system passengers use a smart card with a user identifier,
and each time this card is used, a boarding record is logged.
The data were provided by the Fortaleza City Hall and have
been used in other articles [Caminha et al., 2016, 2017, 2018;
Ponte et al., 2018; Bomfim et al., 2020; Ponte et al., 2021;
Araújo et al., 2023]. These data cover the period from Jan-
uary 1st, 2018, to July 31st, 2018, and the passenger board-
ing counts were aggregated hourly for each of the top twenty
bus lines in the city. Thus, twenty time series were generated,
each comprising over 5000 hours of boarding data for each
bus line. The months from January to June were used for
training, and July was used for testing. Figure 1B illustrates
a time series of hourly boardings for a bus line, detailing the
seasonal patterns observed in vehicle usage over a sample
period of about 10 days.
For more details regarding access to the data used in this

research, see the “Availability of data and materials section”.
Before applying the forecasting methods, appropriate

preparation of the time series data was conducted. Follow-

ing an exploratory analysis on both datasets, it was identified
that there were non-contiguous data, meaning missing data
entries. These missing data indicate times when no passen-
gers boarded at a certain hour of the day or when no sales
occurred for a particular product on a given day. Therefore,
these instances were filled with zero values to maintain the
temporal structure of the series.

3.2 Modeling Sliding Window
Sliding window concept was used in the process of model-
ing the time series forecasting problem. The sliding window
technique involves an approach where the time series data is
divided into smaller segments of constant size (w). The term
sliding refers to the process of shifting the window along the
series with a specified step (p) to the right, enabling the con-
struction of a training dataset.
Sliding window are a technique used to transform a time

series into a labeled dataset, where each window contains
a set of past observations from the time series considered
as input for forecasting models. The observation immedi-
ately following the end of the window is defined as the target
value to be predicted given the past window. Therefore, this
technique is highly suitable for supervised machine learning
methods like regression to forecast time series data.
The Figure 2 illustrates the process of generating input

and output examples for training AI models. A daily time
series, shown in green as an example, is transformed into a
labeled dataset. The first input sample, x1, is generated and
contains w values (window size), representing the features
to be learned by the models. These features enable the mod-
els to capture the temporal dependencies of the series from
patterns and trends present in past observations. The value
y1 indicates the day immediately following the x1 window,
representing the target variable to be predicted. The window
is then shifted p steps to the right to obtain new samples for
the dataset, repeating the process until the entire series is cov-
ered. Depending onw and p, theremay be overlap in the data,
reinforcing the discovery of data patterns and increasing the
number of training samples. In Figure 2, the value of p is 1,
indicating that the next input (x2) and output (y2) are shifted
by only one day to the right.

3.3 Model Training
After the dataset is created, the process of training the Ma-
chine Learning models begins using labeled data generated
by the sliding window technique. Models based on ensem-
bles and Neural Networks were used to forecast the hourly
boarding counts and daily product sales. The main objective
of this research is to evaluate how w impacts the quality of
predictions in univariate time series performed by these mod-
els. Thus, the value of w was varied, and an associated error
was calculated for each w. For mobility data, w started at 24
hours and increased by 24 hours until reaching a maximum
w of 360 hours. For retail data, w started with sequences of
7, 14, 21, and 30 days, and then increased by 30 days until
reaching a maximum w of 365 days. Due to the seasonal-
ity of some retail products, which may exhibit characteristic
behaviors weekly, biweekly, and monthly, these initial days
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Figure 1. Examples of time series in the studied domains. In (A), 240 days of sales data for a product from Curve A are illustrated. The y-axis represents
the quantity sold of this product, and the x-axis represents time in days. In (B), the first 240 hours of data from bus line 42 are shown. The y-axis represents
the number of passengers boarding that specific bus line, and the x-axis represents time in hours.

were chosen more personalized. A value of p = 1 was cho-
sen for both domains.
The models used were a Bagging (Random Forest), a

Boosting (AdaBoost), a Stacking, and a Recurrent Neural
Network architecture (LSTM). In Random Forest [Breiman,
2001] and AdaBoost [Freund et al., 1996], the default pa-
rameters of Scikit-learn [Pedregosa et al., 2011] were used.
In the neural network LSTM [Hochreiter and Schmidhuber,
1997], the implementation of Tensorflow [Abadi et al., 2016]
was used, with the parameters neurons = 200, batch_size =
32, and with activation function ReLu, epochs = 200, valida-
tion of 20% and optimizer “Adam” with a learning rate of
0.0001. The Stacking [Wolpert, 1992] has as estimators:
Ridge Regressor [Hoerl and Kennard, 1970], SVR [Drucker
et al., 1996], Random Forest, Gradient Boosting [Friedman,
2001], KNN [Cover and Hart, 1967], and Linear Regression
[Galton, 1889] as the final estimator, all in their default ver-
sions.

3.4 Multiple Steps Ahead Forecast
The process of inference in time series multiple steps ahead,
or long-term forecasting, consists of predicting the next h
values in the future. Some forecasting approaches can be
performed as Iterative, Direct, MIMO (Multiple Input Multi-
ple Output), or combinations of these strategies [Taieb et al.,
2012]. In this research, the Iterative approach was used,
where to estimate future values for a time horizon h, one pre-
diction is made at a time. Figure 3 illustrates the forecasting
process, where the model M receives as input a window of
size w (initially indexed from 1 to t) and produces ŷt+1 as
output. Then, the process is repeated by adding the most re-
cent prediction, ŷt+1, to the new input to produce the second
inference, ŷt+2 (disregarding the oldest value of the previous
input, always maintaining windows of size w). Depending
on the number h (a sufficiently large number) and w, there
are a moment when only estimated values are used as inputs,
instead of the real data.
The evaluation of the results was done using the Symmet-

ric Mean Absolute Percentage Error (SMAPE) [Makridakis,
1993], chosen because it is a percentage error, as the retail
dataset contains different units (e.g., products sold by unit

and products sold by weight). The SMAPE is also a geo-
metric mean error, making it ideal for comparing the perfor-
mance of multiple models and in a high number of predic-
tions, according to [Kreinovich et al., 2014].

4 Results and Discussion

4.1 PACF Analysis
The Partial Autocorrelation Function (PACF) measures the
correlation between a time series value and its lags, while ad-
justing for the effects of all intermediate lags. In other words,
unlike simple autocorrelation, which considers all previous
lags, the PACF isolates the direct effect of each specific lag
on the current value by removing indirect influences [Box
and Jenkins, 1976]. That function is widely used to deter-
mine the appropriate window size in time series forecasting
problems [Leites et al., 2024]. Figure 4 illustrates the impact
of the window size (w) on the forecast of a retail sector time
series, highlighting how the lags with higher autocorrelation
observed in the PACF influence the choice of w.
In Figure 4, in (A), we present the PACF plot of the time

series, which helps identify the most significant lags. It is
important to note that lag 0, which represents the autocorre-
lation of a value with itself, is always 1 and therefore should
be disregarded in the analysis.
Items from (B) to (G) in Figure 4 show line graphs com-

paring predicted and actual values and for different window
sizes (w) of 7, 14, 21, 30 and 90. In these figures, the blue
line represents units sold of the product (y-axis), and the x-
axis represents the forecast horizon from 0 to 120. The 10
light gray lines represent 10 predictions made for the respec-
tive w. Additionally, the sMAPE error metric is displayed
above each plot, indicating the accuracy of the model for
each window size.
The analysis of these figures reveals that predictions vary

considerably for smaller window sizes (such as 7, 14, and
21), showing greater dispersion in the prediction lines. As
w increases, predictions become more consistent, with the
gray lines overlapping more. This indicates that larger win-
dow sizes may better capture underlying patterns, reducing
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Figure 2. Example of applying the Sliding window technique to construct a labeled dataset from univariate time series. (A) The time series represents the daily
sales of a retail product. Variables x1 and x2 represent input values at different time points, while y1 and y2 represent corresponding target values associated
with these intervals. Sliding window constructs a labeled dataset from a time series by segmenting it into overlapping intervals. In (B) Representation of the
training dataset generated from sliding window, where X contains the input values and Y the corresponding output values for the forecasting task.

Figure 3. The diagram shows the multiple steps ahead forecast using the
Iterative method, where the model’s predictions are used as inputs for sub-
sequent steps, allowing the model to predict the next h future periods.

variability in forecasts, though this finding is specific to the
datasets employed in the experiments.
Figures 6 and 7 in Appendix A illustrate two PACF plots

for both datasets: Figure 6 shows the PACF of 20 products
from the retail dataset, while Figure 7 presents the PACF of
20 bus lines from the mobility dataset. In PACF analysis,
we look for the highest significant correlation lag, as smaller
lags tend to show higher correlation. We chose this approach
to provide an overall performance measure of the models
across various scenarios, as individual time series can ex-
hibit unique patterns, such as specific seasonalities (weekly,
biweekly, and monthly).
For the retail data, the stabilization point of the window

size, for most products, is 7, while for the mobility data, it
is 24. These values corroborate the intuition about the data:
many retail products exhibit weekly seasonality, whereas mo-
bility patterns tend to repeat every 24 hours. However, less
frequent patterns are also important for maintaining predic-
tion quality and should be considered.
Choosing the window size (w) is particularly challenging.

Very large windows can lead to models that become over-
whelmed by the volume of data, resulting in poor-quality pre-
dictions. Therefore, it is essential to study the window size
in detail to achieve the best possible results in time series
forecasting.

4.2 Test Result
Although the analysis of the Partial Autocorrelation Function
(PACF) is a valuable tool for estimating the appropriate win-
dow size in time series forecasting problems, it is not infalli-
ble. The PACF can indicate significant lags that suggest pos-
sible window sizes, but it does not account for all the nuances
of the data and the variables involved in predictive modeling.
Therefore, it is essential to conduct exhaustive experiments
varying the window size to fully understand its impact on the
performance of machine learning models. This experimental
approach allows for an empirical evaluation of how different
window sizes affect prediction accuracy, providing a more
robust basis for choosing the ideal w value.
Figure 5 illustrates the results of the experiments follow-

ing the methodology detailed in Section 3 of this article. Pre-

dictions were made for forty time series using four machine
learning models. In (A), we can observe the SMAPE values
for various window sizes, w, in experiments conducted with
retail data. There was a decrease in SMAPE across all mod-
els for w ≤ 30. For higher w values, the models maintained
SMAPE values with less variation. In the case of LSTM, a
greater variation in SMAPE was observed for w > 30.

In Figure 5B, the performance of the models for the mo-
bility data can be seen. It is noticeable that the forecast im-
proved as the window size increased, with the improvement
becoming stable after a certain window size for some mod-
els. The Random Forest was the best-performing model for
this dataset, but the LSTM showed the most performance
improvement (reduction in SMAPE) with an increase in w.
TheAdaBoostmodel exhibited the least variation in improve-
ment.

Analyzing the error curves for the mobility data, all mod-
els showed a considerable reduction in error at w equal to
168, where it is possible that the models captured the weekly
pattern in the behavior of each line.

In both datasets, a positive impact on predictions was ob-
served with an increase in window size. After a certain w
size, no clear reduction in error was observed. However, it
is important to consider whether using much larger window
sizes is worthwhile, as increasing the window size also in-
creases the size of the input data and, consequently, the train-
ing time of the models. In the mobility dataset, the Adaboost
model presented the highest error and the least reduction in
error with an increase in window size. This may be related
to the fact that the forecasting horizon is larger than in the
retail dataset.

In addition to the results presented, it is important to em-
phasize that the concept of an optimal window size is not
absolute and should not be considered as a fixed value for all
datasets or models. Instead, the window size (w) is a hyper-
parameter whose effect is highly dependent on the character-
istics of the dataset and the machine learning model being
used. Our experiments demonstrated that, while model per-
formance improves asw increases, this improvement reaches
a point of stabilization, beyond which further increases in
window size do not result in significant gains in prediction
accuracy.



Evaluating Window Size Effects on Univariate Time Series Forecasting with Machine Learning Freitas et al. 2025

0 20 40 60 80 100 120

Forecast horizon (days)

0

5

10

15

20

25

30

35

S
al

es

(B)w = 7, SMAPE = 48.91

Average of 10 Rounds

Real

0 20 40 60 80 100 120

Forecast horizon (days)

0

5

10

15

20

25

30

35

S
al

es

(C)w = 14, SMAPE = 39.47

Average of 10 Rounds

Real

0 20 40 60 80 100 120

Forecast horizon (days)

0

5

10

15

20

25

30

35

S
al

es

(D)w = 21, SMAPE = 39.95

Average of 10 Rounds

Real

0 20 40 60 80 100 120

Forecast horizon (days)

0

5

10

15

20

25

30

35

S
al

es

(E)w = 30, SMAPE = 39.18

Average of 10 Rounds

Real

0 20 40 60 80 100 120

Forecast horizon (days)

0

5

10

15

20

25

30

35

S
al

es

(F)w = 60, SMAPE = 40.19

Average of 10 Rounds

Real

0 20 40 60 80 100 120

Forecast horizon (days)

0

5

10

15

20

25

30

35

S
al

es

(G)w = 90, SMAPE = 37.77

Average of 10 Rounds

Real

0 7 14 21 28 35 42 49 56 63 70 77 84
Lag

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

P
ar

ti
al

A
u

to
co

rr
el

at
io

n

(A)PACF

Figure 4. This panel presents various forecast, using Random Forest, analyses over time with different window sizes. Each graph shows the actual sales
time series compared with forecasts using different window sizes: 7 days (B), 14 days (C), 21 days (D), 30 days (E), 60 days (F), and 90 days (G). In the
graphs from (B) to (G), the blue line represents the actual data, the light gray lines represent the predictions of 10 iterations, and the black line represents the
average of these 10 iterations’ predictions. Panel (A) presents the Partial Autocorrelation Function (PACF) of the same product, highlighting the correlation
of a time series with its own lagged versions, showing the most significant lags in the sales time series.

Figure 5. Model performance, with (A) showing the retail results and (B) showing the mobility results. The blue line represents the performance of Random
Forest, the orange line represents the performance of LSTM, the green line represents the performance of Stacking, and the red line represents AdaBoost. The
shaded areas represent the standard mean error for each model. On the x-axis is the window size, and on the y-axis is the SMAPE value.

.

5 Conclusion

This article focused on understanding the impact of window
size on the performance of machine learning algorithms in

univariate time series forecasting problems. Through exper-
iments conducted on 40 time series from two different do-
mains, using variations in window size across four machine
learning algorithms, some important findings emerged.
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It was observed that increasing the window size can lead
to improvements in evaluation metric values up to a point of
apparent stabilization. Beyond this limit, further increasing
the window size does not result in better predictions. This
suggests that there is a stabilization point in the window size
that depends on each specific time series and the model be-
ing applied, beyond which additional historical data do not
significantly contribute to model performance and can even
lead to instability due to the increase in irrelevant attributes
for modeling.
This finding highlights the challenge of generalizing a spe-

cific optimal window size across different domains or mod-
els, as the appropriate w is contingent on the interplay be-
tween the data and the learning algorithm. Therefore, our
study reinforces the notion that window size optimization is
a dynamic process, and practical applications should focus
on identifying this stabilization point rather than seeking a
universally optimal value.
The study revealed that Long short-term memory (LSTM)

architectures did not outperform ensemble models in various
univariate time series forecasting scenarios. While LSTMs
are known for their ability to capture sequential dependen-
cies and long-term patterns, ensemble models demonstrated
similar or superior performance at different window sizes.
Since univariate time series contain only a single variable
over time, it is natural that there is less information available
for the model to learn and capture complex patterns. LSTMs,
due to their ability to handle sequential dependencies, can be
particularly effective in forecasting time series with a large
amount of multivariate data. In such cases, the model has the
opportunity to explore correlations between different vari-
ables and capture more subtle nuances in temporal patterns.
However, in univariate time series, this advantage may be
minimized due to the lack of data variability. On the other
hand, ensemble models leverage the diversity of different al-
gorithms or data samples to improve predictive performance.
This approach can help mitigate the challenges presented by
univariate time series due to their limited nature. By com-
bining multiple perspectives and learning strategies, ensem-
ble models can compensate for the lack of multivariate data,
resulting in equivalent or more accurate predictions.
Additionally, the analysis of the Partial Autocorrelation

Function (PACF) proved to be a valuable tool for estimating
the appropriate window size. Through PACF, it was possi-
ble to identify significant lags that suggest possible window
sizes, aiding in the initial choice of w. However, PACF does
not consider all the nuances of the data and the variables in-
volved in predictive modeling. Therefore, the experimental
approach, varying the window size, complements this analy-
sis by providing an empirical evaluation of how different win-
dow sizes affect prediction accuracy. This robust approach
is essential for choosing the ideal w value.
The results of this study indicate that the appropriate

choice of window size is essential for accurate univariate
time series forecasting and that a combination of theoretical
analysis (such as PACF) and practical experiments provides
a solid basis for this choice. These conclusions are especially
relevant for practical applications in various domains, where
accurate time series forecasting can lead to more informed
and effective decision-making.
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A Partial Autocorrelation Function
(PACF) Analysis for Products and
Bus Lines

This appendix presents the Partial Autocorrelation Function
(PACF) plots for retail products (Figure 6) and bus lines (Fig-
ure 7). These plots provide insight into the temporal rela-
tionships and dependencies within the data for both datasets,
highlighting how the current values of the series relate to past
values at different time lags. The PACF is useful in identify-
ing the direct correlation of each lag, which helps in deter-
mining the optimal number of past observations to include
in the forecasting models.



Evaluating Window Size Effects on Univariate Time Series Forecasting with Machine Learning Freitas et al. 2025

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 1

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 2

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 3

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 4

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 5

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 6

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 7

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 8

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 9

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 10

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 11

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 12

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 13

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 14

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 15

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 16

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 17

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 18

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 19

0 20 40 60 80
Lags

−0.5

0.0

0.5

1.0

PA
C

F

Product 20

Figure 6. Partial Autocorrelation Function (PACF) for products. Each subplot represents the PACF for a specific product, indicating the temporal dependen-
cies up to 90 lags.
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Figure 7. Partial Autocorrelation Function (PACF) for bus lines. Each subplot represents the PACF for a specific bus line, indicating the temporal depen-
dencies up to 168 lags.
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