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Abstract Data stratification by class is a prominent strategy to enhance the accuracy of model evaluation in unbal-
anced scenarios. This type of strategy, added to other stratification criteria, can also be effective in a significant
issue with machine learning systems, which is their potential to propagate discriminatory effects, harming specific
people groups. Therefore, it is crucial to assess whether these systems’ decision-making processes are fair across
the diversity present in society. This assessment requires stratifying the test set not only by class but also by sociode-
mographic groups. Furthermore, applying stratification by class and group during the validation step can contribute
to developing fairer models. Despite its importance, there is a lack of studies analyzing the influence of data strat-
ification on fairness in machine learning. We address this gap and propose an experimental setup to analyze how
different data stratification criteria influence the development of impartial classifiers. Our results suggest that strati-
fying data by class and group aids develop fairer classifiers, thereby minimizing the spread of discriminatory effects
in decision-making processes.

Keywords: Analysis, Binary Classification, Data Bias, Discriminatory Effects, Fairness, Machine Learning, Supervised
Learning

1 Introduction
In many circumstances, Machine Learning (ML) model
decision-making can benefit or harm a specific type of in-
dividual. For example, several reports exist regarding cases
where the models propagated discriminatory bias with rel-
evant societal impact [Alikhademi et al., 2022; Minatel
et al., 2023b]. The best-known example of this situation
is the COMPAS [Angwin et al., 2016], used in the Ameri-
can court to support their decisions regarding parole, which
yields almost twice as many false positives in the classi-
fication of criminal recidivism for black people compared
to false positives for white people. Furthermore, accord-
ing to Buolamwini and Gebru [2018], the likelihood of a
black woman being accused of a crime she did not commit is
higher if the police use the main commercial facial recogni-
tion tools (e.g., IBM Watson Visual Recognition) to solve
crimes, as these tools have lower accuracy in recognizing
black women. Moreover, web search engines are known to
perpetuate social stereotypes and prejudices with their ML
models [Howard and Borenstein, 2018].
Considering these situations, a dataset can be interpreted

as a social mirror and reflect the prejudices, stereotypes, so-
cial inequalities, injustices, and other types of discrimination
integrated into society [Barocas and Selbst, 2016; Mehrabi
et al., 2021; Pessach and Shmueli, 2022]. Therefore, devel-
oping fairer models is a relevant challenge in the ML area
because their applications are data-driven and can reproduce
these social biases [Goodman and Flaxman, 2017; Le Quy

et al., 2022]. The research topic of Fairness in Machine
Learning tackles this issue by integrating fairness notions
in the learning process to develop non-discriminatory ML
decision-making while preserving the models’ performance
as much as possible [Barocas et al., 2023].
One factor that hinders the induction of fairer models is

unbalanced data. In addition to the already known class im-
balance, social data has an aggravating factor in this regard,
as certain sociodemographic groups (e.g., white men) may
be overrepresented while others are underrepresented. This
imbalance arises from population bias, where historical and
social conditions limit the representation of certain groups
in specific contexts, or from biased data collection practices
that fail to capture the diversity of the population [Barocas
and Selbst, 2016; Mehrabi et al., 2021].
In population bias cases, data augmentation techniques

have been shown to mitigate imbalance effects [Yucer et al.,
2020; Xu et al., 2020; Pastaltzidis et al., 2022]. Alternatively,
training the model to capture the inherent imbalance present
in the problem representation and subsequently incorporat-
ing notions of fairness into the learning process is another
effective strategy [Kamiran and Calders, 2012; Zhang et al.,
2018; Celis et al., 2019; Minatel et al., 2023d,e]. In this sit-
uation, whether or not to use data stratification in the model
validation stage can be a crucial aspect in selecting the hy-
perparameter values that best fit a fairer model, especially in
small datasets.
Although stratification methods have been studied for

decades in the machine learning field, the recent emphasis
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on fairness has stimulated new research into evaluating and
adapting these methods to mitigate underrepresentation, not
only in data labels but also among instances associated with
marginalized groups. This paper handles this gap and pro-
poses an experimental setup to evaluate and analyze the im-
pact of the different data stratification criteria on selecting
the fairest model. By bridging the gap between stratification
and addressing fairness in machine learning, our paper pro-
vides empirical evidence and practical recommendations for
effectively applying stratification methods to handle imbal-
anced datasets to build more equitable models. Therefore,
our study comprises the following contributions:

• It proposes a novel and robust experimental setup capa-
ble of evaluating data stratification criteria;

• It analyzes the influence of data stratification in induc-
ing fairer classifiers;

• It analyzes the influence of data stratification by differ-
ent classification algorithms;

• It emphasizes that when group information is available
in classification tasks involving people, it is essential to
use the class and group criteria to stratify the test set.

This study is an extended version based on previous
work [Minatel et al., 2023a]. In this extension, we expand the
experimental setup by adding more classification algorithms
and settings. We have added more details of our experimen-
tal protocol and expanded the background and related work
section. Furthermore, we carried out a more in-depth analy-
sis of the results and also modified the way we evaluated the
stratification criteria to identify which one contributed the
most to the selection of more impartial models.
Our experimental evaluation indicates that stratifying the

data by matching the original distribution of groups and
classes in cross-validation selects models that minimize dis-
criminatory effects in binary classification tasks. Therefore,
we recommend using stratification based on group and class
criteria, as integrating these straightforward details into the
validation process can improve the development of fairer
models.
The remaining of this paper contains four other sections.

Section 2 summarizes the main topics related to this work
and introduces fundamental concepts for understanding our
proposal. Section 3 describes our proposal and experimen-
tal settings. Section 4 presents and discusses the results of
the experiments. Finally, Section 5 presents our concluding
remarks and future work.

2 Background and Related Work
This section describes the terminology and fundamental con-
cepts required to understand our proposal in Section 3.

2.1 Basic concepts
Protected attributes are features that include sensitive data
such as gender, nationality, race, religion, and sexual orien-
tation. From protected attributes derive groups, which, re-
gardless of value, require equal treatment [Mehrabi et al.,
2021]. Thus, in a dataset with the protected attributes gender

and nationality (where the domain only considers: Argentina
and Brazil), we have the following groups: Argentine
man, Argentine woman, Brazilian man, and Brazilian
woman. Privileged group is a group or set of groups that his-
torically obtained advantageous treatment than other groups,
called unprivileged groups.
Adverse treatment occurs when the protected attributes

support a decision in part or in full. In many countries, ad-
verse treatment is forbidden by law, as is the case in Brazil,
which in Item IV of the third article of its Constitution says:
“to promote the well-being of all, without prejudice as to the
origin, race, sex, color, age and any other forms of discrimi-
nation.” [BRASIL, 1988]. Adverse impact occurs when there
are disproportionate outcomes that harm or benefit a particu-
lar group [Barocas and Selbst, 2016]. In the ML domain, ad-
verse treatment occurs when the protected attributes are used
to train a model. As well as we verify the adverse impact
when there are disparities in results between groups, such as
accuracy.

2.2 Data stratification

Data stratification is a sampling defined by one or more cri-
teria that creates a subset of an original dataset. In the con-
text of ML, this process splits a dataset into subsets used
as input in a model’s training, validation, and testing steps.
These subsets retain the original sample proportions based
on predefined criteria, such as preserving the distribution of
target classes across all new subsets [Valentim et al., 2019].
Furthermore, when the goal is to minimize discriminatory ef-
fects, it is important to apply specific additional criteria dur-
ing the dataset-splitting process to achieve a balanced and
fair distribution of samples, such as stratification by group
or group and target class simultaneously [Hanna et al., 2020;
Gerdon et al., 2022].
Figure 1 shows an example of data stratification, where

the criterion used is to maintain the color proportion. There-
fore, the ratio of orange and blue colors is maintained in the
generated subset (bottom of the image).

Figure 1. Illustration of data stratification using the color criterion so that
the new subset maintains the proportion of blue and orange colors.

2.3 Group fairness analysis

Group fairness analysis focuses on verifying disproportion-
ate results between groups, that is, identifying adverse im-
pact. Some of the main group fairness notions applied in
binary classification tasks are presented as follows:

• Demographic parity: each group has an equal likeli-
hood of being classified with a positive label (selection
rate) [Dwork et al., 2012].
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• Equal opportunity: all groups have equal true positive
rates, i.e., each group has the same recall score [Hardt
et al., 2016].

• Equalized odds: all groups have the same true positive
rate and false positive rate [Hardt et al., 2016].

To achieve these fairness notions, the results between all
groups must be equal. However, according to Chouldechova
[2017], achieving parity across all fairness metrics is impos-
sible. Thus, a more accessible way to evaluate a classifier by
these different definitions is to transform them into measures
of group fairness. This typically involves calculating the ra-
tio of scores between privileged and unprivileged groups, al-
lowing us to quantify how much the result deviates from the
ideal.
Note that we can transform any performance measure into

a group fairness measure. For example, it is expected to do
this with the performance measure chosen to evaluate the
classifier, such as Macro F1-Score. Thus, it is possible to
measure the asymmetry of Macro F1-Score scores between
the analyzed groups.
To facilitate the interpretation of these metrics’ results, we

used the higher of the two scores in the denominator so that
the result is between 0 and 1, with the ideal value being equal
to 1. Note that this formulation only evaluates disproportion-
ality between the results, not indicating which group is being
harmed. Table 1 shows the acronym and description of each
group fairness measure used in this study.

Table 1. Group fairness measures: the ratio of the calculated scores
is between the privileged and unprivileged groups.

Acronym Description

RDP ratio of scores associated with demographic parity
REO ratio of scores associated with equal opportunity
RDO ratio of scores associated with equalized odds
RMF1 ratio of Macro F1-Score

2.4 Related work
Different works have explored the insertion of fairness no-
tions in ML-based systems. In [Valentim et al., 2019], the
authors investigated how data preparation influences the ef-
fectiveness of the learned model and its fairness. It was iden-
tified that the transformations applied to a dataset affect the
analyzed fairness notions. Additionally, removing sensitive
attributes helps achieve fairer models, but it is not enough
to remove the unfairness from the predictions made by a
model. Karimi et al. [2022] proposed a framework for fairer
predictions using a causal analysis method and devised a new
measure to quantify how fair a model is to different individ-
uals.
Generally, these algorithms differ by stage in the learn-

ing process, whether preprocessing, in-processing, or post-
processing [Barocas et al., 2023]. Preprocessing algorithms,
such as data augmentation and sample reweighting tech-
niques, act directly to reduce the discriminatory bias of the
dataset [Calmon et al., 2017; Pastaltzidis et al., 2022;Minatel
et al., 2023c,d]. In-processing methods modify the classifi-
cation algorithms by including fairness constraints for model

induction [Narasimhan, 2018; Zhang et al., 2018; Celis et al.,
2019]. Finally, post-processing algorithms transform the
classifier’s responses to make them more impartial [Hardt
et al., 2016; Pleiss et al., 2017].
Our work is similar to theirs in the sense that we also in-

vestigate strategies to improve the fairness of ML-based de-
cisions to different groups. However, our work is focused on
identifying which data stratification criteria yield fairer mod-
els in this context. Additionally, we propose a novel and
robust experimental setup capable of evaluating data stratifi-
cation criteria in Fairness in Machine Learning.

3 Proposal
This section presents our proposal to analyze the influence of
different data stratification criteria on the propagation of dis-
criminatory effects in binary classification. We designed an
experimental setup to perform this analysis. Figure 2 shows
the overview of this experimental setup.
Firstly, we selected and preprocessed a collection of bi-

nary classification datasets (Section 3.1). After, we applied
the holdout sampling on the dataset to split it into the train
(70%) and test (30%) subsets. The original ratio of the data
— the focus of our analysis — is maintained. In other words,
we stratified the data by group and class to maintain each
group’s positive and negative class ratio (privileged and un-
privileged). The main idea is to test the models with the
original ratio of the data in order to simulate the distribution
found in a real decision-making situation. We randomly split
the datasets using three different seeds: 31415, 42, and 4321.
Thus, for each dataset, the steps to follow are executed three
times, considering different train and test subsets.
In sequence, we used nine distinct classification algo-

rithms in the validation stage with sixteen settings each (Sec-
tion 3.2). We applied a five-fold cross-validation sampling
process on the training set in these different settings using
the following data stratification criteria: (none), (class),
(group), and (group, class). We adopted five-fold
cross-validation because some of the selected datasets have
few instances. Below, we describe the data stratification cri-
teria used:

(none) — does not use data stratification.
(class) — data stratification by target class (positive and

negative).
(group) — data stratification by group, which are privi-

leged and unprivileged in this experiment.
(group, class) — data stratification by group and target

class.

Section 3.1 provides more detailed information about the
classes and composition of each dataset’s privileged and un-
privileged groups.
At the end of the validation stage, we applied a multicrite-

ria measure (more details in Section 3.3) to jointly evaluate
different group fairness measures and select the best hyperpa-
rameter values for each classification algorithm. Next, we re-
trained the classifiers with the best hyperparameters selected
for each data stratification criteria with the entire training set.
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Figure 2. Overview of the performed analysis. Initially, we split the dataset into training and testing sets. In sequence, we conducted a multicriteria
evaluation using nine classification algorithms and five-fold cross-validation stratified sampling on the training data to identify the best hyperparameters for
each classifier. Thus, we then trained each classifier using the obtained hyperparameters. Finally, we assess the influence of data stratification criteria on
fairer classifications in the testing set.

In the final evaluation, we assessed the selected models in
the training set using the multicriteria measure (fairness anal-
ysis) and one performance measure, detailed in Section 3.3.
For each tuple {dataset, classification algorithm}, we calcu-
lated the average of the results on three different test sets
(three different seeds applied).

To confront the results statistically, we used Friedman’s
non-parametric hypothesis test for paired data and multiple
comparisons at a significance level of 5% (p-value < 0.05),
followed by the Nemenyi post-hoc test [Demšar, 2006].
Therefore, with the results of this experiment, we can discuss
new approaches and help in elaborating fairer models.
In the remainder of this section, we detail all the datasets,

classification algorithms, and the evaluation process used in
the experiment proposed.

3.1 Datasets

We selected the relevant binary classification benchmark
datasets used in the Fairness in Machine Learning research
community for this work, which are described as follows:

Arrhythmia: consists of clinical records of patients with the
purpose of predicting the absence or presence of one
of sixteen groups of cardiac arrhythmia. The cardiac
arrhythmia groups were consolidated into a single cat-
egory to make it compatible with binary classification.
Therefore, the classes in this dataset for this study are
defined as ‘absence’ or ‘presence’ of cardiac arrhyth-
mia [Dua and Graff, 2017].

Bank Marketing: contains information about marketing
campaigns related to term deposits from a banking in-
stitution. Therefore, the objective is to predict whether

or not the customer will sign a term deposit [Dua and
Graff, 2017].

Census Income: comprises information from the US cen-
sus carried out in 1994. The goal is to predict whether
a person earns less or more than fifty thousand dollars
annually [Dua and Graff, 2017].

Contraceptive: contains information from the National In-
donesia Contraceptive Prevalence Survey that was car-
ried out in 1987. Examples refer to married womenwho
were not pregnant during the interview. The goal is
to predict whether or not a woman uses contraceptive
methods [Dua and Graff, 2017].

Drug: includes responses from a survey on drug use, allow-
ing us to predict whether a person has used or never used
a variety of 18 types of drugs, covering both legal and
illicit drugs. For this work, the data was used to clas-
sify the use or non-use of the following drugs: Alcohol,
LSD, and Nicotine [Dua and Graff, 2017].

German Credit: includes personal data and credit history,
aiming to classify whether a person presents a good or
bad credit risk [Dua and Graff, 2017].

Heart: contains patient information related to heart disease.
Thus, the goal is to predict whether or not a patient has
heart disease [Dua and Graff, 2017].

Recidivism: contains data on criminal history, prison time,
demographic information, and COMPAS risk scores.
The goal is to predict whether an individual will commit
criminal recidivism two years after the first arrest. This
data set was divided into Recidivism Female (female ex-
amples) and RecidivismMale (male examples) [Larson
et al., 2016].

Titanic: contains information about the passengers who
boarded the Titanic. The classification aims to pre-
dict whether a given person survived its sinking [Van-
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schoren et al., 2013].

Table 2 summarizes the datasets, showing their amount
of instances (#I), number of attributes (#A), which protected
attributes (#PA) are analyzed, the privileged group (#PG) of
each task related to the dataset, and reference. It is important
to note that, as discussed in Section 2, the unprivileged group
comprises all groups that are not contained in the privileged
group. For example, in the Recidivism Female, where the
protected attribute analyzed is race, and the privileged group
is white people, the unprivileged group corresponds to non-
white individuals. Furthermore, Figure 3 shows the ratio of
each subset (group, class) in the datasets.

Table 2. Dataset information
ID Dataset #I #A #PA #PG

1 Alcohol 1,885 11 ethnicity caucasian
2 Arrhythmia 452 278 sex male
3 Bank 45,211 42 age over 25 years
4 Census Income 48,842 76 race and gender white-male
5 Contraceptive 1,473 10 religion non-islam
6 German Credit 1,000 36 gender male
7 Heart 303 13 age middle-aged
8 LSD 1,885 11 ethnicity caucasian
9 Nicotine 1,885 11 ethnicity caucasian
10 Recid. Female 1,395 176 race white
11 Recid. Male 5,819 375 race white
12 Titanic 1309 6 gender female

For Arrhythmia and Heart, the protected attributes ‘gen-
der’ and ‘age’ were used in training, respectively, as they
play essential roles in disease prediction. For Titanic, the
protected attribute ‘gender’ was used due to known selection
bias: women and children had priority in rescue.

1 2 3 4 5 6 7 8 9 10 11 12

(privileged, positive)
(privileged, negative)

(unprivileged, positive)
(unprivileged, negative)

Figure 3. Ratio of each subset (group, class) in the datasets.

3.2 Classification algorithms
We used the following classification algorithms for the exper-
iment: AdaBoost (ADA), Classification Trees (CART), K-
Nearest Neighbors (KNN), Logistic Regression (LR), Mul-
tilayer Perceptron (MLP), Random Forest (RF), Support
Vector Machines (SVM), and eXtreme Gradient Boosting
(XGB). We also used the well-known classification algo-
rithm to minimize discriminatory effects called Adversarial
Debiasing (AD) [Zhang et al., 2018]. Table 3 shows each
classification algorithm and the numerical variation range for
its hyperparameters used in this experiment1. We tested six-
teen parametrization settings per classification algorithm.

1For hyperparameters not mentioned, we used the default values of
the classification algorithms from the following Python language libraries:
scikit-learn (ADA, CART, KNN, MLP, RF, and SVM), aif360 (AD), and
xgboost (XGB).

Table 3. Algorithms and variation of values for their hyperparame-
ters. Numerical variations in the format (i : f : p) indicate that the
initial and final values are i and f , respectively, and p indicates the
increment used.
Algorithm Parameter Fixed Value Value Variation

AD Number of epochs for
which to train

— (50 : 530 : 30)

ADA The number of trees — (120 : 440 : 20)

CART
The function to mea-
sure the quality of a
split

gini —

The minimum of sam-
ples required to be at a
leaf node

— (2 : 18 : 2)

The minimum of sam-
ples required to split
an internal node

— (4 : 5 : 1)

KNN Number of neighbors — (1 : 17 : 2)
Power parameter for
the Minkowski metric

— (1 : 2 : 1)

LR Regularization — 0.8 : 1.2 : 0.025
MLP The number of neu-

rons in the hidden
layer

— (5 : 21 : 1)

RF The number of trees — (120 : 440 : 20)

SVM
Kernel rbf —
Regularization 1 —
Gamma — (0.001 : 1.2 : 0.075)

XGB The number of trees — (120 : 440 : 200

3.3 Evaluation measures
In this work, we prioritize the group fairness analysis be-
tween the privileged and unprivileged groups (described for
each dataset in Table 2), and we also evaluated the perfor-
mance of the classifiers using the Macro F1-Score; we se-
lected this measure due to the imbalance of classes present
in the datasets (see Figure 3).
We use the Multi-Criteria Performance Measure (MCPM)

proposed in [Parmezan et al., 2017] for group fairness analy-
sis. Figure 5 shows an example of the multicriteria measure,
where three measures (to facilitate visualization of the cal-
culation) were selected in the evaluation. Thus, each algo-
rithm’s area of each irregular triangle formed by the meeting
of the edges with vertices that represent each pair of measure-
ments is calculated. Therefore, the value of MCPM is given
by the sum of these areas.

REO

RDP

RDO

Classifier 1 Classifier 2

Figure 4. Example of how we calculate the MCPM score: the value of
the multicriteria measure is given by the sum of the area of each irregular
triangle formed by the meeting of the edges with vertices representing each
pair of measurements.

To perform group fairness analysis, we apply MCPM,
combining four fairness measures. Herein, we set the three
main group fairness measures, RDP, REO, and RDO, and
also the fairness measure associated with the classifier perfor-
mance: RMF1. As described in Section 2.3, all these metrics
range from 0 to 1 and have an ideal value of 1. Consequently,
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the most impartial classifier has the highest MCPM score.

4 Results and Discussion
This section presents the results obtained in the evaluation
process for the approach proposed in Section 3.
Table 4 shows the average values of MCPM on the test set

for each data stratification criterion. The average for each
dataset is made up of nine results, which refer to each classi-
fication algorithm. The highest value, highlighted in green,
indicates the best average value per dataset, while the worst
average value is highlighted in red. Values in parentheses
indicate the standard deviation.

Table 4. Average MCPM values on the test set reflect the combina-
tion of the four following group fairness metrics: (i) RDP, (ii) REO,
(iii) RDO, and (iv) RMF1. The best result for each dataset is high-
lighted in green, while the worst is highlighted in red.
Dataset (none) (class) (group) (group, class)

Alcohol 2.53 (0.05) 2.54 (0.02) 2.55 (0.01) 2.55 (0.01)
Arrhythmia 1.45 (0.39) 1.41 (0.40) 1.38 (0.36) 1.39 (0.38)
Bank 1.23 (0.23) 1.23 (0.24) 1.22 (0.23) 1.25 (0.24)
Census Income 1.13 (0.11) 1.14 (0.12) 1.14 (0.12) 1.14 (0.12)
Contraceptive 2.06 (0.19) 2.03 (0.16) 2.09 (0.20) 2.08 (0.20)
German 2.19 (0.22) 2.19 (0.21) 2.16 (0.22) 2.21 (0.24)
Heart 1.34 (0.29) 1.31 (0.24) 1.33 (0.28) 1.38 (0.27)
LSD 1.77 (0.19) 1.73 (0.25) 1.75 (0.24) 1.83 (0.25)
Nicotine 2.29 (0.17) 2.31 (0.16) 2.32 (0.14) 2.30 (0.19)
Recid. Female 1.82 (0.29) 1.89 (0.30) 1.88 (0.30) 1.89 (0.27)
Recid. Male 1.55 (0.17) 1.54 (0.18) 1.56 (0.18) 1.57 (0.18)
Titanic 0.55 (0.27) 0.55 (0.26) 0.53 (0.24) 0.54 (0.25)

Average 1.66 (0.21) 1.66 (0.21) 1.66 (0.21) 1.68 (0.22)

As shown in Table 4, using only the group or class criterion
in data stratification resulted in the worst average MCPM
value in 8 of the 12 datasets, and they also obtained the worst
overall average score. In contrast, when the criterion passes
the combination of group and class, the best result is obtained
in 8 of the 12 datasets, in addition to the best overall average
MCPM. Moreover, it is important to highlight that the crite-
rion (group, class) did not have the worst average in any
dataset.
Through the low average MCPM values, it is possible

to identify some data sets in which it is more challenging
to achieve the desired fairness concepts in the classifiers.
Among them, the Titanic dataset stands out, which has the
worst MCPM average. In a hypothetical situation of use in
the real world, it would probably propagate discriminatory
effects, regardless of the classification algorithm and config-
uration applied.
To complement the MCPM analysis, we applied Fried-

man’s non-parametric statistical test for paired data, followed
by Nemenyi’s post-hoc test, to check whether there is a sta-
tistical difference in the results in the test sets. Each tuple
{dataset, classification algorithm} was considered in the test,
resulting in the analysis of 108 classifiers (12 datasets × 9
classification algorithms × 1 best configuration). Figure 5
shows the CD diagram representing MCPM on test sets. At
the top of the diagram, we can observe the Critical Difference
(CD), and the horizontal axis represents the average ranks of
the model selection strategies, with the best-ranked data strat-
ification criterion on the left. A black line connects criteria
when no significant difference is detected between them.

1 2 3 4

(group, class)
(none) (group)

(class)

CD

Figure 5. Nemenyi post-hoc test applied to the MCPM results on the test
sets.

The statistical results suggest, with a statistically signifi-
cant difference, that among the analyzed data stratification
criteria in the validation set, the criterion (group, class)
is the best option for selectingmore impartial classifiers. The
average rank for criterion (group, class) was 2.10, while
criteria (none), (class), and (group) had similar average
rank, 2.57, 2.70, and 2.63, respectively.
As the MCPM measure encapsulates four different group

fairnessmetrics, it is also interesting to analyze the individual
results of these measures. For this purpose, we individually
applied Nemenyi’s post-hoc test to the measurements: RDP,
REO, RDO, and RM1. Figure 6 shows the CD diagrams for
each of them.
As seen in Figures 6a, 6b, 6c, and 6d, the criterion (group,

class) was ranked first in all metrics analyzed, emphasiz-
ing the RMF1 measure, which had a statistically significant
difference in the results about using the stratification crite-
rion by class. These results show that the criterion (group,
class) facilitates the selection of classifiers that reduce the
disparity in performance between the privileged and unpriv-
ileged groups.
There is no point in having better results in the group fair-

ness metrics if there is a considerable loss inMacro F1-Score.
Therefore, it is essential to perform a performance analysis of
the analyzed classifiers. Table 5 shows the average percent-
ages of the Macro F1-Score on the test set for each data strat-
ification criterion. The average for each dataset comprises
nine results, which refer to each classification algorithm. The
highest value, highlighted in green, indicates the best aver-
age value per dataset, while the worst average value is in red.
Values in parentheses indicate the standard deviation.

Table 5. Average Macro F1-Score (%) on the test set. The best
result for each dataset is highlighted in green, while the worst is
highlighted in red.
Dataset (none) (class) (group) (group, class)

Alcohol 49.55 (0.45) 49.49 (0.18) 49.52 (0.06) 49.53 (0.08)
Arrhythmia 69.47 (5.65) 69.66 (5.56) 69.29 (6.25) 69.95 (5.49)
Bank 70.61 (4.75) 70.72 (4.69) 70.65 (4.76) 70.68 (4.81)
Census Income 78.00 (2.53) 77.97 (2.49) 78.04 (2.52) 78.00 (2.53)
Contraceptive 64.50 (5.96) 65.48 (5.42) 64.44 (5.77) 64.63 (6.05)
German 60.92 (7.79) 61.35 (7.96) 61.10 (8.02) 60.66 (7.85)
Heart 81.08 (4.16) 80.34 (4.54) 81.37 (3.78) 81.23 (4.16)
LSD 72.32 (2.26) 71.25 (3.57) 72.15 (3.44) 71.98 (3.21)
Nicotine 53.40 (5.23) 52.92 (5.26) 53.10 (5.40) 52.82 (5.25)
Recid. Female 59.34 (4.02) 59.83 (4.26) 59.73 (3.89) 59.99 (4.12)
Recid. Male 64.16 (2.50) 64.09 (2.49) 64.13 (2.51) 64.12 (2.50)
Titanic 77.80 (6.18) 78.20 (5.13) 77.39 (6.83) 77.73 (6.19)

Average 66.76 (4.29) 66.77 (4.30) 66.74 (4.44) 66.78 (4.35)

Sometimes, enhancing various fairness concepts leads to
a loss of prediction performance. Fortunately, this did not
happen in the case of the criterion (group, class), as it
had the best overall average Macro F1-Score. However, the
average Macro F1-Score results were very close across all
tested criteria. Also worth noting is the data stratification
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Figure 6. Nemenyi post-hoc test applied on the test sets individually to each group fairness measure that makes up the MCPM multi-criteria measure.

by class criterion, which had the best results on 4 out of 12
datasets while also having 5 of the worst results.
In some datasets, such as Alcohol and Nicotine, the classi-

fiers hadMacro F1-Score results that were far below expecta-
tions. One reason for this is the large class and group imbal-
ance in both datasets, as seen in Figure 3. In cases like these,
it is also essential to test data augmentation techniques focus-
ing on minimizing the effects of the data unbalance. How-
ever, this type of analysis is outside the scope of this work.
We also apply Nemenyi’s post-hoc test to the Macro F1-

Score results. Figure 7 shows the CD diagram representing
Macro F1-Score on test sets. The ranking obtainedwas as fol-
lows: first (group), followed in ranking order by (group,
class), (class), and (none). There was no statistically
significant difference between the results of the analyzed cri-
teria.

1 2 3 4

(group)
(group, class) (none)

(class)

CD

Figure 7. Nemenyi post-hoc test applied to the Macro F1-Score results on
the test sets.

Table 5 and Figure 7 provide a clear path to answering
the crucial question we posed earlier about the significance
of improving outcomes on fairness metrics while also main-
taining good results in the selected predictive performance
measures. These results confirm no loss of predictive power
with criterion (group, class); its performance in Macro
F1-Score is similar to the other criteria analyzed and even bet-
ter in some situations. This confirmation further highlights
this criterion’s results in improving notions of group fairness.
Our last analysis of the experimental results concerns the

influence of the types of classifiers on the average results
highlighted so far. From now on, for each result related to a
classification algorithm, we calculated the average score of
the 12 analyzed datasets. Figures 8 and 9 present the MCPM
and Macro F1-Score results per the classification algorithm.
The red dashed line is a reference and indicates the highest
average achieved for the measurement in question. The col-
ors of the bars indicate the data stratification criterion.

Figure 8 shows that the algorithms based on artificial neu-
ral networks (AD and MLP) and KNN had the best average
performance in MCPM. It is worth highlighting that AD was
created to mitigate bias. In these three algorithms, the crite-
rion (group, class) was among the two best performers.
In contrast, ADA obtained the worst average MCPM results
for all criteria, which is not the ideal algorithm for generating
impartial classifiers in the collection of datasets analyzed.
With Figure 9, it is possible to contrast the results of Fig-

ure 8, as the three algorithms with the best average in Macro
F1-Score (ADA, RF, and XGB) did not have good results in
the fairness metrics. However, the algorithms that improved
performance in MCPM, especially in AD and MLP, also had
good results in Macro F1-Score and can be considered the
best options for balancing accuracy and fairness in the exper-
imental configuration adopted.
The criterion (group, class) had the best MCPM aver-

age across five algorithms tested (ADA, CART, MLP, SVM,
and XGB). Regarding the Macro F1-Score results, the crite-
ria results were very similar between the algorithms, except
for CART and KNN. Finally, we did not notice any criteria
plus algorithm results that influenced the average results, sta-
tistical evidence, and insights presented previously.

5 Conclusion and Future Work

This paper introduced a robust experimental setup with the
ability to evaluate the impact of different data stratification
criteria on model selection. The main objective of this study
was to associate which data stratification criteria help in a
fairer selection of models. According to the experimental
results, stratifying the data by class and group of people
(in the case of this paper, they are privileged and unprivi-
leged groups) selects more impartial classifiers, contributing
to fairer classifications andminimizing the spread of discrim-
inatory effects. Furthermore, we reinforce that in classifi-
cation tasks that involve people, when group information is
available, it is essential to use the class and group criteria
to stratify the test set, as this way, there is a more accurate
evaluation of the group fairness metrics. In conclusion, the
findings of this study highlight that a simple yet effective
stratification method can serve as a straightforward pathway
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Figure 8. Average MCPM per classification algorithm on the test set. The red dashed line serves as a reference, indicating the highest average score.
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Figure 9. Average Macro F1-Score per classification algorithm on the test set. The red dashed line serves as a reference, indicating the highest average score.

to incorporate fairness into machine learning models.
In future work, we intend to expand the experimental setup

to include multiclass classification and add datasets with un-
structured data, such as text and images, to evaluate the gen-
eralization power of data stratification by group and class.
We also intend to evaluate data stratification criteria com-
binedwith different data preparation and pre-processing tech-
niques present in the Fairness in Machine Learning literature
to identify best practices for inducing fairer classifiers.
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