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Abstract This study evaluates machine learning methods to predict the prognosis of patients in COVID-19 context.
This study evaluates machine learning methods for predicting patient prognosis in the COVID-19 context. For the
best-performing algorithm, we applied LIME to assess feature contributions to each decision, providing insights to
assist experts in understanding the rationale behind the model’s predictions. The results indicate that the developed
model accurately predicted patient prognosis, achieving an ROC-AUC = 0.8524. The results also point out a higher
risk of death among patients over 60 years of age, with comorbidities, and symptoms such as dyspnea and Oxygen
saturation< 95%, confirming results observed in other regions of the world. The results also indicated a higher
percentage of deaths among those with little or no education. The prediction explanations allowed us to understand
how each feature contributes to the decision made by the model, improving its transparency. For instance, in an
illustrative case, LIME demonstrated that invasive ventilatory support and an age of 61 years positively contributed
to the prediction of mortality, whereas hospitalization and the patient’s race (being white) were not significant

predictors for this particular patient.
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1 Introduction

Coronavirus disease (COVID-19) is an infection caused by
Severe Acute Respiratory Syndrome Coronavirus (SARS-
CoV-2). SARS-CoV-2 corresponds to a binuclear virus that
has a broad clinical spectrum of infection [Lu et al., 2020].
When infecting a host, this agent can trigger a series of symp-
toms, such as fever, cough, fatigue and mild to severe respi-
ratory complications [Yan et al., 2020]. Depending on the
severity of the symptoms, the infection can lead the patient
to death. With the large spread of SARS-CoV-2, the World
Health Organization (WHO) declared a pandemic state on
March 11, 2020 [WHO, 2021]. According to recent statis-
tics (April 2023), more than 764 million people have been in-
fected and more than 6.9 million have died from COVID-19
worldwide. Considering South America, Brazil appears as
the country with the most deaths. Although there is currently
a general understanding that the pandemic is under control,
uncertainty regarding new pandemics is still a constant con-
cern. Scenarios like these pose great challenges for health
systems, especially regarding the clinical decision-making
process [White and Lo, 2020]. Discussing and understand-
ing strategies that support the decision-making process about
care rationing is essential, especially in a pandemic context.
Eventually, a right decision can contribute to reducing the
number of deaths in scenarios analogous to COVID-19.
Care rationing demands a complex screening process,
which can influence, the quality of care to the lethality and
mortality rates. For this, biomarkers of effective prognosis
could be applied. The purpose of this screening process is

to help determine patients who require immediate medical
attention, based on the estimation of the associated mortal-
ity risk in a data-driven approach. Although this stratifica-
tion process is not ideal, in many situations it becomes nec-
essary, due to the scarcity of hospital resources, whether hu-
man or technical. Estimating the risk of death would allow
early intervention and potentially reduce mortality, since at-
tention would be directed to patients similarly critical but
with higher chances of death. To this end, current litera-
ture has identified different clinical characteristics associated
with the severity of COVID-19 infection, especially of citi-
zens from Wuhan [Xie et al., 2020; Pan et al., 2020]. There-
fore, these characteristics could be used to make a prognosis,
especially based on Artificial Intelligence (Al) methods [Ku-
mar et al., 2020].

Al systems have been applied to assist in the diagnosis and
prognostication of many conditions [Yu et al., 2018; Soares
et al., 2021]. In general, health systems are among the most
promising fields for Al applications, mainly with sophisti-
cated methods from the subarea called Machine Learning
(ML). Nevertheless, the way Al systems make decisions may
not be known, given the “black box” characteristic of some
methods. For many algorithms, while achieving effective re-
sults, the recommendations are not easily interpretable or ex-
plainable. Itis not always clear which information or specific
reasoning was used to make the decision. Quite frequently,
these constraints become barriers to the a broader adoption
of ML solutions [Mittelstadt et al., 2019]. This becomes
even more critical when it comes to healthcare systems, espe-
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cially for critical decision-making, which commonly affects
the lives of patients. To attenuate this problem, techniques
such as LIME [Ribeiro et al., 2016] can be used to provide
interpretation of the model’s decisions.

LIME technique can significantly enhance decision-
making related to COVID-19 mortality prediction by provid-
ing interpretable insights into the factors driving the model’s
outputs. It allows healthcare professionals to understand
which features, such as age, race, education level, comorbidi-
ties, and the need for ventilatory support, contribute most to
the prediction of a patient’s mortality risk. By offering lo-
cal explanations for individual predictions, LIME can help
tailor clinical decisions to each patient’s unique profile, in a
personalized way. This transparency promotes trust in the
model’s predictions, enabling clinicians to assess the relia-
bility of the outcomes and align them with their medical ex-
pertise. Furthermore, LIME can highlight actionable factors,
guiding interventions that may improve patient outcomes. In
this way, it can bridges the gap between complex ML models
and practical, evidence-based clinical decision-making.

In the context of COVID-19, recent studies have pro-
posed the application Al-based methods, for example, pa-
tient mortality prediction [Yan et al., 2020]. Nevertheless,
many of these works were carried out only in the Wuhan
region using a restricted set of models, and in general they
did not assess the interpretability of the decisions at the lo-
cal/individual level. Thus, in this work, we propose and ex-
perimentally validate a pipeline of ML models to support
computer-aided prognostication of patients in a pandemic
context, like COVID-19. To achieve it, multiple predictive
variables from individual information are exploited, such
as sex, age, symptoms, among others. In addition, to bet-
ter understand the relationship between the predictive vari-
ables and the model decisions, we enhance the ML decision
support system with interpretability assets based on LIME
technique. This study significantly extends our previous
work Figuerédo et al. [2023] by improving the problem for-
malization, presenting a more comprehensive analysis of the
related work, including a descriptive analysis of the data, as
well as the odds ratio analysis for risk factors.

The remainder of this article is organized as follows: Sec-
tion 2 presents the related works and Section 3 describes the
experimental process. The results and discussions are pre-
sented in Section 4. Finally, Section 5 brings the conclusions
and future work.

2 Related Works

Since the emergence of SARS-CoV-2 in December 2019 in
Wauhan, the global research community has engaged in ongo-
ing investigations to identify mechanisms and insights that
may help mitigate the effects of COVID-19. All that ef-
fort has enabled significant advances in multiple fields in a
short time. Research has been developed with multiple pur-
poses, such as to aid in patient diagnosis, in the prediction of
pandemic progress, to improve the care of critical patients,
radiology-based diagnosis, among others [Islam et al., 2020;
Kumar et al., 2020].

Specifically, in such circumstances, accurate prognostica-
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tion of patients is a crucial task. Therefore, systems designed
to address this need can serve as valuable allies in managing
COVID-19. In fact, these modern systems can assist in de-
cision making in healthcare units. A direct application of
such systems regards supporting the process of patient prior-
itization according to their clinical characteristics and overall
condition. With this purpose, some studies have already been
conducted and are described in the following.

Yan et al. [2020] developed predictive models to per-
form COVID-19 prognosis prediction according to predic-
tive biomarkers. To support the methods, the authors used
epidemiological, demographic, clinical and laboratory data.
The model discovery relied on data from 375 patients from
the city of Wuhan. The predictive model was built using the
XGBoost algorithm. The experimental results indicated that
the model managed to select three biomarkers which were
enough to predict the mortality of individual patients with an
accuracy of 90%. Specifically, the most predictive biomark-
ers were: lactic dehydrogenase (LDH), highly sensitive C-
reactive protein and lymphocytes. Using also data from pa-
tients in the city of Wuhan, Xie et al. [2020] conducted a
retrospective study to assess the association between hypox-
emia and mortality in patients with COVID-19 in a survival
analysis. Numerous relevant results have been found, among
them is the fact that hypoxemia is independently associated
with in-hospital mortality. In addition, the researchers found
that oxygen saturation values (SpO5) greater than 90% with
oxygen supplementation indicate a high probability of sur-
vival.

In order to establish a reliable nomogram to predict mortal-
ity in patients with COVID-19, Pan et a/. [2020] developed a
model using critical patient data of the Optical Valley Branch
of Tongji Hospital from the Huazhong University of Science
and Technology. The researchers collected data from 21 pa-
tients who died of COVID-19 between February 9 and March
10, 2020. In addition, they also selected data from 99 patients
recovered in the same period. A predictive model was devel-
oped using data from these 120 patients. For validation, the
researchers used an independent cohort of 84 patients. The
predictive model relied on multivariate logistic regression
based on: reactive protein, PaOs/FiO5', and cardiac tro-
ponin I (cTnI)?. The model achieved an ROC-AUC of 0.956
in the validation set.

In Souza et al. [2020], the authors conducted a study sim-
ilar to those previously described, but using data from the
state of Espirito Santo — Brazil. In addition to the geograph-
ical difference between the data used in these works, there
were also differences regarding the sources of the data, such
as the absence of data regarding laboratory tests, factors that
are known to increase the model’s effectiveness. To deter-
mine the prognosis in patients with COVID-19, the authors
used numerous machine learning algorithms. For model con-
struction purposes, data from clinical records of 13,690 pa-
tients (cases closed due to cure or death) were used. The
experiments performed by the authors revealed that the out-

1PaO3/FiOs is the ratio of arterial oxygen partial pressure (PaO2
in mmHg) to fractional inspired oxygen (F'iO2 expressed as a fraction, not
a percentage).

2¢Tnl is a cardiac regulatory protein that control the calcium mediated
interaction between actin and myosin [Sharma et al., 2004]
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come by COVID-19 could be predicted with an a ROC-AUC
of 0.92. Likewise, using data from patients in Brazil (na-
tional scale), Mattos et al. [2020] assessed the correlation
between the manifestation of symptoms/comorbidities and
the patients’ survival response through Kaplan-Meier sur-
vival estimates. The authors identified that the observed co-
morbidities and symptoms are in accordance with the main
clinical markers of the disease already reported in the litera-
ture. In addition, the authors also identified that such clinical
aspects may present different distributions of comorbidities
and present symptoms differently from the results reported
in patients from other countries.

Although our work has a similar objective to the works al-
ready mentioned, this work presents some significant contri-
butions and innovations. For example, the works in Yan et al.
[2020]; Xie et al. [2020] were done mostly in Wuhan, China,
while ours was done with data from patients in Brazil. On the
other hand, the work carried out by Souza et al. [2020] was
also conducted in Brazil, but used a limited database, contain-
ing only data from a single Brazilian state. Despite Mattos
et al. [2020] using a more comprehensive dataset than Souza
et al. [2020], the main objective was to perform an initial
analysis of clinical factors related to admission in ICU or
death of SARS-CoV-2, and not the development of predic-
tive models from ML. In addition to these aforementioned
remarks, the previous works included no explicit resources
and analysis for explaining why the model made a particu-
lar decision. Differently, our work explicitly introduce an
Explainable Artificial Intelligence (XAI) step to the predic-
tions, with the objective of helping in the understanding of
the decisions made by the model. Consequently, it helps the
experts to comprehend the context and reliability for each
prediction.

3 Methodology

The experimental process followed in this work is illustrated
in Figure 1. There are four stages: data collection, prepro-
cessing, model training (including optimization and valida-
tion) and model assessment and analysis, which includes an
explainability stage of the learned models.

3.1 Dataset and preprocessing

The experiments relied on the same database used in a previ-
ous work [Figuerédo et al., 2021], i.e., the Database for Se-
vere Acute Respiratory Syndrome 2020 (SARS2020), avail-
able in the OpenDATASUS? portal. Such repository is main-
tained by the Ministry of Health of Brazil, through the Sec-
retariat of Health Surveillance, which conducts the surveil-
lance of Severe Acute Respiratory Syndrome in Brazil, since
2009. Previous to the publication in the portal, the database is
submitted to preparation procedures that include anonymiza-
tion procedures in compliance with current regulations. With
the new Coronavirus pandemic, multiple data on COVID-19
cases were incorporated into the surveillance network and
are updated on a weekly basis.

3https://opendatasus.saude.gov.br/dataset/srag-2020
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In this study, only completed cases (death or cure) were
considered. Thus, data were discarded for the patients whose
outcome was reported as unknown. After removing these
cases, the database remained with 274,493 patient records,
164,535 of cure (59.94%) and 109,958 of death (40.06%).
In addition to information regarding the evolution of the in-
fection, the dataset also includes basic individual informa-
tion, such as gender and age group, symptoms, comorbidi-
ties, among others.

The original dataset has 156 attributes. However, a pre-
liminary analysis showed that some of these variables do not
add relevant predictive content, e.g., patient name. For this
reason, some variables considered non-relevant for the task
were removed, resulting in a final set of 39 variables (includ-
ing the outcome attribute). In addition to employing a con-
ceptual attribute selection process that identified irrelevant
features (e.g., patient name, notification date, region identi-
fier, hospital unit identifier and so on), we also engaged the
collaboration of an expert who selected the features deemed
most relevant to our context. After both processes, we re-
tained the following variables: age, gender, race, education,
geographic area, dyspnea, fever, cough, Oxygen saturation
< 95% (Yes, No), sore throat, respiratory discomfort, diar-
rhea, vomiting, other symptoms, heart disease, diabetes, neu-
ropathy, pneumopathy, kidney disease, asthma, immunode-
pression, hemopathy, liver failure, down syndrome, postpar-
tum, obesity, other comorbidities, hospitalization (Yes, No,
Unknown), intensive care unit (ICU), antiviral treatment, an-
tiviral type, severe syndrome outbreak, nosocomial*, bird or
swine contact, pregnancy, risk factor (Yes, No), Chest X-ray
(Normal, Interstitial infiltrate, Consolidation, Mixed, Other,
Unrealized, Unknown), ventilatory support (Yes, invasive;
Yes, non-invasive; No; Unknown), and evolution (outcome).

Moreover, in the preprocessing phase, it was detected that
the database had a large amount of missing data. Some
attributes such as “Obesity” and “Kidney disease”, for in-
stance, had more than 60% absence of data. Thus, in order to
avoid possible inconsistencies in the experiments, data stan-
dardization was performed considering missing data as non-
occurrence of the event in particular (e.g., for the cough at-
tribute, if the information was missing, it was indicated as
the patient not having this symptom). With the exception
of the “Age” attribute, all other variables were categorical.
Thus, the “Age” attribute was discretized into the following
categories: child (0-10), teenager (11-17), young adult (18-
29), average adult (30-40), adult (41-59) and elderly (60 or
more).

3.2 Experiments, assessment, and explana-
tions

The database was partitioned into training and test sets. Be-
fore partitioning, a sub-sampling was applied to balance the
dataset (cures and deaths). Absolute partitioning was per-
formed through a stratified random procedure. For the test
set, 30,000 records were randomly hold-out (15,000 cures
and 15,000 deaths) and the remainder (202,164 samples) was
retained only as the training set. The training set was used to

4Refers to infection acquired in the hospital.
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Figure 1. Experimental process used in this study

Table 1. Hyperparameters tested for each of the algorithms (except naive bayes) used in this work

Algorithm/Classifier Hyperparameters

Tested values Best parameter

Quality Measure

Decision Tree Pruning method

Minimum number of

Gini index, Gain Ratio Gain Ratio
Without Pruning, MDL  Without Pruning

(10, 20, 30, 50, 100) 50
records per node
Learning rate (0.5, 0.1, 0.01, 0.001) 0.1
Gradient Boosted Trees  Number of models (500, 700, 1000) 1000
Tree depth (5, 10, 20) 5
. . Epochs (100, 300, 500) 300
Logistic Regression Learning rate (1,0.5,0.1,0.01, 0.001) 0.1
Minimum number of (10, 20, 30, 50, 100) 20
Random Forest records per node
Number of models (500, 700, 1000) 1000
Tree depth (5, 10, 20) 20

discover the best predictive model supported by a hyperpa-
rameter optimization (Table 1) with k-fold cross-validation
and stratified sampling with k£ = 10. In turn, the test set was
used to verify the effectiveness and perform the explanation
analysis of the models. Five algorithms were used in this
study, namely: Decision Tree, Logistic Regression, Naive
Bayes, Random forest and Gradient Boosted Trees. The best
model was selected considering the F; measure.

The predictive models were assessed using the Area Un-
der the ROC Curve (AUC). The ROC curve corresponds to a
graphic technique widely used to evaluate the effectiveness
of binary classifiers, based on multiple confidence thresh-
olds. This technique relates the false-positive rate to the true-
positive rate. On the other hand, the AUC provides a numer-
ical summary for the two-dimensional area below the ROC
curve. The AUC varies between 0 and 1, with 0 represent-
ing a model that provides all predictions erroneously, while
1 represents a models that provides 100% of correct predic-
tions. The effectiveness of the developed models was also
evaluated based on classical ML measures, such as Precision,
Recall and F;. While Precision quantifies the portion of sam-
ples correctly predicted as belonging to the class of interest
(death), Recall quantifies the portion of samples of the class
of interest the were correctly predicted as belonging to that
class. Finally, the F; measure is taken as the harmonic mean
of Precision and Recall.

Understanding how features affect the decision-making is
considerably important for the confidence on the model. This
may be decisive to select which model to be deployed or to
support further actions based on model predictions [Ribeiro

et al., 2016]. When using ML, especially in the healthcare,
actions may not be taken based only on predictions from a
black box oracle, as the consequences can be catastrophic.
Thus, in addition to the traditional effectiveness assessment,
we also evaluate the models using a ML explanation tech-
nique, named LIME. LIME is a technique that aims at ex-
plaining the individual predictions of a black box model by
training a local surrogate model that is easier to understand
(e.g., a linear model) [Ribeiro et al., 2016]. The rationale be-
hind this approach is that a globally nonlinear model might
actually be linear within a small local region of the feature
space. To provide this, LIME creates a dataset of perturbed
samples for a single sample of interest, predicts it with the
black box model and then learns a local surrogate, which ap-
proximates the predictions of the black box model.

Figure 3 presents an example of how the explanations are
generated. In short, LIME produces the explanations through
five main steps:

+ Instance Selection: First, LIME focuses on a single in-
stance from the dataset (e.g., a patient record) for which
the model has made a prediction and needs to explain
the decision taken.

+ Data Perturbation: Next, LIME generates a series of
perturbations of the instance under analysis, producing
synthetic data points similar to the original. These data
can be generated using different approaches. In our con-
text, this is done by slightly modifying the variable val-
ues.

* Model Predictions: For each new synthetic instance,
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Figure 2. Explaining individual predictions.

the original model (f) is used to generate new predic-
tions. This allows to identify how small changes in the
input data affect the model’s output.

* Building a Simple Model (surrogate): After collect-
ing the model’s predictions on the synthetic data, LIME
fits a simple interpretable model (such as linear regres-
sion) around the local region of the instance. This sim-
ple model is easily interpretable and approximates the
behavior of the complex model only within that neigh-
borhood.

+ Explanations: Based on the simple model, LIME iden-
tifies which features of the original data were most im-
portant for the prediction. It assigns weights to each
feature, indicating their relevance to the model’s deci-
sion.
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Figure 3. Didactic example to present intuition for LIME. The black-box
model’s complex decision function f (unknown to LIME) is represented by
the blue/pink background, which cannot be approximated well by a linear
model. The bold red cross is the instance being explained. LIME samples
instances, gets predictions using f, and weighs them by the proximity to the
instance being explained (represented here by size). The dashed line is the
learned explanation that is locally (but not globally) faithful.

Figure 2 (adapted from Ribeiro ef al. [2016].) illustrates
the process of explaining individual predictions. This exam-
ple shows a situation in which the model predicts that a pa-
tient has flu, and LIME highlights the symptoms in the pa-
tient’s history that led to the prediction. Sneeze and headache
are stated as contributing to the “flu” prediction, while “no
fatigue” is evidence against it. Hence, a doctor can decide
whether to trust the model’s prediction [Ribeiro ez al., 2016].
Therefore, an explanation, as the case illustrated in Figure 5,
corresponds to a small list of symptoms with relative weights

that either contribute to the prediction (in orange) or are ev-
idence against it (in blue). In this work, we considered a
sample set of 8 records to evaluate the individual predic-
tions, thus simulating the practical application of the predic-
tive models. It is worth noting that this explanation of the
model not necessarily means causality, and such investiga-
tions are out of the scope of this work.

4 Results and Discussions

The results are organized in four sections. In section 4.1 we
present a descriptive analysis of the data. In turn, section 4.2
addresses an odds ratio analysis. In the section 4.3 we dis-
cuss the results achieved by the machine learning models de-
veloped. Finally, in the section 4.4, the explainability per-
spective is presented.

4.1 Clinical and Demographic Context

Table 2 presents the descriptive analysis for selected at-
tributes. In general, the results found from this analysis
corroborate what has been described in the literature about
older age, male gender, and the presence of comorbidities as
factors associated with hospitalization from COVID-19 and
that can be used as potential risk indicators [Niquini et al.,
2020]. Additionally, the descriptive analysis revealed that
symptoms related to breathing, such as dyspnea and respi-
ratory distress, cause a higher percentage of deaths among
patients who develop them.

The results of descriptive analysis from Table 2 resemble
the ones in previous studies carried out in different regions of
the world [Zhou et al., 2020; Grasselli et al., 2020; Richard-
son et al., 2020; Onder et al., 2020], which report that older
age, male gender and the presence comorbidities are associ-
ated with hospitalization by COVID-19 and, therefore, can
be used as potential risk factors. These findings are particu-
larly significant because, despite Brazil’s distinct geographic
region, climate, and sociodemographic characteristics from
those of the initial studies, the identified risk factors identi-
fied were similar.

4.2 Mortality Risk Analysis

Complementing the descriptive analysis, an estimate of the
odds ratio of death was performed considering the binary at-
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results are presented in Table 3 and the attributes that indi-
cate greater chances of death are highlighted in bold. That

Category All'n (%) Cure n (%) Death n (%) X X . .
is, these attributes are potential risk factors and, therefore,
All 274493 (100) 164535 (59.9) 109958 (40.1)  deserve special attention. According to the data, the chance
of death is greater among patients admitted to the ICU, aged
035 386(117) 27607 (88.5) 3579 (11.5) 69 years or older or who used inva.sive ventilation suppf)rt.
Age 36-59 99811 (36.7) 75543 (75.7) 24268 243)  Signs and symptoms such as saturation, dyspnea and respira-
60ormore 143496 (523)  61385(42.8) 821 (72) 41y distress were also indicated as factors that increase the
chances of death. In addition, comorbidities also indicate
Female 120023 (43.7) 73998 (61.7)  46025(384)  ap increased chance of death. On the other hand, symptoms
Gender Male 154410 (56.3) 90499 (58.6) 63911 (41.4) h as fi h h d diarth dentified
Unknown 60 (0.02) 38.(63.3) 2367  Suchas fever, cough, sore throat and diarrhea were identifie
as having the least contribution to the patient’s death. Pecu-
Yes 189309 (69.0) 106204 (56.1) 83105 (43.9) hgrly, d%abe':tes and asthma, usually indicated as risk fact'or‘s,
Dyspnea No 51998 (19.0) 38924 (74.9) 13074 (25.1)  did not indicate greater chances of death. Nevertheless, it is
Unknown 3405 (1.2) 1681 (49.4)  1724(50.6)  worth mentioning that the large amount of missing and ig-
Missing 29781 (10.9) 17726 (59.5) 12055 (40.5) . ;
nored data may have influenced these findings.
In particular, considering the ICU and the ventilation sup-
Yes 182306 (66.4) 115290 (63.2) 67016 (36.8) . . e
. No 58699 (214) 33958 (570) 24741 (422)  POIt attributes, it is wor'th 'mentlot'nng that the fact that they
ever Unknown 4227 (1.5) 1654 (39.1)  2573(60.9)  are among the characteristics that increase the chances of the
Missing 29261 (10.7) 13633 (46.6)  15628(334)  patient dying does not necessarily mean that these factors
were the cause of death. Their presence is possibly justified
I‘\(Ies 1i23518241(7fé2; 122553762§Z(€53é3z) 722080()977(34165755) because the patients who require the use of these resources
Cough Unknown 371 8((1: 4; 1347 E36:2; 2371 §63:8; are typically more severe cases, for whom other risk factors
Missing 26720 (9.7) 12037 (45.1) 14683 (55.0)  may exist.
Yes 150698 (54.9) 78931 (52.4) 71767 (47.6) Table 3. EValuatiOn Of OddS rati(). The attributes that indicate
Saturati No 73057 (26.6) 55368 (75.8) 17689 (24.2)  greater chances of death are highlighted in bold.
atration Unknown 5817 (2.1) 2905 (49.9) 2912 (50.1)
Missing 44921 (164)  27331(60.8) 17590 (39.1) Condition OR 95% CI P Zscore
Yes 151419 (55.2) 82588 (54.5) 68831 (45.5) ICU 5_04 (494 _ 513) < 00001 17096
Respiratory ~ No 71790 (26.2) 51870 (72.3) 19920 (27.8) B
Discomfort  Unknown 4871 (1.8) 2549 (52.3)  2322(47.7) Age >=60 476 (4.8 - 4.84) <0.0001  184.75
Missing 46413 (16.9) 27528 (59.3) 18885 (40.7) Ventllatory SUppOl’t 4.18 (409 - 427) < 0.0001 126.32
Oxygen saturation 2.85 (2.79-2.90) < 0.0001 103.97
Dyspnea 2.33  (2.28-2.38) < 0.0001 76.06
Yes 88770 (32.3) 44716 (50.4) 44054 (49.6) Risk factor 225 (2.21-2.28) < 0.0001 96.16
Heart disease  1© 48011 (17.5) 27768 (37.8) 20243 (422)  gidney disease 219 (2.11-2.28) <0.0001 3824
Unknown 1871 (0.7) 841 (45.0)  1030(55.1) Heart Di 218 (213299 < 00001 7194
Missing 135841 (49.5) 91210 (67.1) 44631 (32.9) cart Disease . (2.13-222) : :
Respiratory Discomfort  2.17  (2.13 -2.21) < 0.0001 79.03
Neuropathy 208 (2.00-2.17)  <0.0001  34.79
Yes 10641 (3.9) 4002 (37.6) 6639 (62.4) Pneumopathy 1.88 (1.80-1.96) < 0.0001 29.42
Neuropathy Efok 93;22 8(3(‘1“32 512(6)3 ggg 41;%‘9) E‘S“ﬁ‘fz‘; Liver Failure 1.81 (1.67-1.96) <0.0001 1421
nKknown . . .. H
Missing 167020 (60.9) 107060 (64.1) 59960 (35.9) g?;gg:’sdepressm ig; 83; }’;‘g 2 8'888} ;2'5?
Hemopathy 1.27 (1.17-1.38) < 0.0001 5.58
Yes 9991 (3.6) 3974 (39.8) 6017 (60.2) Down Syndrome 1.20 (1.03-1.39) =0.0185 2.35
pncumonathy N 93526(341)  SI819(554) 41707(446)  Antiviral treatment 107 (1.05-1.10)  <0.0001  7.25
PAY " Unknown 3519 (1.3) 1552 (44.1) 1967 (55.9) Obesity 0.93  (0.90-0.97) < 0.0001 3.59
Missing 167457 (61.0) 107190 (64.0) 60267 (36.0) Fever 080 (0.78-0.81) 00001 2336
Cough 075 (0.73-0.76)  <0.0001  28.02
Yes 2210 (0.8) 1072 (48.5) 1138 (51.5) Sore throat 0.74 (0.72-0.76) < 0.0001 27.63
. gy No 98698 (36.0) 53785 (54.5) 44913 (45.5) Diarrhea 0.74 (0.72-0.76) <0.0001  24.17
OMEOPER” " Unknown 3672(1.3)  1572(428)  2100(57.2)  Asthma 056 (0.52-0.59)  <0.0001  22.11
Missing 169913 (61.9) 108106 (63.6) 61807 (36.4) Postpartum 0.30 (026 _ 036) < 0.0001 14.37
Vomiting 0.00 (0.003-0.004) < 0.0001 266.54
Yes 11385 (4.2) 6385 (56.1) 5000 (43.9)
Obesit No 89595 (32.6) 48652 (54.3) 40943 (45.7)
estty Unknown 5588 (2.0) 2553 (45.7) 3035 (54.3)
Missing 167925 (61.18) 106945 (63.69)  60980( 36.3)

tributes (yes or no to the presence of a specific characteristic).
Although age does not fall into this category, after binary dis-
cretization, it was also included in the analysis. The odds
ratio was calculated using the 95% confidence interval. The

4.3 Effectiveness of Mortality Prediction

In Figure 4, we present the contingency matrices for the de-
veloped models. Considering specifically True Positive (TP)
and True Negative (FN) (in blue), which are strongly related
to the main class of interest (i.e., death cases), it was ob-
served that the models obtained from GB and RF were the
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Figure 4. Contingency matrix for the models developed. (a) Gradient Boosted Trees; (b) Random Forest; (c) Logistic Regression; (d) Decision Tree; and (¢)

Naive Bayes.

ones that showed the best effectiveness. Considering a sce-
nario in which a large number of patients would be evaluated
by predictive models, the GB-based and RF-based would be
the most suitable, as the system would make more assertive
decisions regarding the identification of patients with greater
chances of death, those who would therefore need interven-
tion as soon as possible.

Still considering Figure 4, we can notice a balance be-
tween the number of False Positive (FP) and False Negative
(FN) (in orange). Considering a scenario of practical use,
the ideal would be the absence of errors. However, depend-
ing on the purpose of the application, some errors can have
a greater negative impact than others. In our context, a FN
is especially critical given it represents a patient that would
not be identified as at risk and possibly not properly treated.
For this scenario, the GB-based and RF-based models would
be the most suitable for use, as they reached a lower FN per-
centage than the others. Ultimately, disregarding financial
and other indirect burdens, when compared to FN, the oc-
currence of FP would be less harmful, considering that the
patient would be directed to immediate care and submitted
to further examination. However, it is important to highlight
that this decision could overburden the hospital more quickly,
which could deteriorate the care of patients that in fact need
assistance.

Table 4 shows the effectiveness of the models developed,
considering the Recall, Precision, F; and AUC measures. In
general, the models achieved promising effectiveness, espe-
cially the GB and RF. Among the models developed, the NB
achieved the worst effectiveness. It is worth mentioning that
the classification process used a standard probability thresh-
old of 0.5. The AUC values achieved (above 80% for all
cases), show that the models developed were able to obtain
high and promising predictive effectiveness. In summary,
these results point to the possible effective use of machine
learning models to face current and similar problems as those
imposed by the COVID-19 pandemic.

Table 4. Prediction effectiveness of the developed models in terms
of Recall, Precision and F3.

Algorithm/Classifier Recall  Precision P AUC

Gradient Boosted Trees 0.7661 0.7661 0.7661 0.8524
Random Forest 0.7691  0.7641  0.7666 0.8471
Logistic Regression 0.7607  0.7607  0.7607 0.8438
Decision Tree 0.7528  0.7528  0.7528 0.8382
Naive Bayes 0.7260  0.7260  0.7260 0.8114

These results described in this paper become even more
relevant, considering a high percentage of missing data had
to be handled. In addition, it is worth mentioning that among
the attributes used to characterize users, there was no data

from clinical tests and laboratory tests. Such kind o data
would possibly contribute to the process of class separation,
thus improving the process of identifying cases with greater
chances of death, consequently increasing the effectiveness
of the models.

4.4 Underlying Mortality Factors

For model explanation, LIME was applied over the GB mod-
els, since it achieved the greatest global effectiveness in
terms of AUC. In addition, among the algorithms used, the
GB is also the one that most represent a “black box” algo-
rithm. In the application of LIME, we limit the number of
features to 10 in the process of explaining predictions. Al-
though this value represents less than 50% of the total vari-
ables of the dataset, it is highly recommended to use a re-
duced number of features, otherwise, the explanations could
be difficult to understand. Explanations of the individual pre-
dictions are illustrated in Figure 5. The explanation illustra-
tion regards 8 records selected at random, including 2 cases
from each prediction assessment category, i.e., TP, TN, FN,
and FP. For these cases, the explanations correspond to a list
of 10 features with relative weights - features that contribute
to the prediction (in orange) or are evidence against it (in
blue). These explanations can be used to help an expert in
the decision-making process. The specialist, with knowledge
of the domain, can use the provided explanations to accept
(trust) or reject a prediction by more clearly understanding
the reasoning behind it.

With LIME, an individualized analysis is performed for
each patient. For instance, considering TP-Case 1 in Figure 5
(a), we observe that the use of invasive ventilatory support
contributed positively to the prediction of death. Likewise,
the age of 61 was also positively correlated. On the other
hand, the fact that the patient is hospitalized and is white is
presented as not contributing to the prediction of death. It
also suggests that a greater number of positive correlation
features led the model to predict the case as in risk of death.
Thus, when observing these data, a specialist in the field of
application could perceive, for example, that although this
patient is hospitalized, a number of features commonly re-
lated to the patient’s death are shown as contributing to the
prediction of death. With these decision-support resources,
the specialist may take the decision made by the model as
reliable and more probably correct.

Figure 5 (b) illustrates the cases of true negatives. Analyz-
ing TN-Case 2, we found that the fact the patient feels respi-
ratory discomfort and is brown contributes positively to the
prediction of death. On the other hand, the facts that the pa-
tient is 10 years old, is not in an ICU, and uses non-invasive
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Figure 5. Explaining individual predictions. (a) TP cases; (b) TN cases; (c) FN cases; (d) FP cases.

ventilatory support are pointed out as not contributing to the of death outweigh the correlated contributions. Therefore, it
prediction of death. The contributions against the prediction ~ suggests why the system indicates the patient’s cure. When
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confronted with these explanations, a professional with do-
main knowledge could verify that the decision made by the
system is consistent.

The cases described above represented two situations in
which the system correctly predicted the evolution of the
patient’s health status. Although this situation is ideal, the
system is susceptible to errors, generating false negatives or
false positives. Figure 5 (c) shows cases of false negatives.
Many features are presented as not contributing to death,
which outweighs the features that contribute to death, leading
the system to mistakenly predict the patient’s cure. However,
it is important to carefully analyze this decision. Although in
both cases the contributing features against death outweigh
the features that contribute in favor, these are elderly patients.
That is, these are patients belonging to the known risk group.
In addition, this feature presented a reasonably high death
contribution weight. Hence, the professional’s knowledge is
still crucial in the decision-making process. The health pro-
fessional can link their knowledge to the explanations pro-
vided, to verify that the prediction is possibly inaccurate.

Figure 5 (d) presents explanations for predictions that gen-
erated false positives. Taking the prediction on FP-Case 1,
notice that the contributions towards a death prediction are
higher than the opposite, especially the ventilatory support
attribute. However, it is worth noting that this particular pa-
tient has some features that do not contribute to the death
and must be better analyzed. For example, the patient has
no kidney disease, is hospitalized, and is not an elderly pa-
tient. Hence, a professional with domain knowledge would
more carefully consider their decision from these data. After
all, even though there are features indicating a strong rela-
tionship with death, some factors, such as age, could lead
the professional to identify that prediction is possibly mis-
leading. Ultimately, for this particular case, with hospital re-
sources available, healthcare professionals could rely on the
system’s response and continue with the care for this patient.

The main risk factors associated with COVID-19 mortal-
ity identified in our results, align with the international lit-
erature [Rod ef al., 2020; Pijls et al., 2021]. Some of these
factors were also highlighted by the LIME technique. For
example, LIME indicated that factors such as advanced age,
the use of invasive ventilatory support, and oxygen satura-
tion had a greater contribution to the prediction of patient
mortality. While these results align with previous interna-
tional studies, additional research is required to thoroughly
validate these results. Despite this need for validation, our
findings suggest a promising direction for applying and fur-
ther investigating this approach in similar context. LIME is
one of several methods to provide explanations for model de-
cisions, thereby enhancing users’ confidence in model-based
predictions.

5 Conclusions

The descriptive analysis performed revealed that being of
older age, male gender and the presence of comorbidities
are factors that contribute to death, suggesting that these fac-
tors can be used to support decision making. In addition,
considering the education characteristics of the population,

de Figuerédo et al. 2025

it was found that the number of deaths was higher among
patients with low education levels. In fact, from the pa-
tients with COVID-19 who declared themselves as illiterate,
roughly 63% died. These findings highlight the impact of
direct and indirect education-related factors on COVID-19
outcomes. The calculation of odds ratio confirms that the
chance of death is greater among patients aged 60 years or
older, and among those who have comorbidities such as kid-
ney, neuropathy, and cardiac diseases. Some symptoms were
also pointed out as factors that increase the chance of death,
such as dyspnea and saturation. Some of these findings had
already been pointed out as factors present in patients from
other regions. Our results demonstrate that this behavior was
also observed in Brazil.

The experiments carried out indicate that the model de-
veloped is capable of predicting patients’ prognosis, with
the model obtained with GB as the most effective. The GB
model reached ROC' — AUC' = 0.8524. Using the LIME
ML model explainability technique, we illustrate for a sam-
ple of patients, how each feature influences decision-making,
showing whether the feature correlated negatively or posi-
tively with the prediction provided by the model. In sum-
mary, the results showed the potential of using this technique
as a strategy to increase users’ confidence in the models,
refine the decision-making process, and increase its trans-
parency, and, therefore, enable wider adoption. Although
this work was developed considering the context of COVID-
19, the procedures performed could be replicated in similar
health-related contexts. In future work we intend to evaluate
deep learning methods, also with a larger amount of data, as
it is continuously updated. With this, it would be possible to
verify, among other aspects, whether the risk factors have re-
mained the same over time and if more accurate predictions
emerge from more data or more complex models. Addition-
ally, for a better understanding of the predictions, comple-
mentary explainability techniques may be integrated.
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