
Notes on “DeweyIDs - The Key to Fine-Grained Management
of XML Documents”

Theo Härder, Christian Mathis

University of Kaiserslautern
D-67653 Kaiserslautern, Germany

{haustein,haerder,mathis,m_wagner}@informatik.uni-kl.de

Abstract. Referring to the implementation and optimization of XTC as our prototype XDBMS, we discuss the
experiences we have made with the application of DeweyIDs since the publication our original paper. For this reason, we
highlight the areas where DeweyIDs are the source of fine-grained management, processing flexibility, and performance
drivers in XDBMSs. The detailed results and progress accomplished can be found in the referenced literature.

Categories and Subject Descriptors: Information Systems [Miscellaneous]: Databases

Keywords: Tree node labeling; Dewey order; XML document storage;

1. INTRODUCTION

There was a life before the invention of prefix-based node labeling for XML documents. But there is
definitely a better life which can directly be accredited to the use of DeweyIDs (or OrdPaths [O’Neil
et al. 2004]) for various XML processing tasks. In the following, we sketch the most important features
where we made substantial progress in the optimization of XTC as a full-fledged XDBMS.

2. FUNCTIONALITY OF NODE LABELING

Initial research on XML processing focused on navigation and retrieval in static documents which
did not raise requirements such as node labeling schemes immutable under arbitrary updates or
those supporting path-matching operations. Therefore, simple and straightforward proposals such
as sequential numbering schemes only guaranteed uniqueness and order preservation of node labels.
In the sequel, various range-based node labeling schemes were considered the prime candidates for
XDBMSs, because their labels directly enable testing of all (important) XPath axes. Until today,
their missing support of dynamic XML documents is ignored by quite a number of researchers—based
on range-based schemes, they still develop solutions which do not meet the state of the art of XML
processing anymore.

As XML processing has entered the realm of full-fledged, widely-used database products, flexible
handling of dynamic XML documents and their transaction-protected, fine-grained manipulation in
multi-user environments are indispensable. Hence, a suitable labeling scheme has to satisfy further
XDBMS-specific criteria —it has to guarantee in dynamic XML documents immutable labels (under
heavy updates/insertions) and has, for each document node, to enable the reconstruction of all ancestor
labels without accessing the document. This property greatly supports for a context node cn intention
locking on the entire path to the root and path matching for query processing, e. g., in case of twig
queries.

Copyright c©2010 Permission to copy without fee all or part of the material printed in JIDM is granted provided that
the copies are not made or distributed for commercial advantage, and that notice is given that copying is by permission
of the Sociedade Brasileira de Computação.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010, Pages 161–164.



162 · T. Härder and C. Mathis

While range-based schemes would need for these services further index access or similar deviation,
i. e., overly expensive look-ups in the disk-based document, only prefix-based node labeling can support
all desired labeling properties without the need of document access. Each label based on Dewey Decimal
Classification directly represents the path from the document’s root to the related node and the local
order w. r. t. the parent node. Some specific variations of the Dewey numbering scheme such as
OrdPaths, DeweyIDs, or Dynamic Level Numbering (DLN) are equivalent for all XDBMS tasks and
mainly differ only in the way how they provide immutable labels by supporting an overflow technique
for dynamically inserted nodes. Nowadays, the Dewey scheme is used in all major DBMS products
and it definitely embodies the core concept to achieve processing performance [Härder et al. 2010].

3. IMPLEMENTATION OF NODE LABELS

Because DeweyIDs tend to be space-consuming, suitable encoding and compression of them in DB
pages is a must. Effective encoding of (the divisions of) DeweyIDs at the bit level may be accomplished
using Huffman codes [Härder et al. 2007]. It is important that the resulting codes preserve their order
when compared at the byte level. Otherwise, each comparison, e. g., as keys in B*-trees or entries
in reference lists, requires cumbersome and inefficient decoding and inspection of the bit sequences.
Because such comparisons occur extremely frequent, schemes such as Quaternary String codes [Li
et al. 2002] violating this principle may encounter severe performance problems.

When DeweyIDs are stored in document sequence, they lend themselves to prefix-compression
and achieve impressive compression ratios. Our experiments using a widely known XML document
collection [Miklau 2002] confirmed that prefix-compression reduced the space consumed for dense and
non-dense DeweyIDs orders down to ∼15 – ∼35% and ∼25 – ∼40%, respectively [Härder et al. 2007].

On the other hand, DeweyIDs’ variable length and prefix compression applied cause some perfor-
mance problems. Because binary search is not possible on variable-length DeweyIDs inside a database
page, each node reference implied a search from the beginning of the (B*-tree) page which required
on average to reconstruct half of the DeweyIDs contained. Although a main-memory operation,
performance suffered in case of frequent accesses, e. g., when the query result had to be material-
ized. Caching of pages with uncompressed DeweyIDs relieved such situations. Another performance
penalty was decoding of DeweyIDs for specific DeweyID operations. Therefore, we currently look for
solutions enabling direct processing of the most important/frequent operations on the encoded byte
representations.

4. PATH-ORIENTED XML DOCUMENT STORAGE

The usage scope and flexibility of DeweyIDs was further increased by two concepts: path synopsis and
path class references (PCRs). A path synopsis [Mathis 2009] is an unordered structural summary of
all (sub)paths of the document. Each non-content node belongs to a path class which represents all
path instances having the same sequence of ancestor labels. To facilitate the use of path classes, we
enumerate them with so-called PCRs that serve as a simple and effective path class encoding. The
synopsis size depends on the structural complexity of the document. It can usually be stored on a
single page (or few consecutive pages) on external storage. For fast access, it should reside in a small
data structure kept in main memory.

We want to emphasize the expressiveness of DeweyIDs and PCRs: a DeweyID delivers all DeweyIDs
of its ancestor path, while a PCR delivers—by means of the path synopsis—the element and attribute
names of the ancestor path. Together, they form a kind of coordinate system for the XML document.
Starting from an arbitrary node whose DeweyID and PCR is known, it is easy to reconstruct the
complete path instance the node belongs to. As an example, refer to Fig. 1 of [Haustein et al. 2005] (we
skipped the text nodes in the taDOM tree): Assume index entry (“TCP/IP...”, 1.3.3.3.1, 5) references
the XML fragment where the path synopsis labels the corresponding text node with PCR=5. Then,

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.



Notes on “DeweyIDs - The Key to Fine-Grained Management of XML Documents” · 163

without document access, computation of the entire path /bib/book/title/“TCP/IP...” together
with all labels is straightforward. Because a DeweyID contains the labels of all ancestor nodes,
all DeweyIDs along the path to the document root are delivered for free and are immutable under
document updates (see Section 2). For these reasons, we also use the generic name stable path labeling
identifiers (SPLIDs) for them.

Using this mechanism, we can recompute for any context node its entire path to the root. Therefore,
it turned out to be sufficient to only store the leaf (content) nodes of a document together with their
DeweyIDs and PCRs. Hence, we could “virtualize” its structure part. The resulting physical document
representation is called path-oriented storage for which we can guarantee the operational semantics
of navigational and declarative XML languages. To evaluate any XPath axis, a single traversal of
our B*-tree-based document storage is sufficient. At the same time, substantial I/O is saved when
selected document nodes are accessed or the entire document is reconstructed [Härder et al. 2010].

5. FLEXIBILITY OF INDEXING

Similar to path-oriented document storage, the combined use of path information and DeweyIDs
enables a flexible and focused indexing mechanism. When index entries are equipped with DeweyIDs,
their increased functionality greatly increases the processing effectiveness of conventional element,
content, and path indexes on XML documents. Content-and-structure (CAS) indexes can take even
more advantage: By using PCRs in the index’ reference lists, we could build unique, collective, and
generic indexes which greatly facilitate their tailor-made usage, enable their adaptation to given
workloads, and offer various clustering options [Mathis et al. 2009]. When these index types are
applied to documents with virtualized structure, even the non-existing structure nodes can be indexed
and processed without any loss of information (using the mechanism exemplified in Section 4).

6. EFFICIENCY OF QUERY PROCESSING

We have shown that all evaluation algorithms for Structural Joins and Holistic Twig Joins can be
effectively implemented using DeweyIDs. Because of the direct and fast resolution of parent and
ancestor labels, element and path indexes can efficiently support path queries. CAS indexes support
simple path queries as well as twig queries. Twig queries use combinations of path specifications and
optionally content predicates. The evaluation of them by using simple element or path indexes is much
more cumbersome and less efficient than their evaluation by (tailor-made) CAS indexes. Furthermore,
they are as space-efficient as conventional content indexes, but they can easily be focused to query-
relevant paths, if necessary. Hence, they are superior in terms of time and space [Mathis 2009].

7. CONCURRENCY CONTROL

In [Haustein et al. 2005], we claimed that the computation of all ancestor labels was particularly helpful
for intention locking in XML document trees. Experiments with our initial taDOM2 protocol revealed
“expensive” weaknesses when descendant nodes had to be locked. Leading to severe performance
penalties in specific situations, we improved them by the follow-up protocol taDOM2+. By introducing
4 additional intention modes, we could avoid access and explicit locking of child nodes in case of
specific conversions of the parent node. As a consequence, we obtained the more complex protocol
taDOM2+ having 12 lock modes. The DOM3 standard introduced a richer set of operations which
led to several new tailored lock modes for taDOM3 and—again to optimize specific conversions—we
added even more intention modes (again indicated by the +-suffix) resulting in the truly complex
protocol taDOM3+ specifying compatibilities and conversion rules for 20 lock modes (see [Haustein
and Härder 2008] for details).

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.



164 · T. Härder and C. Mathis

8. CONCLUSIONS

In recent years, we have accomplished substantial advances and performance enhancements during
the optimization of our XDBMS XTC [Härder et al. 2010]. For large classes of XML documents, we
have proven that DeweyIDs are not only the key to fine-grained management but also the prerequisite
for flexible handling and performance optimization.

REFERENCES

Härder, T., Haustein, M. P., Mathis, C., and Wagner, M. Node Labeling Schemes for Dynamic XML Documents
Reconsidered. Data & Knowledge Engineering 60 (1): 126–149, 2007.

Härder, T., Mathis, C., Bächle, S., Schmidt, K., and Weiner, A. M. Essential Performance Drivers in Native
XML DBMSs (keynote paper). Current Trends in Theory and Practice of Computer Science, LNCS 5901 , 2010.

Haustein, M. P. and Härder, T. Optimizing Lock Protocols for Native XML Processing. Data & Knowledge
Engineering 65 (1): 147–173, 2008.

Haustein, M. P., Härder, T., Mathis, C., and Wagner, M. DeweyIDs—The Key to Fine-Grained Management
of XML Documents. In Proceedings of the Brazilian Symposium on Databases. Uberlandia, Brazil, pp. 85–99, 2005.

Li, C., Ling, T. W., and Hu, M. Efficient Updates in Dynamic XML Data: from Binary String to Quaternary String.
The VLDB Journal 17 (3): 573–601, 2002.

Mathis, C. Storing, Indexing, and Querying XML Documents in Native Database Management Systems. Ph.D. Thesis,
University of Kaiserslautern, Verlag Dr. Hut, Munich, 2009.

Mathis, C., Härder, T., and Schmidt, K. Storing and Indexing XML Documents Upside Down. Computer Science
– Research and Development 24 (1-2): 51–68, 2009.

Miklau, G. XML Data Repository. In http://www.cs.washington.edu/research/xmldatasets, 2002.
O’Neil, P., O’Neil, E. J., Pal, S., Cseri, I., Schaller, G., and Westbury, N. OrdPaths: Insert-Friendly XML

Node Labels. In Proceedings of the ACM SIGMOD International Conference on Management of Data. Paris, France,
pp. 903–908, 2004.

Journal of Information and Data Management, Vol. 1, No. 1, February 2010.


