
Journal on Interactive Systems, 2024, 15:1, doi: 10.5753/jis.2024.4096
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Integrating Domain Knowledge in Multi-Source Classification
Tasks
Alexandre Thurow Bender [ Federal University of Pelotas | atbender@inf.ufpel.edu.br ]
Emillyn Mellyne Gobetti Souza [ Federal University of Pelotas | emgsouza@inf.ufpel.edu.br ]
Ihan Belmonte Bender [ Federal University of Pelotas | ibbender@inf.ufpel.edu.br ]
Ulisses Brisolara Corrêa [ Federal University of Pelotas | ulisses@inf.ufpel.edu.br ]
Ricardo Matsumura Araujo [ Federal University of Pelotas | ricardo@inf.ufpel.edu.br ]

 Postgraduate Program in Computing, Federal University of Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610,
Brazil.

Received: 03 February 2024 • Accepted: 20 June 2024 • Published: 29 June 2024

Abstract: This work presents an extended investigation into multi-domain learning techniques within the context
of image and audio classification, with a focus on the latter. In machine learning, collections of data obtained or
generated under similar conditions are referred to as domains or data sources. However, the distinct acquisition or
generation conditions of these data sources are often overlooked, despite their potential to significantly impact model
generalization. Multi-domain learning addresses this challenge by seeking effective methods to train models to per-
form adequately across all domains seen during the training process. Our study explores a range of model-agnostic
multi-domain learning techniques that leverage explicit domain information alongside class labels. Specifically, we
delve into three distinct methodologies: a general approach termed Stew, which involves mixing all available data
indiscriminately; and two batch domain-regularization methods: Balanced Domains and Loss Sum. These methods
are evaluated through several experiments conducted on datasets featuring multiple data sources for audio and im-
age classification tasks. Our findings underscore the importance of considering domain-specific information during
the training process. We demonstrate that the application of the Loss Sum method yields notable improvements
in model performance (0.79 F1-Score) compared to conventional approaches that blend data from all available do-
mains (0.62 F1-Score). By examining the impact of different multi-domain learning techniques on classification
tasks, this study contributes to a deeper understanding of effective strategies for leveraging domain knowledge in
machine learning model training.
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1 Introduction

Training machine learning models with limited data poses a
well-recognized challenge, as the scarcity of examples may
impede the ability of the model to generalize effectively to
unseen data [LeCun et al., 2015; Domingos, 2012]. How-
ever, recent years have seen a notable shift in the focus of
research toward the critical role of data quality in achiev-
ing high-performance models [Jain et al., 2020; Westermann
et al., 2022; Sambasivan et al., 2021]. Constructing datasets
that accurately represent real-world scenarios while ensuring
an ample supply of labeled examples is inherently challeng-
ing. This challenge stems from the substantial costs associ-
ated with collecting and annotating samples in natural set-
tings compared to the relative ease of automatically captur-
ing or generating examples and their labels in controlled en-
vironments. Moreover, even when efforts are made to mimic
real-world conditions, data collection often occurs under spe-
cific circumstances, such as using consistent devices (e.g.
employing the same camera for image capture) or environ-
mental conditions (e.g. recording audio clips indoors). Such
collections of data, obtained or generated under similar con-
ditions, are commonly referred to as domains or data sources.
The distinct conditions of data acquisition or generation

are often neglected, yet understanding them is crucial to
address any phenomena arising from these differences that

might impede model generalization. One such phenomenon
is domain shift, which occurs whenever the distribution of
the data used during training differs from that encountered
during deployment [Quinonero-Candela et al., 2008]. Sev-
eral factors can contribute to domain shift, including changes
in the data generation process, variations in data capturing de-
vices, or the presence of different types of noise or structure
in the data. This inconsistency can lead to a significant de-
crease in performance for models trained on one domain but
deployed on another, further evidencing the importance of
considering the potential effects of domain shift when design-
ing and deploying machine learning models in real-world ap-
plications.
There are several types of domain shift, and despite be-

ing discreet, covariate shift is arguably the most common
[Quinonero-Candela et al., 2008]. It occurs when the input
distribution of training and test is different, but the under-
lying task remains the same. For example, a model trained
on images taken during daylight hours may perform poorly
when tested on images taken at night, irrelevant to the task.

One of the main challenges in dealing with domain shift
is the lack of labeled data from the target domain [Ganin
and Lempitsky, 2015], which makes it difficult to adapt the
model to the new distribution. Several methods have been
proposed to tackle this problem, including domain adapta-
tion techniques such as transfer learning [Weiss et al., 2016],
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adversarial training [Ganin et al., 2016], and meta-learning
[Vanschoren, 2018]. These techniques aim to align the distri-
butions of the source and target domains or to learn domain-
invariant representations.
Other notorious approaches in addressing the challenge of

limited data are pre-training and fine-tuning. Machine learn-
ing models are commonly trained and evaluated using exam-
ples from the same domain. However, whenever there is lim-
ited data available for a specific task, a popular solution is
to pre-train a model using out-of-domain information (usu-
ally in the form of a different, more extensive dataset) and
then fine-tune it to the target domain. This technique has
become favored over the past years [Niu et al., 2020], as it
is accessible to use while also allowing a faster training pro-
cess. Another advantage of pre-training is the reduced risk
of overfitting, notably when working with smaller datasets.
Fine-tuning a pre-trained model on a different dataset is a

potential solution whenever there is a single target domain
and performance in the pre-trained domain is not necessar-
ily a concern. But whenever performance in the pre-trained
domain becomes desirable, this approach might encounter
difficulties. In fact, this is a major problem when training
models on multiple domains [Ribeiro et al., 2019]. Maintain-
ing performance in an already trained domain while adding
new knowledge to the model is a challenge of its own, as the
model is prone to forgetting its previous knowledge [Good-
fellow et al., 2014]. This particular issue is called catas-
trophic forgetting [French, 1999], and to overcome it when
learning multiple domains at the same time, other techniques
must be used.
Traditionally, the standard approach is to mix all train-

ing data without any particular concern for their pertaining
domains. While doing this might be enough given suffi-
cient data, significantly large datasets and the computational
power to train models using them are not easily attainable.
One of the reasons for this approach to be acceptable in these
conditions is the high difference across examples and do-
mains: if the data does not have a prominent domain, the
model is pushed towards domain-agnostic representations.
In other words, the domain-specific characteristics in data
samples are diluted for not holding a common structure, and
as such, they are discarded as noise.
In the vast majority of cases, data does not display this

richness of domains. Datasets often have no more than two
or three sources of data acquisition. In light of these limiting
factors, the potential benefits of using domain information
from samples explicitly remain largely uninvestigated. This
study explores techniques that incorporate domain knowl-
edge during the training process of machine learning mod-
els when using datasets with multiple sources of data. As
such, this work proposes injecting domain information by
guaranteeing balanced representations of each domain in a
batch, building upon the work of Bender [2022]. The latter
investigated the concept of multi-domain regularization and
proposed balancing information between domains in image
data solely. The current study proposes novel approaches
to domain regularization, further incorporates audio data in
this analysis, and adds numerous experiments with different
tasks and datasets comparing the techniques.
We investigate the effects of previously proposed ap-

proaches and expand them for further comparison. Differ-
ently from previous works, mostly which used only image
classification tasks as a basis for evaluation, we assess the
training methods using image and audio classification tasks,
with a focus on the latter. To the best of our knowledge, there
is a lack of batch-level domain regularization evaluations or
proposals using audio data at the present date.
This research aims to understand the best way to learn

from multi-domain datasets at once, dismissing the need
to train multiple models for different situations. For this,
we explore batch domain regularizations, which are usually
overlooked in multi-domain learning. Additionally, we ex-
pect any potential gains in this regard will directly bene-
fit smaller organizations and individuals with limited access
to extremely large and varied datasets that overcome multi-
domain issues.
This work represents an extended and revised iteration of

our previous study Bender et al. [2023], with a heightened
focus on exploring the implications of our methods within
the context of audio classification tasks. Building upon the
hypothesis that the training process of machine learningmod-
els for multi-domain tasks benefits from the explicit consid-
eration of domain information, we present an array of new
experiments designed for audio data. In addition to evaluat-
ing the general approach of mixing data from disparate do-
mains during training, we include our two proposed method-
ologies that were previously confined to image data. The
first, Balanced Domains, refines the general approach by en-
suring a balanced representation of samples from each do-
main within every training batch. The second, Loss Sum,
involves computing the loss of each domain separately using
the cross-entropy loss function applied to individual batches,
followed by the aggregation of these losses before initiating
backpropagation. Through a series of experiments, we aim
to elucidate the efficacy and adaptability of these methods in
the context of audio data, thus contributing to a deeper un-
derstanding of domain-aware training strategies in machine
learning.
As more diverse data sources are incorporated in train-

ing datasets (including in Large Language Models), it be-
comes necessary to better understand how to make the best
use of this diversity. Our work proposes methods and shows
benefits in incorporating domain knowledge into the train-
ing process. Its main contributions include (1) evaluat-
ing novel multi-domain learning approaches that use model-
agnostic techniques; (2) identifying effective solutions for
multi-domain problems; and (3) highlighting the importance
of considering domain-specific information during the train-
ing process in machine learning problems.
The structure of the work is outlined as follows: Section 1

sets the context and outlines the motivation and objectives of
the study; Section 2 offers a concise overview of the histori-
cal background of the field and reviews key concepts essen-
tial for comprehending the study; Section 3 examines notable
prior research in the field; Section 4 details the methodology,
encompassing the conducted experiments and their configu-
rations; Section 5 discusses and analyzes the outcomes of the
experiments; Finally, Section 6 presents final remarks and
proposes potential avenues for future research.



Integrating Domain Knowledge in Multi-Source Classification Tasks Bender et al. 2024

2 Theoretical Background
This section provides key concepts relevant to understanding
this work. It goes over a brief history of the area, loss func-
tions, audio processing in neural networks, andmulti-domain
learning.

2.1 Loss Functions
Loss functions are mathematical cost functions commonly
used to quantify discrepancies between predicted values and
expected values in supervised machine learning algorithms.
They serve as error measures to evaluate model performance.
They quantify the disparities between predicted and expected
values, guiding the adjustment of weight parameters during
training.
In regression tasks, common loss functions like Mean Ab-

solute Error (MAE), Mean Squared Error (MSE), and Root
Mean Squared Error (RMSE) compare predicted and ex-
pected values using arithmetic mean and algebraic manipula-
tions to address signal variations. Conversely, classification
tasks necessitate different approaches due to discrete class
values. Instead of directly comparing classes, loss functions
like Cross-Entropy operate on model logits, which represent
class probabilities. By applying a softmax function to log-
its, they ensure a bounded interval for comparison. This ap-
proach improves training granularity by considering the cer-
tainty of predictions.
The concept of loss landscapes refers to model perfor-

mance in weight space, crucial for optimization algorithms
like gradient descent. While typically depicted in 2D for
visualization, high-dimensional parameters may require di-
mensionality reduction techniques. Despite the problems of
high-dimensionality visualization, the concept of loss land-
scape remains an important aspect to take into account when
designing or analyzing objective functions and their optimiz-
ers.

2.2 Audio Processing
Audio is often defined as a form of sound that is limited
within the acoustic range humans are biologically capable
of hearing. Beyond that, audio is a signal. A signal can be
understood as a quantity that changes over time. For audio,
the quantity in question is air pressure. To store this infor-
mation digitally, it is necessary to sample it. Sampling is
the process of measuring a signal at discrete points in time.
Themost common sampling rate for audio is 44.1kHz, which
means that 44,100 samples are taken per second. By digitiz-
ing audio in this way, it becomes possible to manipulate it
in a variety of ways, including editing, processing, and trans-
mitting it to other devices. It is an essential aspect to many
technologies.
Once an audio signal is sampled and digitized it becomes

possible to visualize its audio wave (Figure 1). The audio for
the example plots is the first 12 seconds of the song ”Play-
ing God”, by Tim Henson1. While raw audio waves con-
tain valuable information about the sound signal, most of
this knowledge remains concealed in the frequency domain.

1https://youtu.be/DSBBEDAGOTc

One of the reasons for this is that audio waves are rich, com-
plex signals that contain multiple frequency components that
typically overlap and interfere with each other. As a result,
extracting and analyzing the complex behavior of the audio
signal often requires additional techniques.

Figure 1. Raw audio waveplot depicting the first 12 seconds of the song
Playing God, by Tim Henson. This same excerpt is used for forthcoming
example plots. Source: Author.

Unlike the time domain of a signal, which shows varia-
tions in the signal over time, the frequency domain decom-
poses a signal across its constituent frequencies and shows
how much of each frequency component is present. This is
desirable becausemost types of audio signals, such as speech,
music, or environmental sounds, have distinct characteristics
in terms of frequency patterns and structures.
Digital signal processing techniques are indispensable

tools for analyzing and manipulating signals in many fields,
such as communication systems, image processing, and au-
dio processing. One of the most commonly used techniques
in digital signal processing is the Fourier transform. It allows
us to traverse between the time and frequency domains of a
signal, which is essential for analyzing signals with complex
frequency components.
The Fourier transform is a mathematical technique that

converts a signal from the time domain to the frequency
domain (Figure 2). It decomposes a signal into a sum of
sine and cosine waves of different frequencies, each with
its own amplitude and phase. By analyzing the frequency
components of a signal, we can extract valuable information
about its behavior and characteristics, such as its dominant
frequency, harmonics, and noise. In audio processing, the
Fourier transform is used for a wide range of tasks, such as
speech recognition, music analysis, and noise reduction.
Despite being a powerful tool for signal analysis, apply-

ing the Fourier transform to the signal in its entirety may
yield uninformative results, making it difficult to understand
the properties of the signal. The main limitation of this ap-
proach is that it assumes the signal is stationary. This means
it considers the frequency content of the signal to remain
constant over time. Expectedly, real-world signals are com-
monly non-stationary, i.e. their frequency content changes
over time. Spectrograms provide an alternative approach
to deal with non-periodic signals, addressing the issue by
breaking the signal into small segments before computing
the Fourier transform for each part. Being so, this approach
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Figure 2. Discrete-Fourier Transform depicting the frequency domain of
the example song (time component information is lost). Notice how certain
frequencies dominate the signal. Source: Author.

allows us to track how the frequency components in the sig-
nal change over time. Therefore spectrogram representations
allow for the capture of frequency domain properties that
would otherwise be missed should we apply the transform
on the entire signal all at once.

Most frequencies contribute very little to the overall ampli-
tude of the sound. For this reason, spectrograms commonly
use the logarithmic scale to represent the frequency content
of signals. Their values are usually expressed using decibels
(dB), the same logarithmic scale used to measure the power
of sound waves. In spectrograms, the intensity of the sound
at each frequency and time point is commonly represented
with different colors representing the intensity levels. Be-
cause their values are in the decibel scale, it becomes simple
to compare the relative loudness of different parts in the sig-
nal.

In addition to using the logarithmic scale to present the
amplitude of the frequency components (color axis), spec-
trograms typically also use a logarithmic scale on the fre-
quency axis (y-axis) as well. They do so to represent signal
information in a manner that is consistent with human audi-
tory perception, for the relationship between the frequency of
sounds and howwe perceive their pitch is logarithmic as well.
Consider a sound with a frequency of 100Hz being doubled
to 200Hz: we perceive this difference in pitch as being the
same as if we had doubled the frequency again to 400Hz. In
fact, humans generally perceive an octave (a doubling in fre-
quency) as being the same change in pitch, regardless of the
starting frequency. Ultimately, this also implies we are bet-
ter at detecting differences in lower frequencies than higher
ones. It is trivial to tell the difference between 500Hz and
1,000Hz, but it can be hard to distinguish between 10,000Hz
and 10,500Hz, despite their distance being the same. For
this reason, spectrograms commonly use a specific logarith-
mic scale called the Mel scale. It is in fact a perceptual scale
of pitches judged by its listeners to be equal in distance from
one another. Historically, there have been several proposals
to define a psychophysical pitch scale dating back to 1937.
Since then, the curves depicting the conversion of f hertz to
m mels have evolved to the now-popular version with the
700Hz corner frequency published in 1976 [Makhoul and
Cosell, 1976], which can be seen in Equation 1.

m = 2595 log10

(
1 + f

700

)
(1)

Figure 3. Audio mel-spectrogram plot of the same example song. No-
tice how structural patterns in the signal are more evident in the Mel scale.
Source: Author.

The overall result of using the Mel scale is a better visual-
ization of the low-frequency components of the signal (Fig-
ure 3), which can be difficult to see on an otherwise linear
scale. Another relevant reason to use such a scale on the fre-
quency axis is to compress the dynamic range of the signal.
This type of scale compresses large values, making it easier
to see small frequency changes throughout the signal. No-
tably, this is useful when working with signals with a wide
dynamic range, including music or environmental sounds,
while also offering a scale conformable to human auditory
perception.

2.3 Multi-Domain Learning
Despite the significant amount of data available nowadays,
current training paradigms are restricted in terms of the va-
riety of data they can handle. Typically, models are trained
and work with a single data source, usually from a narrow
domain. Inevitably, models learn their structural patterns
and become biased toward that particular domain, perform-
ing well only when working within it. This is a major limita-
tion in terms of generalization when models are expected to
perform well in multiple scenarios. Multi-domain learning
is concerned with learning multiple domains simultaneously.
This paradigm allows models to learn from a variety of do-
mains without harming their ability to learn more nuanced
features structurally inherent in each domain.
To better understand the significance of domains conceptu-

ally, it is useful to view them through the lens of a task. Math-
ematically, whenever models are being trained on a task, they
are learning a mapping function from the domain (the data)
and the image (model output). Even though we commonly
refer to the task in a more abstract manner (e.g. animal clas-
sification using images), in reality, the task being learned
is much more strict. The learned task could potentially be
”differentiating very specific animals using photos taken us-
ing a DSLR camera with a particular sensor during an exact
time of day with determined weather conditions”. In fact,
the learned task is very specific to the input data, and much
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expectation is placed on the ability of models to generalize
ad infinitum. This often creates a dissonance between the
task machine learning specialists are trying to solve and the
task the model is being trained on. Not rarely do models fail
to generalize to the data distribution in the actually intended
task, a very literal instance of solving the wrong problem.

Domain differences lead to errors in a number of ways
[Ben-David et al., 2006, 2010]. Domain-specific distribu-
tions often differ in favoring different features. As such,
some features may only appear in one domain. Additionally,
features may behave distinctly regarding the label distribu-
tion in each domain.

Examples using image data are useful to understand how
domain differences manifest. One of the widely used
datasets in multi-domain research for images is the Office-31
[Xu et al., 2021; Na et al., 2021; Kang et al., 2019; Xu et al.,
2019]. The Office-31 dataset is suitable for multi-domain
learning studies since it has different domains but maintains
the same classes across domains (this is an important charac-
teristic and will be further elaborated in Section 4). Its three
domains are: Amazon, Webcam, and DSLR [Saenko et al.,
2010].

Figure 4. Examples from the Office-31 dataset. Each line presents exam-
ples of the classes Bike, Headphone, and Scissors for a domain. The do-
mains are Amazon, DSLR, and Webcam, from top to bottom. Source: Au-
thor.

Domain differences in audio are more subtle and are very
difficult for humans to perceive in spectrograms. Figure 5
depicts a comparison between the same song from Figure 3
and an artificially mixed version of it, where city ambiance
noises were introduced to simulate a noisy domain. Despite
being the exact same song, the spectrograms are only vaguely
similar on first inspection. In fact, without the information
about what exactly is contained in each audio clip, it would
not be trivial to point out any potential domain differences
just by looking at the spectrograms (contrasting to Figure 4).

Figure 5. Audio mel-spectrograms of the original song example and an
alternative version of it, mixed with city background noises. Manually in-
vestigating domain differences and their properties via mel-spectrogram vi-
sualization is not a reasonable task for humans. Source: Author.

3 Related Works
Within machine learning research areas there are several sub-
fields dedicated to finding and analyzing the best way to
train a model in multi-domains at the same time. Among
these, domain generalization aims to make a model perform
well when using as a test a domain that was not used during
its training [Gulrajani and Lopez-Paz, 2020]. Another task,
called multi-domain learning seeks to find the best way to
train a model so that it performs adequately in all domains
used during training [Liu et al., 2019].
During the last few years there has been a growing re-

search interest that addresses the training of models with
multi-domains, with research focusing on domain generaliza-
tion [Gulrajani and Lopez-Paz, 2020; Arpit et al., 2021; La-
parra et al., 2020; Xie et al., 2018; Li et al., 2018, 2017] but
few studies have been developed in multi-domain learning.
Although many of the single-model multi-domain learning
contributions end up proposing domain-specific architectural
changes [Sicilia et al., 2021] and although these solutions the-
oretically consist of the use of a single model, it is still neces-
sary to create a different architecture for different datasets or
if new domains are added to the original, making it difficult
to scale and adding complexity. Typically, multi-domains
aremanipulated by creatingmultiple brancheswithin the neu-
ral network, one for each domain to be learned, which shares
the initial part of the network as the feature extractor and do-
main decider.
Nam and Han [2016] proposed MDNet, referred to as

Multi-Domain Network. Their approach separates domain-
independent information from domain-specific one and
learns generic feature representations for video-tracking. To
enable this, each domain in MDNet is trained individually
while the shared layers of the network are updated in every
iteration. In their study, each video sequence in their task
of visual tracking is referred to as a domain. Therefore, the
proposed MDCNN requires retraining.
In Chen et al. [2018], Chen advocated for BAMDCNN, a

Branch-Activated Multi-Domain Convolutional Neural Net-
work for the task of visual tracking. In addition to the
main convolutional layers of the CNN, the network has ad-
ditional branch layers, each specializing in handling a par-
ticular group. They extract key frames from the sequence
dataset and group them using a clustering algorithm. Dur-
ing inference, they compare the similarity of the initial frame
of test sequences across known groups to identify which in-
puts should be processed by which branches. As such, they
achieve substantial effectiveness when compared to various
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other state-of-the-art methods for visual tracking.
Liu et al. [2019] argued redundant common features of-

ten exist in the intersection of multiple domains, and models
frequently learn those features as it is a simple and efficient
way to address tasks. However, the existence of this redun-
dancy in the network implies the model does not make full
use of features and their learning spaces. In practice, this
reduces the discriminability of the features and therefore in-
creases the difficulty of the task. As such, thework addressed
the undesirable mixture of features from different classes
across domains by proposing an end-to-end network and or-
thogonality regularizations to separate domain-specific and
domain-invariant features. The learning of what they refer to
as compact-features (domain-specific features) significantly
improves general classification performance.
One of the main contributions over the last recent years

of learning multi-domains with the same model comes from
speech recognition. SpeechStew [Chan et al., 2021] per-
forms state-of-the-art speech recognition tasks just by mix-
ing all the data and training the same model using different
domains, such as the Stew method we evaluate in this study.
Other previous studies trained multi-domain models by mix-
ing all available data [Chojnacka et al., 2021; Narayanan
et al., 2018; Likhomanenko et al., 2020], the main difference
being that SpeechStew scales to larger models.
Batch-level domain regularizations were previously evalu-

ated in the context of image classification by Bender [2022].
They obtain competitive performance using the Loss Sum ap-
proach, where the loss is calculated individually for domains
and summed before backpropagation.
Notably, Tetteh et al. [2021] uses multi-domain balanced

batch sampling techniques to address X-ray pathology clas-
sification tasks in the biomedical domain. They denote per-
formance gains using a balanced batch sampling technique
which is analogous to Loss Sum, previously proposed by
Bender [2022].
More recently, Guo et al. [2023] propose DAMF (Domain-

Adapting Moral Foundation), a data fusion framework de-
signed for training moral foundation classifiers on heteroge-
neous datasets. They demonstrated its superiority over three
distinct baseline methods. The framework involves perform-
ing transformations on text embeddings to result in domain-
invariant representations. These representations are then dis-
criminated using a domain classifier trained in an adversarial
manner, compelling the encoder to learn embeddings that re-
main invariant across domains. Despite the modality of the
work being focused on text data, this study underscores the
ongoing concerns regarding different domains in recent re-
search.
To explore the capabilities of vision transformers, Wang

et al. [2023] introduce a framework for multi-domain vision
tasks. It integrates tasks into a single supernet, optimizing
them collectively. Key features include storage efficiency
via parameter sharing, a coarse-to-fine search space, and two
sharing policies for fine-grained parameter control. Their
joint-subnet search algorithm challenges traditional practices
by finding optimal architectures for each task. Their ap-
proach shows competitive performance and resilience to for-
getting domains.
In their work, Wang et al. [2024] focus on the task of de-

tecting attempts to deceive biometric authentication meth-
ods, with a particular emphasis on the challenge posed by
the unavailability of original training data due to privacy
or other constraints. They observe that conventional ap-
proaches to training models on new data often result in for-
getting the knowledge learned from the original data. To ad-
dress this issue, they propose a novel method called multi-
domain incremental learning, which aims to learn from new
domains while also preserving performance across previ-
ous domains. Their approach achieves state-of-the-art per-
formance compared to prior methods of incremental learn-
ing. Notably, they introduce adaptive domain-specifc ex-
pert blocks to learn domain-specific knowledge separately,
thereby mitigating interference between different domains.
While most studies in multi-domain learning propose ar-

chitectural changes in models, we propose batch-level reg-
ularizations to guarantee appropriate domain representation
in examples during the training of models. In fact, this is
an architecture-agnostic approach and can be utilized with-
out major alterations in the classical training loop of machine
learning models.

4 Methodology
This section provides a detailed description of the procedures
and techniques employed to conduct the study. It describes
the systematic approach and methods used to address the re-
search questions and objectives of the study. Additionally,
we describe the experimental setup configuration.

4.1 Datasets
In order to evaluate the proposedmulti-domain learning train-
ing methods, we need datasets that contain explicit domain
characteristics. Additionally, the examples must have anno-
tations depicting the domain they are a part of. Furthermore,
we are interested in datasets containing an additional, distinct
feature to use as the target of classification tasks. It is impor-
tant to avoid direct relationships between the class target and
the domain, as such interactions would hinder the evaluation
of domain regularizations by confusing them with class reg-
ularization. In fact, when the domain has a direct relation-
ship with the class label, figuring out the domain of an exam-
ple is often reducible to discovering its class; being at least
as complicated as correctly classifying samples (i.e. solv-
ing domain classification would imply solving target classi-
fication). Ultimately this means developers in this scenario
do not have the domain information annotated or easily at-
tainable. For this study, we select three datasets with these
characteristics to perform the audio experiments: DAPS (De-
vice and Produced Speech) containing book excerpt read-
ings, and two bird call recording datasets, FF1010BIRD and
WARBLRB10K. For the image experiments, we use the pre-
viously mentioned Office-31 dataset.

4.2 Image Experiments
The dataset containing images is called Office-31 and has
three domains: Amazon, Webcam, and DSLR with 2817,
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795, and 498 images respectively Saenko et al. [2010]. All
domains have the same 31 classes that are composed of im-
ages of objects commonly found in offices. The Office-31
dataset was chosen in this study because it is widely used
in research with multi-domain training, especially in domain
generalization tasks Xu et al. [2021]; Na et al. [2021]; Kang
et al. [2019]; Xu et al. [2019]. Although domain generaliza-
tion studies have a different purpose, the Office-31 dataset is
still suitable for multi-domain learning studies since the im-
age set has different domains but maintains the same classes
across domains.
The images in the Amazon domain are provided by an on-

line sales store, therefore all images have a white background
where their objects are in a unified color scale. The Webcam
domain has low-resolution images (640x480) with signifi-
cant noise. Finally, the DSLR domain is composed of high-
resolution images with low noise (4288×2848). Figure 4
demonstrates examples of images from the Bike, Headphone,
and Scissor classes, where the first line presents images from
the Amazon domain classes, the second line presents images
from the DSLR domain classes and the last line presents im-
ages from the Webcam domain classes.
Perceptibly, the amount of samples between domains is

highly unbalanced. This can be a problem when training
multi-domain learning models since they can present a bias
towards the largest domain, especially when using the Stew
approach, where the majority domain would present a larger
amount of samples than the other two domains, which could
cause the model prioritizes samples from the Amazon do-
main to obtain a smaller Loss. In addition, within the same
domain, the images between the classes are also unbalanced,
which may also be responsible for a bias in the training of the
model, where it may prioritize classes with a greater num-
ber of samples over those with a smaller number. Another
inappropriate factor in correct training and evaluating multi-
domain learning models using the Office-31 dataset is the
fact that there are identical or very similar images within the
same class in the same domain, which can generate a kind of
data leak.
To deal with these challenges, we remove all duplicate or

very similar images within the same class across all domains.
Then, after separating the training and testing sets, the train-
ing set is balanced so that all classes, within their respective
domains, have approximate amounts through the use of the
WeightedRandomSampler function (from the library of ma-
chine learning PyTorch). Finally, to avoid possible training
bias for the larger domain, samples of equal sizes between do-
mains are used so that all domains have the same total num-
ber of images and approximately the same number of images
between classes.
Due to the imbalance in the number of images between

the domains of the Office-31 dataset and seeking to avoid
overfitting for the domain with the highest number of images,
around 300 images of each domain are used for training, and
155 images of each domain are used for testing. This image
amount is defined according to the number of images avail-
able in the smallest domain. In addition, all images used in
training and testing were resized to 224x224 because it is
the default size of the ResNet-50 input layer. No other pre-
processing was applied to the images.

4.2.1 Speaker Identification — DAPS

One of the audio datasets is called Device and Produced
Speech (DAPS) Mysore [2014] and contains speech seg-
ments of 20 different readers (10 male and 10 female read-
ers) in various recording device types and environmental con-
ditions (15 different domains). Each speaker read 5 public
domain book excerpts under different conditions (about 14
minutes of duration per speaker). In its entirety, the dataset
consists of about 4 1/2 hours of audio recordings. DAPS was
initially used as a speech recognition dataset, but we decide
to use it for the task of speaker recognition, classifying the
20 different speakers. We focus on classification problems in
this study because, typically, they are more straightforward,
thus reliable alternatives to testing new multi-domain train
paradigms.
It is expected to encounter domain shift regarding the dif-

ference in data recording conditions, i.e. audio clips recorded
using an iPhone in a conference room will likely differ in
characteristics from those recorded by an iPad in a balcony
prone to street noise. Despite noise being a more intuitive
cause of domain shift, the differences in recording devices
and room acoustic conditions likely also play an important
role.
Each domain is split into train and test folds. We do not use

a validation fold as we are not optimizing hyperparameters
or performing optimization tasks in the model configuration.
How each domain is split is important and requires attention
to a few details. Note this is a classification task with 20
different classes (the speakers), thus it is important to guar-
antee a balanced representation of these classes in training
and test sets. We use class stratification to address this issue,
while also guaranteeing a somewhat even distribution of text
scripts and speaker gender.
Each audio clip is processed to handle trailing silence at

the beginning and the end, as some speakers take significant
time before they start talking. The former pre-processing is
relevant as the clip is then split into 5-second segments, fur-
ther avoiding examples without speech. Audio clips are then
converted from waveform to mel-spectrograms. This rep-
resentation visually represents the signal amplitude across
different frequencies over time. Ultimately, spectrograms
can be understood as the application of Fourier transforms
on overlapping windowed segments of the signal. The mel
scale is a unit of pitch to approximate the human perceived
frequencies. The use of mel-spectrograms is common in au-
dio processing because humans do not perceive frequencies
on a linear scale.
However, we divide training and test sets before splitting

the audio into 5-second recordings and then use that same
fold scheme for the other domains. This is relevant because
clips have a different duration from their counterparts in
other sources, and would otherwise be unaligned across do-
mains. Performing the train-test separation after splitting the
audio tracks into 5-second segments would enable unaligned
segments containing the same reader and script content but in
distinct domains to be included in train and test sets. Some
domain instances in audio are incredibly similar. Consider
the signal differences of the same sentence being uttered in
a conference room and living room. Detecting said differ-
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ences could be hard even for a human listener. Therefore
having the same (or very similar) audio content included in
both train and test sets can cause data leakage leading to an
over-optimistic result, even if said data originates from dif-
ferent domains.

4.2.2 Bird Detection — FF1010BIRD and WAR-
BLRB10K

Freefield (FF1010BIRD) Stowell and Plumbley [2013] and
Warblr (WARBLRB10K) are both bird detection datasets,
but they do not have any domain semantics attributed to ex-
ample classes. For this reason, we use them together, each
behaving as a domain. Despite both being bird presence de-
tection datasets, they are very different. In fact, Freefield is a
dataset of professional recordings of on-site observations of
birds (collected from the FreeSound online database2). It is
very diverse in terms of location and environment. Expect-
edly, they use better recording equipment and usually there is
not much background noise. Additionally, it has some label
imbalance towards the negative class, supposedly because
once the equipment is set on-site, it remains recording audio
most of the time.
In contrast to FF1010BIRD, WARBLRB10K contains

crowdsourced recordings of birds using the bird-watching
smartphone app Warblr3. Its label imbalance is towards the
positive class, as most users use their devices to record bird
calls when in the presence of said birds. This dataset, how-
ever, has heavy background noise, including city sounds and
even users imitating bird calls, allegedly to coax birds to an-
swer. The recordings vary heavily in terms of audio quality,
depending on the smartphone used.
The significant difference between the elected bird

datasets is by design and desirable for this study, as domains
too similar in nature would entail a difficult multi-domain
analysis. The FF1010BIRD dataset contains only 25% bird
presence, while the Warblr dataset contains 75% bird pres-
ence.

Table 1. Audio Experiment Results Across Domains

Dataset Not Bird Bird Total

FF1010BIRD 5755 1935 7690
WARBLRB10K 1951 6045 7996

4.3 Evaluated Methods
Reiterating, our hypothesis is that, during the training of ma-
chine learning models on multi-domain tasks, the training
process takes advantage of explicitly using this data and its
domain. In order to evaluate it, we evaluate three methods
for trainingmodels inmulti-domain tasks, including the tradi-
tional method that does not explicitly considers the different
domains. This section describes Stew, Balanced Domains,
and Loss Sum.

2https://freesound.org/
3https://www.warblr.co.uk/

4.3.1 Stew

The more intuitive approach to using data from multiple
sources at the same time is the Stew method (named due to
the SpeechStew method Chan et al. [2021]). The method
consists of simply mixing data from multi-domains together
homogeneously, without any special processing or distinc-
tion. This method is already in use for various multi-domain
tasks in areas such as speech recognition.
To compose large datasets, it is common to use different

sources containing the same data classes, so that the data
come from different domains. Commonly these domains are
not explicit, which makes the Stew method the only possible
option without the need to perform complex analyses to infer
domains. In this way, the Stew method is inherently present
in most models trained using such datasets. Regardless of
its simplicity, the Stew approach yields competitive results
in multi-domain learning tasks, in particular whenever there
are large amounts of data available.
Whenever a dataset has numerous well-represented do-

mains, it is speculated to encourage the model toward
domain-agnostic representations. Even if generic represen-
tations are desirable, the datasets containing the information
necessary for a model to be capable of achieving such knowl-
edge are rare. Not only is the creation of datasets a chal-
lenging endeavor, but the verification of it is often neglected.
ImageNet has been the standard pre-train dataset for image-
related tasks for the past years, and researchers frequently
stumble on annotation errors and report them even at present.

4.3.2 Balanced Domains

Historically, there have been significant improvements in im-
age classification using simple data processing methods and
regularizations, such as dealing with label imbalance. Dur-
ing training, the Stew approach is understood to have no bal-
ance of domains whatsoever. Essentially, the batches are
expected to have more samples from the majority domains,
since batches are randomly sampled from the mixed dataset.
This can be visualized in Figure 6. For this reason, there is
room to explore regularization to address domain-level selec-
tion in training batches.
In classification tasks, the presence of a class imbalance

in batches might hinder the model generalization, biasing it
towards classes with more examples during the training pro-
cess. Label balancing addresses this problem and can be es-
pecially useful in cases where there are few, highly unbal-
anced classes.
Similarly, we hypothesize a disproportionate domain pre-

sentation on a batch level might also interfere with the model
learning. In this case, the model would potentially specialize
in the majority domain. Intending to perform well in all pre-
sented domains, we propose a variation of the Stew method
called Balanced Domains.
To compose the batches seen in model training, instead

of sampling from a unique dataset, Balanced Domains sam-
ples from each of the available domains separately (as seen in
Figure 6). The domain sample size is set to accommodate an
equal (or close to equal) composition of each domain while
maintaining the original batch size unaffected.
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Figure 6. Evaluated methods illustrated. The Stew method is shown on
the left, sampling randomly from the mixed datasets without any kind of
balancing, usually having batches where the major domain has more exam-
ples. The middle flow describes Balanced Domains, where we also sample
from the mixed domains dataset, but strive for similar amounts of each do-
main. On the right, Loss Sum flow is presented, where we sample from the
domains individually and calculate a different loss for each domain batch,
then sum them up to achieve the final loss. Notice that Loss Sum has smaller
batches for each domain, but the number of samples in all batches amounts
to the same batch size in previous methods. Source: Author.

This method is envisioned as a batch-sampling abstraction
to enforce each domain to have approximately an equal num-
ber of examples in a batch. Thus the training step consists
of sampling all obtainable domains, grouping the data into a
single batch before presenting it to a model, and backpropa-
gating the calculated loss from the batch.
The number of batches in an epoch is bounded by the

largest domain. Whenever the domains differ in their num-
ber of samples, the smaller domain entries will be shown
multiple times throughout a single epoch. Admittedly, this
entails the same implications associated with oversampling
and therefore requires the same cautionary practices.

4.3.3 Loss Sum

One way of penalizing the model whenever it underperforms
on a training domain is achieved by balancing the domain
representation. Another way to implement this is, instead
of mixing domain samples into a single balanced batch, to
calculate the Loss from each domain separately and sum the
Loss across all domains before backpropagating it (as seen
in Figure 6). Notably, this sort of approach was previously
proposed by Bender [2022] and Tetteh et al. [2021] for image
classification.

The Balanced Domains method regulates domains at a
batch level, but this technique does not guarantee that the
model will properly learn all domains since it might still pri-
oritize domains with similar features. For instance, in cases
where there are several domains, the difference in Loss of a
small portion of them might not be enough to pose a differ-
ence. The intuition behind the Loss Sum approach is pun-
ishing the model with greater overall Loss values whenever
it yields bad results in any domain. In this situation, penal-
izing the model by calculating the Losses individually and
then adding them will lead to a higher Loss value.
It is relevant to note that although each domain is presented

separately duringmodel training, the total batch size between
the three methods (Stew, Balanced Domains, and Loss Sum)
remains unchanged. Loss Sum requires an additional call to
the loss function for every domain, therefore it requires more
training steps. Smaller batch sizes will also reduce the par-
allelization achieved by the GPU during training, effectively
making it slower.

4.4 Counterfactual and ComparisonMethods

This section describes additional methods, mainly counter-
factual methods, useful to derive properties when comparing
their results to the main methods described in the previous
section.

4.4.1 Random Sum

Admittedly, the Loss Sum method operates on a different
scale than other regular methods, and this is due to the fact
it sums up the loss of multiple domains. Previous studies in
image classification have suggested an increase in F1-Score
when training neural networks using the Loss Sum approach.
However, it is unclear whether this is due to the separate
loss calculation and sum operation or due to simply having a
higher loss value. For this reason, we devise a counterfactual
method that shares the same scale (higher loss) as the Loss
Sum method but does not apply the loss function to domains
properly separated, but does so in mini-batches containing
examples sampled randomly from the entire dataset. Thus,
we refer to this method as Random Sum.

The idea behind this counterfactual experimental method
is to understand whether the improved performance previ-
ously seen while using Loss Sum method is attributed to
its higher loss values or some other mechanism. Should a
method with a similar loss scale but trained without domain
separation (e.g. RandomSum) performs similarly to the Loss
Summethod, we may attribute its overall better performance
to higher loss values. The reasoning for this potential out-
come is related to how a higher loss entails more abrupt
weight updates, which may or may not be appropriate for
a given task. Alternatively, Random Sum failing to achieve
competing performance with the Loss Sum (despite sharing
its loss scale) would be evidence supporting the individual
domain loss calculation mechanism.
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4.4.2 Loss Mean

The Loss Mean method is another counterfactual method,
complementing the Random Sum. It is also missing from
previous studies with similar batch regularization proposals.
In this approach, we perform the same procedure described
for the Loss Sum process, but we divide it by the total of do-
mains present in the task before backpropagating the loss. By
doing this, we force the loss scale back to being comparable
to other regular methods.
Depending on whether this experiment shows results simi-

lar to the Loss Sum method, we may collect further evidence
for the separated loss calculation improving multi-domain
learning tasks. Analogally, the hypothetical scenario where
LossMean underperforms in comparison to Loss Sumwould
imply evidence for the higher loss scale being useful for the
task (instead of the individual domain loss system).

4.4.3 Sequential And Inverse Sequential

Additionally, we configure two other training methods for
comparison purposes. The Sequential training method is de-
fined as training on individual domains in sequence. Con-
versely, the Inverse Sequential approach does the same, but
in the reverse order of domains. Both of these approaches are
prone to catastrophic forgetting (where the model forgets pre-
vious knowledge, replacing it with new information). Nei-
ther of these is expected to show competitive results with the
other methods. However, we argue their results offer an in-
teresting perspective on the learning tasks. As such, they en-
rich the comparison by showing the pitfalls of naive methods.
Another argument to be made is that these methods behaving
as expected conveys evidence of the correct implementation
of the experiments.

4.5 Comparison Metrics
The baseline for our comparison is the Stew training method,
as it is commonly used and de facto standard in the litera-
ture. The performance of models in an experiment for each
method (Stew, Balanced Domains, Loss Sum, Random Sum,
and Loss Mean) is calculated using the average F1-Score
across domains. The F1-Score was chosen because it sum-
marizes the learning objective: learning all domains at the
same time while generalizing the classes.
When calculating F1-Score, we are presented with a

choice of whether we use the macro F1-Score, the weighted
F1-Score, or the micro F1-Score. The macro version cal-
culates the F1-Score for each individual class, then returns
their average value. It is an interesting alternative when the
classes themselves are the object of investigation. When the
classes are not balanced, that is, some classes have more rep-
resentation in a given task, the weighted F1-Score provides
an alternative by calculating the F1-Score for each class, and
returning the weighted average of the result. The weights
are typically calculated using the inverse of the example fre-
quency from a given class. Finally, the micro F1-Score sums
up the metrics for all classes and calculates a single, unified
F1-Score for the model. This approach abstracts the concept
of classes and focuses solely on how the model performs.

Because the object of focus for this study is themodel itself
and not the particular classes, we chose the micro F1-Score
calculation. We argue choosing either macro or weighted
F1-Scores would, in a way, hide aspects of the model per-
formance behind averages and class weights. This is an un-
necessary layer of abstraction that would, in fact, difficult
model evaluation. This is particularly noticeable in cases
where each domain has a different class distribution. Thus,
considering the objective of evaluation in this study, project-
ing raw scores is the preferable alternative.

4.6 Evaluating Multi-Domain Learning Mod-
els

According to Gulrajani and Lopez-Paz [2020], there are two
major approaches to multi-domain model evaluation that are
rarely discerned and seldom discussed.
In the Leave-One-Domain-Out-Cross-Validation ap-

proach, one model is trained for every domain: each holding
one of the training domains out. The withheld domain is then
used to evaluate its corresponding model. The average of
the score metrics across folds is then reported. Expectedly,
domain characteristics can greatly impact this evaluation.
When domains are similar enough, implicit data leakage
can occur. Alternatively, in the scenario where the domains
show significant distinct characteristics, covariate domain
shift could be an obstacle. For this reason, we refrain from
using it to evaluate the datasets.
In the Training-Domain Validation Set approach, each do-

main is split into training and testing subsets. The resulting
partitions are pooled to create multi-domain train and test
folds. The model is evaluated using the resulting overall test
fold. This strategy assumes a certain similarity between train-
ing and testing example distributions. Overall, it is a conser-
vative approach whenever prior knowledge of domain char-
acteristics is limited. Thus, this approach is more appropriate
for the current study.
Moreover, we purposely avoid using k-fold cross-

validation for similar reasons. When working with multi-
domain datasets, there are several relevant distribution char-
acteristics we are interested in controlling cautiously. Take
the DAPS dataset, for example: besides guaranteeing a sim-
ilar distribution between train and test sets for the speaker
id (which is the target feature), the speaker gender is also
an important feature to control. Furthermore, the book
excerpt is another dimension we are interested in control-
ling. And because we are interested in a more detailed task
setup distribution-wise, the randomness from k-fold cross-
validation could actually prove harmful for our evaluation.
It is useful to remember the scope of this study is to evaluate
the training methods and not to solve the classification tasks
used for the evaluation.

4.7 Experimental Setup
We perform several experiments using the methods and
datasets described previously in a Titan X Pascal graphics
processing unit. We detail their configuration and the rea-
soning behind them in the subsections below. Their results
are reserved for a dedicated section and can be inspected in
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section 5. The code implementation for the experiments is
available onGitHub4, including aDocker image to reproduce
the experimental setup.

4.7.1 Differentiating Audio Domains Experiment

We are interested in analyzing the behaviors of the proposed
methods in different situations regarding domain and class
distributions. Before we do so, one important question to ad-
dress is: how hard is it to distinguish audio domains? We
have reviewed this from the human point of view in section
2.4. Whereas for images it is trivial for humans to distinguish
different domains, for audio data it is unexpectedly hard to
do so, either by hearing the audio clips (e.g. differentiating a
recording in a conference room from the same recording in an
office can be challenging), or by looking at the spectrogram.
But more importantly, how hard is this task for computers to
accomplish? If, similarly to humans, they prove ineffective
for differentiating domains, then there would be no real ben-
efit in using the training methods described in section 4.3. In
fact, in this scenario the domain similarity would character-
ize a duplication of examples which could cause data leak-
age or just harm the learning process overall if not treated
properly. Conversely, computers being good at distinguish-
ing audio domains would be further evidence of the potential
usefulness of these multi-domain training approaches.
To achieve an estimate of how effective computers are at

addressing this task, we perform an experiment in which the
task is domain classification in each experiment dataset con-
figuration. For example, DAPS dataset samples will be clas-
sified as Ipad_Balcony, IPhone_Confroom, or any other of
the domains. The merged bird dataset samples would be clas-
sified as either FF1010BIRD or WARBLRB10K. Note the
actual class these samples pertain to (presence or absence of
bird calls) is irrelevant to this task. In this experiment, we
train amachine-learning classificationmodel using a ResNet-
345 and the configuration described below. Its result can be
inspected in Section 5.

4.7.2 Dataset Distribution Manipulation Experiments

We artificially partition the datasets to perform 5 major ex-
periments (Table 2). The idea behind these experiments is
similar in nature to the idea of ablation studies, a type of ex-
perimental analysis performed to understand the importance
of specific factors, where researchers systematically modify
or remove components to infer their impact on the model per-
formance. The goal is to gain insight into the behavior of
each method when used in different situations.
Experiments 1 to 4 use the bird detection datasets (WAR-

BLRB10K and FF1010BIRD), while experiment 5 uses the
speech dataset (DAPS). We choose the bird detection dataset
to perform dataset manipulations, as it is rich in terms of class
distribution differences between the domains. Additionally,
it is easier and cheaper to train timewise.
The experiments use the ResNet-18 architecture6, pre-

4https://github.com/papercoderepo/integrating-domain-knowledge-
jis2024

5https://pytorch.org/vision/torchvision.models.resnet34.html
6https://pytorch.org/vision/torchvision.models.resnet18.html

trained with imageNet and fine-tuned using the DAPS or
bird datasets (depending on the experiment). The choice
of this particular network architecture is because it is rela-
tively simple (the simplicity here is useful when comparing
the different training methods and allows the execution of
the numerous experiments necessary in this study), it is well-
established in the literature, and the fact it is a convolution
neural network suitable for the use with audio spectrograms.
We use 10 epochs with a batch size of 256 and an 80/20
split for train/test. We maintain configurations across exper-
iments whenever possible. This includes the deep learning
neural network and hyperparameters. We do so because our
focus is to evaluatemulti-domain trainingmethodological ap-
proaches and not hyperparameter tuning.
Each experiment is repeatedly performed with 30 repeti-

tions with different seeds. The seed values influence the
model weight parameter initialization values. In other words,
they are responsible for themodel configuration starting posi-
tion in the loss landscape during the optimization process. It
is important to guarantee this propriety when comparing the
different trainingmethods. Otherwise, somemodel instances
could potentially start at more beneficial locations in the loss
landscape, thus complicating the method comparison.
Another relevant propriety to consider is the order exam-

ples are shown to the model. The loss landscape traversal is
greatly influenced by the order in which a model processes
examples, and having it vary across learning methods will
hinder a desirable fair evaluation.

• Experiment 1 — Bird Detection, Original Dataset
Size. In this experiment, we use the proposed meth-
ods to train a model on the task of bird detection using
the bird dataset (WARBLRB10K and FF1010BIRD) in
their entirety. In this scenario, the datasets are similar
in terms of example amount. We expect selecting ex-
amples stochastically domain-wise would not greatly af-
fect the model, as each dataset would have a similar rep-
resentation in the training dataset, in terms of example
amount. Thus, this experiment evaluates the methods
when domains are similar in terms of quantity, although
being different in composition.

• Experiment 2 — Bird Detection, Reduced
FF1010BIRD. We alter the configuration of the
domains by artificially reducing one of them, using
stratification to maintain the class distribution in each
domain. For experiment 2, we randomly remove
examples from the FF1010BIRD domain. In practice,
this means domain WARBLRB10K is more influential
during the training of the model when using a vanilla
training approach. Expectedly, potential benefits from
balancing domain presence in batches would appear in
this scenario.

• Experiment 3 — Bird Detection, Reduced WAR-
BLRB10K. This experiment is the natural counterpart
of experiment 2. The reduced domain is now WAR-
BLRB10K, while FF1010BIRD remains in its original
characteristics. This is useful to review how the model
behaves when most of the data comes from the ff dis-
tribution. Again, it is expected the regularization of the
domains would be notable in this scenario should it im-
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Table 2. Experiment Description Summary

Experiment Number Task Datasets Domains

Experiment 1 Bird Detection WARBLRB10K, FF1010BIRD 2
Experiment 2 Bird Detection WARBLRB10K, FF1010BIRD 2
Experiment 3 Bird Detection WARBLRB10K, FF1010BIRD 2
Experiment 4 Bird Detection WARBLRB10K, FF1010BIRD 2
Experiment 5 Speaker Identification DAPS 14

prove model learning and generalization. In this exper-
iment, we discard 1/3 of the WARBLRB10K domain,
amounting to 5,598 removed audio clips. Only 2,400
examples remain.

• Experiment 4 — Bird Detection, Reduced Symmet-
ric. Experiment 4 greatly reduces both domains to 300
samples, also using stratification to maintain the class
distribution in each domain. The objective of this ex-
periment is to evaluate the training methods when few
examples are available. Despite the small number of ex-
amples, similarly to experiment 1, both domains are in
equal amounts.

• Experiment 5 — Speaker Identification, Original
Dataset Size. In this experiment, we use the DAPS
dataset, which already has several domains defined.
There are 15 domains in the original dataset. However,
we decide to remove the domain clean_raw from this ex-
periment, as it is notably distant from other domains (it
is the only domain with breath sounds, lip smacks, and
other speech noises). More importantly, it would dif-
fer very little from the clean_speech domain and would
cause complications by having duplicated examples in
the dataset (this is easy to happen when we split the orig-
inal audio clips into 5-second segments). Despite the
domain differences regarding acoustic conditions and
recording devices, they are balanced in terms of class
distribution.

5 Results
This section presents and discusses the experimental results
of the audio classification tasks. We start by estimating how
difficult it is for machine learning models to distinguish au-
dio domains, then proceed by presenting the experimental
results of dataset manipulations.

5.1 Image Experiments
In this section, the results obtained from training the Stew,
Balanced Domains, and Loss Sum methods with the Office-
31 dataset are presented. The multi-domain learning re-
sults are obtained by training models using combinations of
the three domains (Amazon, Webcam, and DSLR) for each
method. In this way, one experiment presents the results of
training the model using only the Webcam and DSLR do-
mains, the other experiment uses only the Amazon and Web-
cam domains, another experiment uses only the Amazon and
DSLR domains, and finally, the last experiment is performed
with the three domains Amazon, Webcam, and DSLR to-
gether.

In addition to the results of multi-domain learning, it is
also possible to view the results of domain generalization,
since the models that use only 2 of the 3 domains available
for training can use the domain not seen in training to be
tested in domain generalization.
All Stew, Balanced Domains, and Loss Sum methods

show better multi-domain learning results in theWebcam and
DSLR domains compared to the Amazon domain (Tables 3
and 4). This may have occurred due to the significant het-
erogeneity between the images within the same class in the
Amazon domain, while the images within the same class of
the Webcam and DSLR domains have greater similarity and
may be more easily learned by the models.
In addition to this similarity between images within the

same class of the same domain, the Webcam and DSLR do-
mains have images similar to each other, sometimes present-
ing images of the same object but obtained differently, thus
constituting different domains. These similarities between
the DSLR and Webcam domains may explain the good do-
main generalization results in experiments that use one of
these two domains in training and another (not seen in train-
ing) for testing. It is notable that, concerning the domain
generalization task, the DSLR domain presented better re-
sults than the Webcam domain in all experiments (Tables 3
and 4). The same occurs with the multi-domain learning task,
where 11 out of 12 experiments that used the Webcam and
DSLR domains in training (with or without using the Ama-
zon domain) show better results in the DSLR domain than
in the Webcam domain. This may occur due to the Webcam
domain presenting a high degree of noise, which may have
negatively influenced the learning of this particular domain.
It is also possible to analyze that the Balanced Domains

methodology performed, in general, with higher quality
when compared to the Stew methodology (Tables 3 and 4).
In the context of images, this can mean multi-domain learn-
ing has an advantage when the domains are balanced at a
batch level. Likewise, domain generalization also shows bet-
ter results in Balanced Domains compared to Stew, where it
is possible that domain generalization also takes advantage
of batch-level domain balancing).
Finally, when analyzing the results of the experiments with

different combinations of domains between the Stew, Bal-
anced Domains, and Loss Sum methods, it is possible to ob-
serve that the Loss Sum method presented the best results
in both experiment groups, with a greater and lesser amount
of training epochs (Tables 3 and 4). Thus, the results in-
dicate presenting the domains individually potentially im-
proves multi-domain learning and domain generalization.
We also test an additional counterfactual method called

Random Sum. Random Sum is essentially Loss Sum but
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with randomized domain data. The idea behind this experi-
ment is to assert whether Loss Sumworks because of a higher
Loss value or because of its individual domain presentation
and Loss calculation scheme. It is possible to verify that in
the experiments with a smaller number of epochs, all the re-
sults of the Loss Sum method present better results in com-
parison with the Random Sum method. In experiments with
a greater number of epochs, the Loss Sum method generally
presents better multi-domain learning results, but the domain
generalization results of the Random Sum method stood out.
This demonstrates that multi-domain learning may benefit
from Loss Sum more than domain generalization does.

Table 3. Image Experiment Results - F1-Score - 17 Epochs

Training Domains Domain Evaluated

AMZ DSLR Webcam

St
ew

DSLR, Webcam 0.508 ± 0.028 0.916 ± 0.022 0.892 ± 0.026
AMZ, Webcam 0.710 ± 0.026 0.901 ± 0.025 0.906 ± 0.030
AMZ, DSLR 0.704 ± 0.032 0.922 ± 0.031 0.884 ± 0.022

AMZ, DSLR, Webcam 0.707 ± 0.019 0.962 ± 0.015 0.966 ± 0.009

B
al
an
ce
d DSLR, Webcam 0.593 ± 0.035 0.980 ± 0.012 0.969 ± 0.012

AMZ, Webcam 0.727 ± 0.033 0.927 ± 0.018 0.930 ± 0.019
AMZ, DSLR 0.738 ± 0.040 0.948 ± 0.020 0.906 ± 0.021

AMZ, DSLR, Webcam 0.719 ± 0.018 0.970 ± 0.012 0.971 ± 0.007

L
os
sS

um

DSLR, Webcam 0.610 ± 0.032 0.990 ± 0.007 0.988 ± 0.007
AMZ, Webcam 0.767 ± 0.038 0.952 ± 0.017 0.971 ± 0.012
AMZ, DSLR 0.772 ± 0.034 0.980 ± 0.012 0.940 ± 0.021

AMZ, DSLR, Webcam 0.765 ± 0.026 0.989 ± 0.007 0.988 ± 0.006

Table 4. Image Experiment Results - F1-Score - 52 Epochs

Training Domains Domain Evaluated

AMZ DSLR Webcam

St
ew

DSLR, Webcam 0.568 ± 0.029 0.971 ± 0.012 0.976 ± 0.007
AMZ, Webcam 0.748 ± 0.016 0.955 ± 0.014 0.937 ± 0.017
AMZ, DSLR 0.740 ± 0.033 0.949 ± 0.014 0.943 ± 0.018

AMZ, DSLR, Webcam 0.744 ± 0.028 0.978 ± 0.010 0.976 ± 0.006

B
al
an
ce
d DSLR, Webcam 0.604 ± 0.037 0.983 ± 0.008 0.975 ± 0.009

AMZ, Webcam 0.747 ± 0.023 0.961 ± 0.011 0.945 ± 0.023
AMZ, DSLR 0.743 ± 0.031 0.958 ± 0.015 0.935 ± 0.023

AMZ, DSLR, Webcam 0.756 ± 0.019 0.983 ± 0.013 0.982 ± 0.005

L
os
sS

um

DSLR, Webcam 0.611 ± 0.024 0.986 ± 0.006 0.981 ± 0.009
AMZ, Webcam 0.767 ± 0.013 0.969 ± 0.014 0.954 ± 0.017
AMZ, DSLR 0.757 ± 0.022 0.969 ± 0.010 0.949 ± 0.014

AMZ, DSLR, Webcam 0.769 ± 0.024 0.991 ± 0.005 0.990 ± 0.007

5.2 Differentiating Audio Domains Experi-
ment

When using the DAPS dataset for domain classification, we
achieve a 0.99 accuracy score in the test set using a ResNet34.
A brief report of the training can be viewed in Table 5. Figure
7 denotes the confusion matrix for the test set classifications.
We can further inspect a batch of model predictions in Figure
8.
When using the bird detection datasets WARBLRB10K

and FF1010BIRD for domain classification, we achieve sim-
ilar results of up to 0.959 validation accuracy score (the re-
port can be seen in Table 6). It is interesting to note the first
accuracy score values from the bird domain classification
(binary classification problem using 2 domains) are dramati-
cally worse than the DAPS domain classification (multiclass
classification problem with 15 domains). At first sight, this

Table 5. DAPS Domain Classification Report

Epoch Train Loss Validation Loss Accuracy

0 0.910 0.534 0.801
1 0.394 0.291 0.895
2 0.219 0.146 0.949
3 0.131 0.099 0.969
4 0.106 0.094 0.971
5 0.071 0.060 0.980
6 0.040 0.054 0.981
7 0.042 0.053 0.983
8 0.026 0.049 0.983
9 0.026 0.049 0.983

Figure 7. Confusion matrix of domain classification using the DAPS
dataset. Source: Author.

is not an intuitive result, but it can be attributed to the signifi-
cantly different amount of domain examples forming the bird
dataset. WARBLRB10K forms approximately 48% of exam-
ples, while FF1010BIRD comprises 52% of them. Hence
we can explain this lower initial score by the model initially
guessing all examples asWARBLRB10Kor as FF1010BIRD
during the initial epochs. This behavior is further intensified
by the bird dataset having only two classes. The test accu-
racy results also maintained the values seen before in vali-
dation, with the FF1010BIRD domain achieving 94.3%, and
theWARBLRB10K domain achieving up to 97.2% accuracy.
An example of predictions can be seen in Figure 9. A SHAP
value analysis for image data can be reviewed in Appendix
A.

Considering the use of machine learning to perform do-
main classification, based on the evidence presented in this
section, we theorize this task pertains to the subset of tasks
that are quite difficult for humans but unexpectedly trivial for
computers. Possibly due to characteristics of individual fre-
quency components either from recording sensors or domain
acoustic features (not mutually exclusive). Notably, these re-
sults also reflect the potential of multi-domain regularization
methods.
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Figure 8. Illustration depicting model prediction of several examples in
the DAPS dataset. Ground truth is the top label and model predictions are
shown below it. Source: Author.

Table 6. Bird Domain Classification Report

Epoch Train Loss Validation Loss Accuracy

0 0.435 3.841 0.484
1 0.315 6.093 0.522
2 0.289 2.140 0.490
3 0.222 0.178 0.940
4 0.175 0.696 0.668
5 0.149 0.175 0.942
6 0.141 0.133 0.953
7 0.124 0.168 0.944
8 0.110 0.116 0.960
9 0.104 0.114 0.960

5.3 Dataset Distribution Manipulation Exper-
iments

This section presents the results of the multi-domain learning
experiments in bird classification (Experiments 1 – 4), and
speaker identification (Experiment 5).

5.3.1 Experiment 1 — Bird Detection, Original Dataset
Size

This experiment uses all of the bird detection datasets (which
includes FF1010BIRD and WARBLRB10K as domains).
The summarized results can be viewed in Table 7. The sum-
marized results omit the standard deviation and the results
from the sequential and inverse sequential methods (which
are less relevant to the discussion here). For the expanded
table, refer to Appendix B.
When looking at the average score of eachmethod in Table

7, we notice the best result is from using the Loss Sum ap-
proach. Additionally, the Random Sum results are far worse
than Loss Sum, despite being in the same loss scale. This
is evidence against the argument stating that Loss Sum is

Figure 9. Illustration depicting model prediction of several examples in the
bird dataset. Ground truth is the top label and model predictions are shown
below it. Source: Author

better because of its higher loss scale. In fact, even the base-
line Stew approach performed better than Random Sum. Fur-
thermore, the Loss Mean method performs similarly to Loss
Sum, despite not operating in the higher loss scale. This is
yet another argument against the higher loss scale being re-
sponsible for the Loss Sum improved performance. Notably,
the Balancedmethod also improved the average performance
when compared to the Stew baseline. However, there is a
tradeoff where the war domain increased in performance at
the cost of lower performance in the FF1010BIRD domain.
We are also interested in how each method evolves re-

garding its performance during training (some methods may
cause a faster generalization during training than others). Fig-
ure 10 denotes the test F1-Score evolution during training.
We see a significant increase in the F1-Score of the Loss Sum
and Loss Mean methods. The Balanced, Stew, and Random
Sum methods perform similarly, with the Balanced method
being slightly better than the Stew baseline, and the Random
Sum performing slightly worse than the baseline. Below we
see the Sequential and Inverse Sequential methods, where
the moment the training domains change is evidenced by the
sudden decline in the 5th epoch.
Detailed visualizations of loss curve convergence can be

seen in Appendices C.

5.3.2 Experiment 2 — Bird Detection, Reduced
FF1010BIRD

After reducing the FF1010BIRD dataset, its baseline perfor-
mance using the Stew method dropped (Table 8 and Figure
11). This was expected, as there are fewer examples to learn
from in this domain. Conversely, the performance in the
WARBLRB10K domain improved for the same reason: it
has more examples, and as a result the model focuses on
learning its characteristics and achieves better results on it.
The Balanced approach achieved worse results in compar-
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Table 7. Experiment 1 — Bird Detection, Original Dataset Size, Micro F1-Score (Summarized)

Domain Stew Balanced Loss Sum Random Sum Loss Mean

WARBLRB10K 0.623 0.694 0.803 0.618 0.799
FF1010BIRD 0.631 0.574 0.779 0.627 0.779

Average 0.627 0.634 0.791 0.622 0.789

Table 8. Experiment 2 — Bird Detection, Reduced FF1010BIRD, Micro F1-Score (Summarized)

Domain Stew Balanced Loss Sum Random Sum Loss Mean

WARBLRB10K 0.745 0.641 0.797 0.752 0.793
FF1010BIRD 0.475 0.605 0.793 0.512 0.796

Average 0.610 0.623 0.795 0.632 0.795

Table 9. Experiment 3 — Bird Detection, Reduced WARBLRB10K, Micro F1-Score (Summarized)

Domain Stew Balanced Loss Sum Random Sum Loss Mean

WARBLRB10K 0.520 0.649 0.757 0.529 0.768
FF1010BIRD 0.745 0.647 0.771 0.737 0.773

Average 0.632 0.648 0.764 0.633 0.771

Figure 10. Average test set domain micro F1-score across epochs for Ex-
periment 1. Source: Author.

Figure 11. Average test set domain micro F1-score across epochs for Ex-
periment 2. Source: Author.

ison to using the entire dataset. However, compared to the
Stew method, it has maintained performance in the minor-
ity dataset (FF1010BIRD), at the cost of some of the perfor-
mance from the majority dataset. Again, this is aligned with

our previous expectations, as the intent behind Balanced Do-
mains is to act as regularization to force the neural network
to perform well across domains.
Remarkably, the Loss Summethod achieves slightly better

performance when compared to Experiment 1. Despite los-
ing performance in the WARBLRB10K domain, it achieves
better performance in FF1010BIRD. This improvement is
not entirely expected and might be attributed to its smaller,
less reliable test set. Nevertheless, maintaining similar per-
formance to Experiment 1 is interesting evidence of howwell
Loss Sum performs when one of the training domains is no-
tably smaller.
The Random Summethod in Experiment 2 performed bet-

ter than the one in Experiment 1, but when we investigate
the domain scores, we see it neglected the reduced domain,
similar to the Stew method. The minor improvement is pos-
sibly attributed to Random Sum operating on a different loss
scale. This is problem-dependent; while this characteristic
may help in some problems, in others it will not.
Finally, Loss Mean performs very similarly to Loss Sum.

It also potentially suffers from the same optimistic evaluation
in the reduced domain.

5.3.3 Experiment 3 — Bird Detection, Reduced WAR-
BLRB10K

Reducing the WARBLRB10K domain yields similar ef-
fects to Experiment 2. The Stew method performs
marginally better, although it still prioritizes the larger do-
main (FF1010BIRD).
In this experiment, we have further evidence depicting

how the Balanced method stops the model from focusing
solely on the larger domain (Table 8 and Figure 12). Notably,
Loss Sum and Loss Mean achieve the best results.
Furthermore, the Random Sum approach does not seem

to yield competitive results despite operating on a higher
loss scale. This provides evidence against the argument that
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Table 10. Experiment 4 — Bird Detection, Reduced Symmetric, Micro F1-Score (Summarized)

Domain Stew Balanced Loss Sum Random Sum Loss Mean

WARBLRB10K 0.603 0.538 0.588 0.569 0.656
FF1010BIRD 0.390 0.429 0.424 0.442 0.411

Average 0.497 0.483 0.506 0.505 0.533

Table 11. Experiment 5 — Speaker Identification, Original Dataset Size, Micro F1-Score (Summarized)

Domain Stew Balanced Loss Sum Random Sum Loss Mean

CLEAN 0.132 0.130 0.136 0.129 0.123
IPAD_BALCONY1 0.139 0.139 0.142 0.133 0.136
IPAD_BEDROOM1 0.134 0.130 0.130 0.125 0.127
IPAD_CONFROOM1 0.129 0.129 0.131 0.125 0.125
IPAD_CONFROOM2 0.135 0.132 0.135 0.128 0.121
IPADFLAT_CONFROOM1 0.140 0.137 0.140 0.128 0.133
IPADFLAT_OFFICE1 0.135 0.132 0.132 0.126 0.125
IPAD_LIVINGROOM1 0.135 0.131 0.131 0.128 0.126
IPAD_OFFICE1 0.129 0.127 0.133 0.123 0.121
IPAD_OFFICE2 0.137 0.134 0.134 0.133 0.130
IPHONE_BALCONY1 0.141 0.139 0.146 0.132 0.139
IPHONE_BEDROOM1 0.133 0.130 0.130 0.126 0.126
IPHONE_LIVINGROOM1 0.126 0.125 0.125 0.126 0.123
PRODUCED 0.134 0.130 0.139 0.129 0.128

Average 0.134 0.132 0.134 0.128 0.127

Figure 12. Average test set domain micro F1-score across epochs for Ex-
periment 3. Source: Author.

higher loss values help in this particular task.

5.3.4 Experiment 4 — Bird Detection, Reduced Sym-
metric, Micro F1-Score

Reducing both domains to a few hundred examples causes
model performance to drop dramatically (Table 10). It is rel-
evant to remember this configuration is balanced, as both do-
mains have the same amount of examples.
In this extreme scenario, the Stew approach still priori-

tizes one of the domains. Even though the Balanced method
performs worse than the Stew one, it mitigates domain fa-
voritism. Note there is a significant tradeoff where the fa-
vorite domain drops in performance. The Loss Sum and Ran-
dom Sum perform similarly in this scenario, with the Loss
Mean approach yielding the best results.

Figure 13. Average test set domain micro F1-score across epochs for Ex-
periment 4. Source: Author.

The scarce amount of examples is insufficient for methods
to learn domain-specific distributions. Bird domains contain
different class distributions, and the F1-Score across epochs
is erratic for all training methods (Figure 13).

5.3.5 Experiment 5 — Speaker Identification, Original
Dataset Size

This experiment uses DAPS, a larger dataset with several do-
mains. Thus, we evaluate it on a classification task with 20
different classes (Table 11). Expectedly, the results are worse
than the previous experiments which used a binary classifi-
cation task. Moreover, the results also suggest the number
of epochs to approach this task could be increased for better
results in the target task.
The Stew method achieved competitive results in this ex-
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periment. Additionally, the Balanced approach marginally
diminished the performance, when compared to the Stew
baseline. This is not entirely unexpected, as the domains in
this experiment are already balanced. Domain balancing in
batches for an already-balanced multi-domain dataset mostly
only introduces overhead.

Random Sum and Loss Mean performed below the com-
parison baseline. But the Loss Sum method achieved similar
results to the Stew approach. However, there are some dif-
ferences in the performance of individual domains. Overall,
the training methods behave very differently when used on a
high quantity of domains.

Overall, findings across experiments indicate that Bal-
anced Domains and Loss Sum are particularly effective at
reducing domain favoritism, especially when domain data
availability is inconsistent. Reducing domain favoritism
is relevant because it ensures generalization across diverse
datasets and domains. When a model exhibits domain fa-
voritism, it tends to prioritize certain domains over oth-
ers during training, leading to biased predictions and re-
duced performance on unseen data from underrepresented
domains. This is particularly important in tasks involving
multi-domain learning, where themodel needs to adapt to dif-
ferent data distributions and characteristics across domains.
Additionally, reducing domain favoritism promotes fairness
and equity in machine learning applications by ensuring that
all domains are treated equally, regardless of their represen-
tation in the training data.

It is important to recognize that many tasks traditionally
perceived as single-domain, actually involve data from mul-
tiple sources, albeit without explicit labeling of their origins.
In these cases, mitigating domain favoritism becomes cru-
cial. Failure to address domain variability can result in bi-
ased predictions and reduced performance on data from cer-
tain sources, undermining the reliability of the model in real-
world scenarios. Consider, for example, a sentiment analysis
task that aggregates user reviews from various websites. Al-
though the reviews come from different domains (e.g., Ama-
zon, Yelp, Twitter), they are typically treated as a single
dataset for analysis. However, each domain may exhibit
unique linguistic patterns, cultural nuances, or review ten-
dencies that can influence the learning process of the model.

Our results provide evidence that understanding and lever-
aging domain differences can significantly improve predic-
tions across diverse domains. By acknowledging and lever-
aging these domain-specific characteristics, batch-level do-
main regularizations enable models to learn more nuanced
representations that generalize better to unseen data from dif-
ferent sources. This suggests that instead of treating all do-
mains equally, models can benefit from allocating more re-
sources to underrepresented domains.

It is noteworthy that the approaches we evaluated in our
study aremodel agnostic, meaning they can be applied across
various machine learning architectures without dependency
on specific models. This characteristic shows the versatility
and broad applicability of these methods in addressing do-
main variability differences in multi-domain tasks.

6 Conclusion
In this extended study, we evaluated multi-domain learn-
ing training approaches aimed at effectively regulating do-
main presence within batches for image and audio classifi-
cation tasks, focusing on the latter. Our investigation cen-
tered on assessing the efficacy of the following methods:
Stew, Balanced Domains, and Loss Sum. Additionally,
we explored several counterfactual and comparison meth-
ods, including Random Sum, Loss Mean, and sequential ap-
proaches. Through experimentation and analysis, we aimed
to provide deeper insights into the performance and behavior
of these techniques in handling multi-domain learning chal-
lenges across datasets and task domains.
When handling domains with different class distributions,

Balanced domains, and Loss Sum seemed to mitigate model
domain favoritism. Particularly when some domains are lim-
ited in terms of data quantity. Loss Sum consistently pre-
sented competitive results in most experiments, improving
baseline results in most scenarios.
Despite improving results in several scenarios, Experi-

ment 4 evidenced the necessity of data quantity in domains to
better leverage the regulation capacity of the evaluated meth-
ods. The experiments also provide evidence supporting the
argument the loss aggregation methods benefit model train-
ing because of the individual domain calculation, and not be-
cause of the higher loss scale they operate in.
The results suggest that using explicit domain information

by presenting them separately in individual batches for each
domain potentially benefits the learning when training mod-
els in multi-domain tasks. This becomes more evident in
experiments with fewer domains with unique class distribu-
tions.
It is important to address the limitations of the study. We

refrain from hyperparameter tuning to be able to cover mul-
tiple dataset partitions, as it is a computationally intensive
task. We also lack benchmarks or similar studies using this
sort of approach for audio classification problems. As a re-
sult, validating or comparing these experiments is a difficult
task.
Overall, multi-domain learning techniques using individ-

ual domain loss calculation, such as Loss Sum, provide an in-
teresting strategy when dealing with multiple domains. Loss
Mean performs similarly to Loss Sum likely due to the pres-
ence of a similar mechanism. However, according to our
experiments, it is not, in fact, due to the higher loss values
— as Loss Mean does not operate on a higher loss scale and
often achieves competitive results as well.
Future studies could include evaluating prior domain

knowledge, as certain approaches may demonstrate greater
robustness to domain characteristics compared to others; Ex-
ploring alternative techniques for aggregating losses in do-
main datasets; Adding other multi-domain datasets; Repli-
cating findings across tasks beyond classification, such as
speech recognition.
Our study reinforces the importance of the often over-

looked but critical understanding of the distinct conditions
of data acquisition or generation. By exploringmulti-domain
learning techniques, we have highlighted the significance of
considering how examples are presented to the model. We
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hope that our research inspires further exploration of domain-
aware training strategies to improve machine-learning mod-
els across various real-world applications.
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Appendices

A Explainability Using SHAP
SHAP is an AI explainability technique (an acronym for
SHapley Additive exPlanations). The SHAP values evaluate
the impact of features in comparison to the prediction should
the feature had some other baseline value. In other words,
they allow decomposing prediction into feature importances.
We interpret spectrogram intensity values as SHAP values,

and inspect their influence on model predictions. Figures 14,
15, 16, 17, and 18 show SHAP value analysis for a few spec-
trogram predictions. We intend to verify what information
the model is using to make its decisions. In all figures, we
see consistent SHAP colors across specific spectrogram fre-
quency bands. This is evidence of sound model decisions, as
it is using frequency information to perform its predictions,
as expected. The domainsmay present distinct recording sen-
sor frequency characteristics that make it possible for easy
domain distinction.

Figure 14. SHAP analysis of bird detection example 1. Source: Author.

Figure 15. SHAP analysis of bird detection example 2. Source: Author.

Figure 16. SHAP analysis of bird detection example 3. Source: Author.

Figure 17. SHAP analysis of bird detection example 4. Source: Author.

Figure 18. SHAP analysis of bird detection example 5. Source: Author.
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B Complete Experiment F1-Score Tables
This appendix contains the expanded tables showing the complete experiment results (Tables 12, 13, 14, 15, 16).

Table 12. Experiment 1 — Bird Detection, Original Dataset Size, Micro F1-Score

Domain Sequential Inverse Sequential Stew Balanced Loss Sum Random Sum Loss Mean

WARBLRB10K 0.368 ± 0.055 0.786 ± 0.010 0.623 ± 0.026 0.694 ± 0.038 0.803 ± 0.009 0.618 ± 0.033 0.799 ± 0.013
FF1010BIRD 0.791 ± 0.014 0.290 ± 0.030 0.631 ± 0.026 0.574 ± 0.030 0.779 ± 0.029 0.627 ± 0.036 0.779 ± 0.022

Average 0.580 ± 0.033 0.538 ± 0.016 0.627 ± 0.013 0.634 ± 0.015 0.791 ± 0.015 0.622 ± 0.019 0.789 ± 0.015

Table 13. Experiment 2 — Bird Detection, Reduced FF1010BIRD, Micro F1-Score

Domain Sequential Inverse Sequential Stew Balanced Loss Sum Random Sum Loss Mean

WARBLRB10K 0.275 ± 0.047 0.777 ± 0.009 0.745 ± 0.037 0.641 ± 0.026 0.797 ± 0.018 0.752 ± 0.028 0.793 ± 0.031
FF1010BIRD 0.754 ± 0.011 0.285 ± 0.029 0.475 ± 0.051 0.605 ± 0.039 0.793 ± 0.015 0.512 ± 0.032 0.796 ± 0.012

Average 0.514 ± 0.028 0.531 ± 0.017 0.610 ± 0.019 0.623 ± 0.018 0.795 ± 0.013 0.632 ± 0.015 0.795 ± 0.019

Table 14. Experiment 3 — Bird Detection, Reduced WARBLRB10K, Micro F1-Score

Domain Sequential Inverse Sequential Stew Balanced Loss Sum Random Sum Loss Mean

WARBLRB10K 0.258 ± 0.044 0.766 ± 0.006 0.520 ± 0.061 0.649 ± 0.031 0.757 ± 0.068 0.529 ± 0.047 0.768 ± 0.049
FF1010BIRD 0.751 ± 0.008 0.265 ± 0.007 0.745 ± 0.032 0.647 ± 0.044 0.771 ± 0.023 0.737 ± 0.042 0.773 ± 0.020

Average 0.504 ± 0.025 0.515 ± 0.006 0.632 ± 0.033 0.648 ± 0.024 0.764 ± 0.038 0.633 ± 0.025 0.771 ± 0.029

Table 15. Experiment 4 — Bird Detection, Reduced Symmetric, Micro F1-Score

Domain Sequential Inverse Sequential Stew Balanced Loss Sum Random Sum Loss Mean

WARBLRB10K 0.313 ± 0.176 0.761 ± 0.005 0.603 ± 0.221 0.538 ± 0.240 0.588 ± 0.245 0.569 ± 0.234 0.656 ± 0.207
FF1010BIRD 0.698 ± 0.148 0.279 ± 0.090 0.390 ± 0.182 0.429 ± 0.210 0.424 ± 0.231 0.442 ± 0.204 0.411 ± 0.221

Average 0.506 ± 0.080 0.52 ± 0.044 0.497 ± 0.06 0.483 ± 0.073 0.506 ± 0.092 0.505 ± 0.057 0.533 ± 0.095
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Table 16. Experiment 5 — Speaker Identification, Original Dataset Size, Micro F1-Score

Domain Sequential Inverse Sequential Stew Balanced Loss Sum Random Sum Loss Mean

CLEAN 0.049 ± 0.021 0.049 ± 0.021 0.132 ± 0.018 0.130 ± 0.012 0.136 ± 0.017 0.129 ± 0.019 0.123 ± 0.015
IPAD_BALCONY1 0.048 ± 0.019 0.048 ± 0.019 0.139 ± 0.015 0.139 ± 0.016 0.142 ± 0.018 0.133 ± 0.018 0.136 ± 0.016
IPAD_BEDROOM1 0.051 ± 0.022 0.051 ± 0.022 0.134 ± 0.014 0.130 ± 0.013 0.130 ± 0.015 0.125 ± 0.012 0.127 ± 0.012
IPAD_CONFROOM1 0.052 ± 0.021 0.052 ± 0.021 0.129 ± 0.015 0.129 ± 0.014 0.131 ± 0.013 0.125 ± 0.014 0.125 ± 0.015
IPAD_CONFROOM2 0.048 ± 0.019 0.048 ± 0.019 0.135 ± 0.018 0.132 ± 0.015 0.135 ± 0.017 0.128 ± 0.018 0.121 ± 0.020
IPADFLAT_CONFROOM1 0.050 ± 0.018 0.050 ± 0.018 0.140 ± 0.017 0.137 ± 0.010 0.140 ± 0.016 0.128 ± 0.016 0.133 ± 0.013
IPADFLAT_OFFICE1 0.052 ± 0.021 0.052 ± 0.021 0.135 ± 0.017 0.132 ± 0.012 0.132 ± 0.018 0.126 ± 0.017 0.125 ± 0.012
IPAD_LIVINGROOM1 0.048 ± 0.020 0.048 ± 0.020 0.135 ± 0.016 0.131 ± 0.011 0.131 ± 0.017 0.128 ± 0.014 0.126 ± 0.016
IPAD_OFFICE1 0.051 ± 0.019 0.051 ± 0.019 0.129 ± 0.013 0.127 ± 0.011 0.133 ± 0.014 0.123 ± 0.013 0.121 ± 0.013
IPAD_OFFICE2 0.048 ± 0.018 0.048 ± 0.018 0.137 ± 0.015 0.134 ± 0.011 0.134 ± 0.014 0.133 ± 0.016 0.130 ± 0.013
IPHONE_BALCONY1 0.048 ± 0.016 0.048 ± 0.016 0.141 ± 0.017 0.139 ± 0.017 0.146 ± 0.021 0.132 ± 0.019 0.139 ± 0.020
IPHONE_BEDROOM1 0.051 ± 0.020 0.051 ± 0.020 0.133 ± 0.016 0.130 ± 0.012 0.130 ± 0.016 0.126 ± 0.014 0.126 ± 0.013
IPHONE_LIVINGROOM1 0.046 ± 0.018 0.046 ± 0.018 0.126 ± 0.013 0.125 ± 0.007 0.125 ± 0.012 0.126 ± 0.016 0.123 ± 0.010
PRODUCED 0.048 ± 0.018 0.048 ± 0.018 0.134 ± 0.017 0.130 ± 0.009 0.139 ± 0.018 0.129 ± 0.019 0.128 ± 0.013

Average 0.049 ± 0.018 0.049 ± 0.018 0.134 ± 0.013 0.132 ± 0.010 0.134 ± 0.012 0.128 ± 0.014 0.127 ± 0.011



Integrating Domain Knowledge in Multi-Source Classification Tasks Bender et al. 2024

C Loss Curve Convergence Visualiza-
tion

This appendix shows the loss curves during model training
on the bird detection dataset, using its original size (Experi-
ment 1).
The real training loss used in backpropagation is depicted

in Figure 19. Because some methods operate on higher loss
values, the comparison is difficult. We normalize these meth-
ods by dividing their loss values by the number of domains
(Figure 20). The methods depict similar results towards the
end, which may be difficult to visualize. For this reason, we
provide Figure 21 showing a zoomed version of the plot in-
cluding only the last 3 epochs.

Figure 19. Average domain loss across epochs. Source: Author.

Figure 20. Average domain loss across epochs. Methods that operate on
a higher loss were normalized for comparison purposes (this normalization
consists of dividing the loss by the number of domains). Source: Author.

Figure 21. Average normalized domain loss for the last 3 epochs. Source:
Author.
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