
Journal on Interactive Systems, 2024, 15:1, doi: 10.5753/jis.2024.4109
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Unsupervised Heterogeneous Graph Neural Networks for
One-Class Tasks: Exploring Early Fusion Operators
Marcos Paulo Silva Gôlo [ University of São Paulo | marcosgolo@usp.br ]
Marcelo Isaias de Moraes Junior [ University of São Paulo | marcelo.junior@usp.br ]
Rudinei Goularte [ University of São Paulo | rudinei@icmc.usp.br ]
Ricardo Marcondes Marcacini [ University of São Paulo | ricardo.marcacini@icmc.usp.br ]

 Institute of Mathematics and Computer Sciences, University of São Paulo, Av. Trabalhador São Carlense, 400, Centro,
São Carlos, Sãp Paulo, Brazil, 13566-590.

Received: 07 February 2024 • Accepted: 28 May 2024 • Published: 30 May 2024

Abstract Heterogeneous graphs are an essential structure that models real-world data through different types of
nodes and relationships between them, including multimodality, which comprises different types of data such as
text, image, and audio. Graph Neural Networks (GNNs) are a prominent graph representation learning method that
takes advantage of the graph structure and its attributes that, when applied to the multimodal heterogeneous graph,
learn a unique semantic space for the different modalities. Consequently, it allowsmultimodal fusion through simple
operators such as sum, average, or multiplication, generating unified representations considering the supplementary
and complementarity relationships between the modalities. In multimodal heterogeneous graphs, the labeling pro-
cess tends to be even more costly due to the multiple modalities analyzed, in addition to the imbalance of classes
inherent to some applications. In order to overcome these problems in applications that comprise a class of interest,
One-Class Learning (OCL) is used. Given the lack of studies on multimodal early fusion in heterogeneous graphs
for OCL tasks, we proposed a method based on unsupervised GNN for heterogeneous graphs and evaluated different
early fusion operators. In this paper, we extend another work by evaluating the behavior of the main GNN convo-
lutions in the method. We highlight that using operators such as average, addition, and subtraction were the best
early fusion operators. In addition, GNN layers that do not use an attention mechanism performed better. In this
way, we argue for heterogeneous graph neural networks in multimodal using early fusion simple operators instead
of well-often-used concatenation and less complex convolutions.
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1 Introduction

Early fusion data generates new multimodal, robust, and uni-
fied representations considering supplementary and comple-
mentary modalities of different data types, such as audio,
image, and text (Baltrušaitis et al., 2018). These heteroge-
neous and multimodal data can be modeled using heteroge-
neous graphs. Graphs offer a powerful structure for model-
ing real-world problems by explicitly capturing the relations
between entities since graphs better deal with abstract con-
cepts such as relations and interactions (Rahman, 2017). Het-
erogeneous graphs model real-world problems with a natural
structure that enriches the task resolution that solves these
problems (Zhou et al., 2020; Xia et al., 2021). In addition,
heterogeneous graphs allow the modeling of different rela-
tions between different graph nodes, which enriches the rep-
resentation through graphs, modeling more information and
modalities (Wang et al., 2022).
In the scenario of heterogeneous graphs, each type of node

can be considered a modality. In this way, we can exploit the
modalities fusion to generate better representations for the
problem. Early fusion studies for multimodal data explore
mainly concatenation (Beserra, 2022) of themodalities. Con-
catenation increases the dimensionality of vectors (doubling
in the case of twomodalities, tripling in the case of three, and

so on). On the other hand, few studies explore different early
fusion strategies, such as vector operators between feature
vectors in the latent spaces of each modality (Beserra et al.,
2020; Beserra and Goularte, 2023). For instance, addition,
average, subtraction, and minimum, among others (Beserra,
2022).
Existing studies do not investigate multimodal fusion oper-

ators for heterogeneous graphs. This research gap is particu-
larly promising as many multimodal applications are now be-
ing modeled using heterogeneous graphs (Guo et al., 2019).
For instance, multimodal document classification (which
may include text, images, and audio) (Liu et al., 2019), rec-
ommendation systems, in which multimodal fusion in het-
erogeneous graphs can enhance accuracy by considering dif-
ferent types of information (e.g., browsing history and per-
sonal preferences) (Guo et al., 2020), event detection in
multimedia-based social networks (Schinas et al., 2015), and
content retrieval based on its multimodal content (Kumar
et al., 2013).
In different scenarios of data modeled through heteroge-

neous graphs, there is an interest class, such as the detec-
tion of hit songs (da Silva et al., 2022), detection of fake
news (de Souza et al., 2022), recommendation (Gôlo et al.,
2022), and detection of interest events (Nguyen and Grish-
man, 2018). In these scenarios, the studies model the data
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through heterogeneous graphs and explore One-Class Learn-
ing (OCL) (Emmert-Streib and Dehmer, 2022; Tax, 2001).
Studies use the OCL because they can learn to classify the in-
terest class only with labels of this class available. Therefore,
OCL reduces the user’s labeling effort, is more appropriate
for imbalanced classification scenarios, and does not need to
cover the scope of the non-interest class (or classes) (Khan
and Madden, 2014; Alam et al., 2020).
In the one-class heterogeneous graph learning literature,

studies learn representations for nodes through Graph Neural
Networks (GNNs), methods considered state-of-the-art for
learning representation in graphs (Wu et al., 2020). GNNs
are neural networks applied to data modeled through graphs
capable of learning new, more robust representations that
capture structural features given the graph node relations and
node features given the initial representations of the nodes.
At the end of learning, the GNNs learn representations for
the different types of nodes at the same semantic level, which
makes it possible to use simple operators, such as addition,
average, or multiplication, to combine the representations of
the different types of nodes considering the early fusion and
improve the task solved by one-class learning (Atrey et al.,
2010; Jakob et al., 2021; Gôlo et al., 2021). On the other
hand, studies in the one-class heterogeneous graph learn-
ing literature concatenate the learned representations (Huang
et al., 2022; Zhou and Mao, 2022; Gôlo et al., 2022) or only
use one type of node (da Silva et al., 2022; Ganz et al., 2023)
in the one-class learning step.
This article is as extended version of Gôlo et al. (2023a)

that proposes a graph neural network (GNN) method for
heterogeneous graphs that explores different types of early
fusion operators to deal with multiple modalities. We per-
form an extensive empirical evaluation of fusion operators
for the representations of different types of nodes learned by
GNNs and by graph regularization for one-class tasks. We
propose a generic pipeline with the learning of representa-
tion in heterogeneous graphs through a Graph Autoencoder
(GAE) (Kipf and Welling, 2016), considering the classifica-
tion through the algorithms One-Class Support Vector Ma-
chines (OCSVM) (Schölkopf et al., 2001). In this extended
version we explore three GNN layers in our results: Graph
Convolutional Network (GCN) (Kipf and Welling, 2017),
Graph SAmpling and aggreGatE (GraphSAGE) (Hamilton
et al., 2017), and Graph Attention Network (GAT) (Velick-
ovic et al., 2018). We add more analysis and disccusions.
Our pipeline represents any type of heterogeneous graph and
solves any one-class problem. Based on the experiments con-
ducted, we answered the following research questions:

1. Does the early fusion of the regularized representations
or learned by GNN improve the performance of one-
class tasks?

2. Which early fusion operator generates better representa-
tions for one-class problems?

3. What is the best representation obtained through graphs
to apply early fusion in one-class tasks?

4. Which Graph Neural Network layer obtains better repre-
sentations for one-class tasks considering unsupervised
representation learning?

We performed an extensive experimental evaluation to an-

swer these research questions. We consider four one-class
problems using four different datasets: hit song detection,
movie recommendation, events of interest detection, and
fake news detection. We represent the nodes of all hetero-
geneous graphs naturally modeled through an unsupervised
GAE considering the GCN, GraphSAGE, and GAT layers
and classify the representations of interest using OCSVM.
We use seven fusion operators to generate the representa-
tions of interest: addition, subtraction, average, multipli-
cation, concatenation, minimum, and maximum. We con-
sider the k-fold cross-validation to run our experiments, the
t-Distributed Stochastic Neighbor Embedding algorithm to
reduce the dimension of the representations to visualize the
embeddings, and the f1-macro to evaluate the fusion opera-
tors. In summary, our contributions are:

• We present a model that incorporates additional graph
modalities to the target nodes of classification, facilitat-
ing the exploration of graph heterogeneity through their
combination;

• While most of the existing methods explore concatena-
tion operator for modality fusion, we investigate and
evaluate the impact of alternative types of early fusion
operators (addition, subtraction, multiplication, maxi-
mum, minimum, and average) to advance studies on het-
erogeneous scenarios modeled through graphs in one-
class tasks;

• We introduce the application of different GNN layers
for unsupervised learning in one-class tasks, enabling
progress in selecting appropriate layers for various one-
class problems.

The early fusion of the representations improved the per-
formance in one-class learning in all datasets considering
representations generated by the graph regularization and
the GAE. The GAE representations performed better than
the regularized representations in most evaluation scenarios.
We highlight the Average, Addition, and Subtraction oper-
ators as the fusion operators that obtained the best results
for one-class tasks considering data modeled through hetero-
geneous graphs. Two-dimensional projections showed the
effectiveness of the fusion operators. We highlight the two-
dimensional projection of the representations of the Addition,
Average, and Subtraction operators.
We divide the remainder of the article: Section 2 presents

the background for the paper. Section 3 presents early fusion
in heterogeneous graphs on one-class problems related work.
Section 4 presents our proposal for learning representation in
heterogeneous graphs, early fusion, and one-class learning.
Section 5 presents the experimental evaluation with informa-
tion about the datasets, experimental setup, results, and dis-
cussion. Finally, Section 6 presents the study’s conclusions
and future work.

2 Background

In graphs without initial representation for all nodes, we need
to obtain initial representations for all nodes. Thus, we use a
regularization framework to obtain a vector of attributes for



Unsupervised Heterogeneous GNN for One-Class Tasks Gôlo et al. 2024

each graph node, enabling Graph Autoencoders to learn rep-
resentation in the regularized graph. We present the regular-
ization in Section 2.1. After, we can apply a graph neural net-
work to learn new, more robust representations for the nodes
from the representations obtained. We present the graph au-
toencoders in Section 2.2 as an unsupervised graph neural
network.

2.1 Regularization
We denoteG = (V, E) as a graph in which V is the set of ver-
tices, and E is the set of edges. In addition, we associate G
with an array of attribute vectors of f -dimensional nodes F .
However, there are scenarios where only a subset of nodes of
the VF graph has an associated attribute vector, which makes
the use of graph neural networks impracticable. Thus, a so-
lution is using a regularization framework for learning graph
representations (do Carmo and Marcacini, 2021). Equation
1 defines the objective function to be minimized by the pro-
cess:

Q(X) = 1
2

∑
u,v∈E

(xu − xv)2 + µ
∑

k∈VF

(xk − fk)2. (1)

The first term determines that attribute vectors of neighbor-
ing nodes u and v are similar. At the same time, the second
term, weighted by a factorµ ∈ R, indicates howmuch the ini-
tial attribute vector we want to preserve during the procedure.
The described problem is an optimization problem that can
be solved using an iterative label propagation method (Zhou
and Schölkopf, 2004). At the end of the process, we have
an array of node attributes X ∈ R|V |×f , in which all graph
nodes have a vector with features. After obtaining a feature
for each node, we can obtain robust and tuned representation
for the graph nodes through the heterogeneous graph autoen-
coders that we present in the next section.

2.2 Graph Autoencoders
Graph neural networks are a learning method of graph repre-
sentation that generalize convolutions to graphs. It consists
of iterative updates of the node representation through neigh-
borhood aggregation (Wu et al., 2020). After k iterations, the
GNN aggregates structural information of the k-hop neigh-
borhood of nodes (Xu et al., 2019). Formally defined as
Z = GNN(A, X), generating a matrix of latent representa-
tions Z ∈ R|V |×d, in which A ∈ R|V |×|V | is the adjacency
matrix. Among the GNN convolutions, the Graph Convolu-
tion Networks (GCN) (Kipf and Welling, 2017) is a spectral
convolution method based on the Laplacian of a graph. The
l-th layer of GCN is defined in Equation 2,

h(l+1)
i = σ

W(l)
∑

j∈Ni∪{i}

1√
d̃id̃j

h(l)
j

 , (2)

in which h(l)
i and W(l) are, respectively, node i representa-

tion and parameters of the l-th layer, Ni = {j, (j, i) ∈ E}
is the 1-hop neighborhood of node i, d̃i = |Ni| + 1 is node
degree with self-loop added, and σ a non-linear activation

function like ReLU. It is worth noting that h(0)
i = Xi and

Zi = h(k)
i . Eliminating the need for Laplacian computation,

Graph SAmpling and aggreGatE (GraphSAGE)1 (Hamilton
et al., 2017) is a non-spectral convolution that generalizes
GCN to use trainable aggregation functions. The l-th layer
of SAGE is formalized in Equation 3,

h(l+1)
i = σ

(
W(l)

[
h(l)

i

∥∥∥ h(l)
Ni

])
, (3)

in which concatenates the representation of the current
node to the aggregated representation of the neighborhood
of the node h(l)

Ni
. In the original paper, they evaluated SAGE

with non-trainable aggregation functions such as the simple
element-wise mean of the neighborhood representations de-
fined in Equation 4,

h(l)
Ni

= MEAN
({

h(l)
j , ∀j ∈ Ni

})
, (4)

and aggregation functions with trainable parameters such as
max-pooling described in Equation 5,

h(l)
Ni

= MAX
({

ReLU
(

W(l)
aggh

(l)
j + b(l)

agg

)
, ∀j ∈ Ni

})
,

(5)
where W(l)

agg and b(l)
agg are the learnable weights. Using learn-

able aggregation functions, the Graph Attention Network
(GAT) (Velickovic et al., 2018) is a convolution incorporat-
ing the attention mechanism in aggregation. The mechanism
assigns different weights (or importance levels) to each node
in the node’s neighborhood. GAT uses multiple independent
heads, where each head pays attention to different particular-
ities of the neighborhood. Equation 6 defines the l-th GAT
layer,

h(l+1)
i =

H∥∥∥
h=1

σ

 ∑
j∈Ni∪{i}

α
(l,h)
ij W(l,h)h(l)

j

 , (6)

in which α
(l,h)
ij denotes the h-th head of l-th layer attention

coefficient (or importance) of node j to i and concantenating
the representations of the H heads. The dynamic attention
(Brody et al., 2022) α

(l,h)
ij is normalized through the neigh-

borhood Ni is computed with trainable weights W(l,h) and
a(l,h) as shown in Equation 7,

α
(l,h)
ij = Softmaxj(eij) = exp(eij)∑

k∈Ni
exp(eik)

, (7)

eij = a(l,h)LeakyReLU
(

W(l,h)
[
h(l)

i

∥∥∥ h(l)
j

])
. (8)

In this paper, we propose to use Graph Autoencoder
(GAE) to obtain representations in an unsupervised way
(Kipf andWelling, 2016). The GAE is an unsupervised train-
ing framework for GNNs, whose objective is to compress
the structural information of the graph into a lower dimen-
sionality space through reconstructing the adjacency matrix,
i.e., we use the encoder with the GNN layers. Which can

1We will refer to it as SAGE
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be predicted through an inner product of the representations
obtained, described as Â = σ(ZZT ), i.e., we use the de-
coder with the inner product. However, in practice, as the
adjacency matrix is sparse, we use the negative sampling of
edges that do not exist in the original matrix. After obtain-
ing representations through the GAE, we can apply different
operators in the representations because the nodes’ represen-
tations are at the same semantic level.

3 Related Work
This section presents related work to multimodal fusion on
data modeled through heterogeneous graphs in the resolu-
tion of problems solved by one-class learning. Huang et al.
(Huang et al., 2022) proposed to detect intrusions in systems
through one-class learning. The study model the graph con-
sidering process and file nodes. The authors propose a di-
rected heterogeneous graph neural network to learn the rep-
resentation of the process and file nodes. In graph model-
ing, the authors use the process fork process and process ac-
cess files as the edges. In heterogeneous GNN, the authors
proposed a new type of aggregation that considers the direc-
tionality of the graph since directionality influences the intru-
sion detection task in a graph of processes and files. The au-
thors concatenate the node representations to detect anoma-
lies. The authors use the Deep Support Vector Data Descrip-
tion (DeepSVDD) algorithm (Ruff et al., 2018) to detect the
anomalies. The authors used the real host data from the enter-
prise dataset and obtained better results than baselines, such
as DeppSVDD, and other methods based on GNNs.
Gôlo et al. (2022) recommendedmovies through one-class

learning. The authors proposed a framework that combined
enriched modeling of a graph for the recommendation, repre-
sentation learning through an unsupervised GNN, and a one-
class learning algorithm. Naturally, movies are connected
with users (user rating for movies). The authors added nodes
for keywords, genres, andmovie reviews for enrichedmodel-
ing. The study used a link prediction strategy, i.e., prediction
if an edge between the types of nodes existed or not, to learn
the representations for nodes through the unsupervised GNN.
After learning the representations, the authors concatenated
the representations of rating 5 to train the one-class classi-
fier (recommendation). The authors used One-Class Sup-
port VectorMachines (OCSVM) to classify the recommenda-
tions. The work used a movie recommendation dataset and
enriched it with IMDB data. The proposal performed better
than baselines such as BERT and GNNs end-to-end.
da Silva et al. (2022) proposed to detect hit songs through

one-class learning. The authors modeled the songs through
graphs and used a GNN to learn a robust node representation.
In the modeling, da Silva et al. (2022) connect the songs with
their respective artists and enrich the modeling with relations
between artists. The authors use an unsupervised heteroge-
neous GNN that learns representations with a loss function
that keeps nodes connected with similar representations and
unconnected nodes with less similar representations. The
study uses the OCSVM considering only music-type nodes
to classify hit songs. The authors used a Spotify dataset and
obtained better results than the baselines such as the BERT,

and the concatenation of BERT and artist representation.
Ganz et al. (2023) detects backdoor software through one-

class learning. The authors model code activities through
collaborative graphs with commit nodes, branches, files, de-
velopers, and methods (functions). Ganz et al. (2023) repre-
sents the graph’s nodes through an unsupervised heteroge-
neous GNN, specifically, a Variational graph autoencoder.
After learning the representations for the different types of
heterogeneous graph nodes, the authors use only the com-
mit node to detect software backdoors through Deep SVDD.
The authors used a dataset extracted from GitHub reposito-
ries. Ganz et al. (2023) generated anomalies synthetically for
training. The study uses state-of-the-art from the literature
and the OCSVM, Deep-SVDD, Local Outlier Factor, Ellip-
tic Envelop, and Isolation Forest as baselines. The study has
competitive results with the advantages of detecting anoma-
lies in different nodes and proposing an interpretable model.
Zhou and Mao (2022) perform the extraction of argu-

ments in events by classifying arguments of interest and non-
interest. The authors proposed a new loss function based
on hyperspheres. This function can be adapted for one-class
learning and has been proposed as an adaptation of loss from
Wang et al. (2021). The loss function penalizes nodes of
interest outside the hypersphere and unsupervised nodes in-
side the hypersphere. In the data modeling, Zhou and Mao
(2022) modeled the events through the texts and generated
graphs with two types of nodes: sentences and entities. The
work uses a Graph Attention Network to learn representa-
tions at the same semantic level and later concatenates the
learned representations to generate a new one. The authors
use a dataset and four variations, each with an argument of
interest. The proposed method performed better than other
state-of-the-art.
Studies with modeling through heterogeneous graphs for

one-class tasks perform the concatenation of the learned
representations at the same semantic level or use only one
node type, even havingmore representations from other node
types available. Therefore, the studies do not progress in re-
lation to other heterogeneous representations or other fusion
operators for representations on the same semantic level that
can obtain better representation and consequently improve
the results on one-class tasks. In this sense, the next sec-
tion presents a method based on GNNs that considers differ-
ent fusion operators on data modeled through heterogeneous
graphs to solve one-class problems.

4 Early Fusion On Heterogeneous
Graph Neural Networks For One-
Class Learning

The first step of our pipeline was the regularization (Section
2.1), and the second was the representation learning through
a Graph Autoencoder (Section 2.2). Later, the fusion op-
erators aggregate information from the different node types
in the graph into a single fused representation. Section 4.1
presents the early fusion process. We will submit these new
representations to a one-class learning algorithm and then
classify the instances as belonging to the interest class. Fi-
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nally, Section 4.2 presents the one-class learning algorithm.
Figure 1 summarizes the proposed method.

4.1 Heterogeneous Early Fusion
After obtaining the representations, we divide the nodes by
node type. For instance, consider a graph with three node
types, {VF , Va, Vb} ∈ V , in which a and b are the node types
of the heterogeneous graph whose representations were ob-
tained through regularization. VF is the set of main nodes
that have the initial representation. Considering our scenar-
ios, we have sets of VF : the news, events, music, and items.
We employ early fusion operators by combining the nodes’
representations ZF with Za, Zb, in which Za, Zb are the
representations generated by the GNN for the node type a
and b. Given an vi ∈ VF , the neighboring nodes of vi are
first grouped to a single representation for each node type
through an average. We define this first step in Equation 9,

davi
= average(Zavi

), (9)

in whichdavi
is the representation generated for the nodes of

type a generated by the representation average of all neigh-
boring nodes of type a considering vi (Zavi

). We apply this
process to all neighboring node types of vi, {davi

, dbvi
} ∈

Dvi .
Finally, we define an op operator, i.e., the early fusion op-

erator. We use the operators: addition, subtraction, multi-
plication, minimum, maximum, average, and concatenation.
It is worth mentioning that the concatenation will increase
the new representation dimensionality, i.e. doubling in the
case of two modalities, tripling in the case of three, and so
on, while the other operators will maintain the modalities di-
mension. For a main node vi, the fusion process consists
of applying the op operator to all generated node type rep-
resentations Dvi . We define the process of combining the
representations in Equation 10,

λvi = op(zvi , djvi
) ∀djvi

∈ Dvi , (10)

in which λvi is the fused representation generated to the vi

node, and zvi is the representation generated through GAE
to the node vi. With the fused and new representations, we
can apply one-class learning (OCL). We present OCL in the
next section.

4.2 One-Class Learning
After obtaining a fused representation, we can apply one-
class learning algorithms to classify interest instances. We
use the One-Class Support Vector Machine (OCSVM) that
is based on the Support Vector Machine (Schölkopf et al.,
2001). The Binary SVM aims to generate a hyperplane of
maximum separation margin between the two classes. In the
OCSVM, the algorithm generates fictitious instances close to
the origin corresponding to the interest class’s counterexam-
ples to apply a maximum separation hyperplane (Schölkopf
et al., 2001). Formally, OCSVM uses Equation 11 to cre-
ate the maximum separation hyperplane between the interest
class and the origin instances,

min
c,ε,ρ

1
2

∥ c ∥2 + 1
ν · |Λint|

∑
λi∈Λint

ελi
− ρ, (11)

subject to:

(c · φ(λi)) ≥ ρ − ελi
, ελi

≥ 0, (12)

in which Λint is a set of fused representations of interest, c
are the coefficients of the separation hyperplane, ν ∈ [0, 1)
is an upper bound on the fraction of training errors and a
lower bound of the fraction of support vectors, ελi

is the dis-
tance from a node λi to the separation hyperplane, ρ is the
classification error threshold, and φ(λi) is a kernel function
to map the node into a linearly separable space. After creat-
ing the hyperplane, the function f(λi) indicates if node zi

belongs to the interest class, returning +1 (the interest side
of the hyperplane) or −1 (the origin side of the hyperplane).
The function f(λi) is given by Equation 13,

f(λi) = sgn(c · φ(λi) − ρ), (13)

in which sgn() is a signal function that returns −1 when c ·
φ(λi) − ρ is negative and returns +1 when greater than or
equal to 0.

5 Experimental Evaluation
In the experimental evaluation, we propose to compare seven
early fusion operators and the non-use of operators. We
used the OCSVM algorithm to compare the operators. Our
goal is to demonstrate that the fusion of node representations
through other operators outperforms concatenation and the
non-use of operators, which are commonly used in the liter-
ature for one-class learning on heterogeneous graphs. The
next sections present the datasets used in the experimental
evaluation, experimental settings, results, and discussion.

5.1 Datasets
We use four datasets to evaluate our proposal. The first is a
fake news dataset commonly used in one-class studies (Gôlo
et al., 2023b). The dataset name is Fact Checked News
(FCN)2. Interest instances are fake news, and outliers are real
news. The second dataset is a recommender system dataset
for movies used and enriched by (Gôlo et al., 2022). In this
dataset, interest instances are relations between users and
itemswith a rating of five, and outliers are relations with a rat-
ing one3. The third is a hit song prediction dataset collected
by (da Silva et al., 2022)4, in which interest nodes are hit
songs and outliers are other songs. Finally, the fourth dataset
is an event dataset used in the article (Mattos and Marcacini,
2021)5. The dataset name is GoldStd, a 5W1H event dataset
generated from news text. The dataset has 13 classes related

2Source: https://github.com/GoloMarcos/FKTC.git.
3Source: https://github.com/GoloMarcos/

One-Class-Recommendation-GNN-LinkPrediciton.git.
4Source: https://github.com/AngeloMendes/Unsupervised-

Heterogeneous-Graph-Neural-Network-for-Hit-Song-Prediction-through-
One-Class-Learning.git

5Source: https://github.com/joaopedromattos/GNEE.

https://github.com/GoloMarcos/FKTC.git
https://github.com/GoloMarcos/One-Class-Recommendation-GNN-LinkPrediciton.git
https://github.com/GoloMarcos/One-Class-Recommendation-GNN-LinkPrediciton.git
https://github.com/joaopedromattos/GNEE
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Figure 1. Proposed pipeline with five steps for early fusion for one-class learning on heterogeneous graph neural networks.

to the news. We use as criteria to choose the interest class
the number of class instances. In this sense, we use interest
class, the class with more instances. Outliers are the other 12
classes’ instances.
We model the fake news dataset with a bipartite graph, in

which the nodes are documents and terms (words). Edges
are relations between documents and terms, i.e., if the doc-
ument has the term, we add an edge. We model the rec-
ommender systems datasets with a heterogeneous graph
with five nodes (users, items, keywords, genre, and review)
and four edges (user-item, keyword-item, genre-item, and
review-item) (Gôlo et al., 2022). For the hit song dataset, we
have artists and song nodes. The songs and artists are directly
related, while pre-annotated data give the relations between
artists (da Silva et al., 2022). In this sense, we have edges
between artists and artists and songs. Finally, we model
the event dataset through a heterogeneous graph with seven
nodes (event, what, who, when, where, why, how, IPTC
code, and cluster code), and each event has edges with the
nodes what, who, when, where, why, and how. Cluster nodes
are to keep the graph connected, considering event nodes
(Mattos and Marcacini, 2021). IPTC codes are nodes related
to the event topic considering themedia topics extracted from
the International Press Telecommunications Council (IPTC).
Thus, we also have edges between event and cluster nodes
and event and IPTC nodes. Table 1 shows the datasets syn-
thesis.

Table 1. Number of nodes, edges, and nodes with initial features
for all datasets.

Datasets |V | |E| |VF |

Fake News 10348 318411 2064
Rec. Sys. 8774 30471 2397
Music 2125 5243 1529
Event 579 803 96

5.2 Experimental Settings
It is important to emphasize that we decided to use a new
experimental setting to standardize the experimental evalua-
tion in these four datasets. Therefore, even using the same
datasets from (da Silva et al., 2022) and (Gôlo et al., 2022),
we decided not to use the same experimental configurations

of the one-class graph studies. We represent one node type
in each dataset to create the VF set and perform the regular-
ization. After regularization, all nodes have a feature vector.
The main nodes for all our datasets have textual content (text
news, events description, music lyrics, and items overview
(movies)).
To represent the textual contents, we use variations of the

pre-trained model Bidirectional Encoder From Transformers
(BERT) (Devlin et al., 2019) since this model obtained state-
of-the-art results for textual data (Otter et al., 2020). BERT
is a pre-trained neural network based on transformer architec-
ture. This architecture has attention mechanics that focus on
the main words in the sentence (Vaswani et al., 2017). (De-
vlin et al., 2019) trains the BERT model in a large textual
corpus that represents sentences based on their context and
outperforms other natural language pre-processing models in
different tasks and languages (Otter et al., 2020). BERT can
extract semantic and syntactic characteristics from the text
generating dynamic embeddings (Otter et al., 2020).
We chose BERT variations according to each dataset. We

used the multilingual BERT model for fake news because
the news are in Portuguese6. We also use this model to rep-
resent events. For the songs, we used pre-trained BERT on
lyrics7. Finally, we represent the overviews and reviews of
the movies from the recommendation dataset with the all-
MiniLM-L6-v2 model that obtained the highest number of
downloads considering the sentence similarity task.
For the GAE, Early Fusion, and One-Class Support Vector

Machines, we have the following parameters:

• Heterogeneous Early Fusion: operators = {addition,
subtraction, average, minimum, maximum, multiplica-
tion, and concatenation}.

• GAE: layers = {GCN, SAGE, GAT}, layer sizes =
{[32], [64], [32, 32], [64, 64]}, patience = {50, 100}, ac-
tivation functions = {relu}, and learning rates =
{1−2, 1−3, 1−4, }. For the SAGE layers we vary the ag-
gregation functions = {mean, max-pooling} while for
the GAT layers the number of heads = {4, 8};

• OCSVM: kernel = {rbf, poly, sigmoid, linear}, ν =
{0.05 ∗ a, 0.005 ∗ a}, a ∈ [1..19], and γ = { 1

n }, 1
(n·o) },

6https://huggingface.co/sentence-transformers/
distiluse-base-multilingual-cased-v1

7https://huggingface.co/juliensimon/
autonlp-song-lyrics-18753417

https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1
https://huggingface.co/juliensimon/autonlp-song-lyrics-18753417
https://huggingface.co/juliensimon/autonlp-song-lyrics-18753417
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in which n is the dimension of the input data and o is
the variance of the representations.

We use the procedure 5-Fold Cross-Validation in the one-
class learning stage, i.e., when applying the OCSVM in the
classification step of the pipeline. In this procedure, we apply
a 5-Fold Cross-Validation considering only the interest class
for each dataset. The procedure consists of dividing the inter-
est class into folds and using 4 folds to train and the remain-
ing fold to test iteratively. We also added the not-interest set
to the test set. Finally, we use the macro f1-score as the eval-
uation measure. f1-macro is the arithmetic average between
the classes. We present f1-score in Equation 14,

F1 = 2 · Precision · Recall

Precision + Recall
, (14)

Precision = TP

TP + FP
, (15)

Recall = TP

TP + FN
, (16)

in which TP (True Positives) is the number of positive in-
stances that the algorithm has correctly classified; TN (True
Negatives) is the number of negative instances that the al-
gorithm has correctly classified; FP (False Positives) is the
number of negative instances that have been classified as pos-
itive; and FN (False Negatives) is the number of positive
instances classified as negative.

5.3 Results and Discussion
Tables 2, 3, 4, and 5 present the experimental evaluation re-
sults considering the regularized representations of the het-
erogeneous graph (REG) and the representations learned by
the Graph Autoencoder (GAE) considering the GCN, GAT
and SAGE layers for each of the four datasets. We present
the values of f1-macro and the respective standard deviation.
Each column presents the result referring to an early fusion
operator or the non-use of the operator (Without). Each line
represents the results for the regularized representations and
the representations learned by GCN, GAT, and SAGE layers.
We bold the best results. In cases of ties, we highlight better
results considering the smallest standard deviation.

5.4 Does the early fusion of the regularized or
GNN representations improve the perfor-
mance of one-class tasks?

The subtraction operator obtained the highest values of f1-
macro in the music and fakenews datasets. The minimum
and multiply operators obtained the highest values of f1-
macro in the event dataset. On the other hand, the non-use of
operator obtained the highest values of f1-macro in the rec-
ommender systems dataset. Thus, in general, the use of early
fusion operators improve the performance of one-class tasks.
Even though not using fusion operators in the recommenda-
tion dataset generates better results in most representations,
the concatenation operator obtain the highest f1-macro in
this dataset.

Concatenation is the most used early fusion operator in the
literature. Few studies (Beserra et al., 2020; Beserra, 2022;
Beserra and Goularte, 2023) use operators such as the ones
presented in this research, and even fewer use operators to
fuse features at a medium semantic level. However, the con-
catenation, in addition to increasing the dimensionality of
the generated vector (doubling in the case of two modalities,
tripling in the case of three, and so on.), and increasing the
cost of the algorithm, did not obtain the best results, with the
exception of one scenario. On the other hand, the other oper-
ators, in addition to obtaining the best results, are also space
efficient since they generate a new representation with the
same modalities’ dimensions.
We can observe that early fusion does not benefit the clas-

sification performance in the recommender systems dataset.
We believe that two factors together benefited the non-use
of early fusion operators. The first factor is the number
of modalities. The recommendation systems dataset has
five modalities (number of nodes) in total (users, items,
keywords, genre, and review), and the greater the number
of modalities, the more challenging it is to combine these
modalities. This was not the only factor since the event
dataset has many modalities, and early fusion benefits the
classification performance. This guides us to the second
factor, which is a characteristic that differentiates these two
datasets: how the classification is carried out. In the event
dataset, we classify nodes of interest. On the other hand, in
the recommendation systems dataset, we classified interac-
tions between users and items, which did not benefit from
using early fusion operators. It is worth mentioning that we
carried out the early fusion of without weights in each modal-
ity, which may have resulted in the non-benefit of the use of
early fusion operators.

5.5 Which early fusion operator generates
better representations for one-class prob-
lems?

For the music dataset considering the regularized representa-
tions, the multiplication operator performed better than the
others. For GCN and GAT layers on GAE, the subtraction
operator outperformed the other operators. Finally, in the
SAGE layer, the multiplication operator obtain the highest
f1-macro. The minimum, without, without, and minimum
obtained the worst results considering REG, GCN, GAT and
SAGE representations, respectively.
For the fakenews dataset considering the regularized rep-

resentations and GCN layer, the subtraction operator per-
formed better than the others. For GAT layer, the maxi-
mum operator outperformed the other operators. Finally,
in the SAGE layer, the multiplication operator obtain the
highest f1-macro. The maximum, without, minimum, and
minimum obtained the worst results considering REG, GCN,
GAT and SAGE representations, respectively.
The average, minimum and multiply operators in the

events dataset presented the best results for the regularized
representations and those generated by GAE. We note that
the GAT representations generate best results for various op-
erators, but with smaller f1-macro than the GCN and SAGE
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Table 2. Results for the seven operators considering f1-macro in theMusic dataset. We show results for regularized representations and
graph autoencoder representations with GCN, GAT, and SAGE layers. Bold values indicate the best results.

Graph Without Addition Subtract Average Minimum Maximum Multiply Concat

REG 0.533 ± 0.016 0.530 ± 0.012 0.529 ± 0.015 0.530 ± 0.012 0.525 ± 0.018 0.534 ± 0.012 0.557 ± 0.013 0.532 ± 0.017
GGN 0.561 ± 0.011 0.586 ± 0.013 0.591 ± 0.013 0.586 ± 0.013 0.565 ± 0.006 0.582 ± 0.014 0.577 ± 0.013 0.591 ± 0.015
GAT 0,536 ± 0,011 0,567 ± 0,007 0,568 ± 0,014 0,567 ± 0,007 0,538 ± 0,023 0,559 ± 0,009 0,541 ± 0,018 0,559 ± 0,008
SAGE 0,557 ± 0,017 0,581 ± 0,023 0,572 ± 0,021 0,581 ± 0,022 0,553 ± 0,01 0,580 ± 0,013 0,562 ± 0,008 0,575 ± 0,018

Table 3. Results for the seven operators considering f1-macro in the Fake News dataset. We show results for regularized representations
and graph autoencoder representations with GCN, GAT, and SAGE layers. Bold values indicate the best results.

Graph Without Addition Subtract Average Minimum Maximum Multiply Concat

REG 0.913 ± 0.006 0.913 ± 0.006 0.914 ± 0.009 0.913 ± 0.006 0.879 ± 0.007 0.771 ± 0.012 0.781 ± 0.007 0.913 ± 0.006
GCN 0.618 ± 0.018 0.790 ± 0.012 0.895 ± 0.007 0.790 ± 0.012 0.619 ± 0.012 0.782 ± 0.015 0.788 ± 0.017 0.781 ± 0.015
GAT 0,909 ± 0,007 0,918 ± 0,006 0,908 ± 0,007 0,918 ± 0,006 0,894 ± 0,009 0,918 ± 0,005 0,903 ± 0,005 0,908 ± 0,007
SAGE 0,924 ± 0,004 0,929 ± 0,004 0,936 ± 0,005 0,929 ± 0,004 0,922 ± 0,005 0,926 ± 0,006 0,943 ± 0,005 0,923 ± 0,007

Table 4. Results for the seven operators considering f1-macro in the Event dataset. We show results for regularized representations and
graph autoencoder representations with GCN, GAT, and SAGE layers. Bold values indicate the best results.

Graph Without Addition Subtract Average Minimum Maximum Multiply Concat

REG 0.860 ± 0.085 0.814 ± 0.188 0.881 ± 0.102 0.891 ± 0.062 0.864 ± 0.116 0.759 ± 0.141 0.763 ± 0.164 0.881 ± 0.102
GCN 0.979 ± 0.041 0.979 ± 0.041 0.945 ± 0.070 0.979 ± 0.041 1.000 ± 0.000 0.979 ± 0.041 0.979 ± 0.041 0.949 ± 0.102
GAT 0,979 ± 0,041 0,979 ± 0,041 0,979 ± 0,041 0,979 ± 0,041 0,966 ± 0,068 0,979 ± 0,041 0,979 ± 0,041 0,979 ± 0,041
SAGE 0,979 ± 0,041 0,979 ± 0,041 0,959 ± 0,050 0,979 ± 0,041 0,979 ± 0,041 0,979 ± 0,041 1.000 ± 0.000 0,979 ± 0,041

Table 5. Results for the seven operators considering f1-macro in the Rec. Sys. dataset. We show results for regularized representations
and graph autoencoder representations with GCN, GAT, and SAGE layers. Bold values indicate the best results.

Graph Without Addition Subtract Average Minimum Maximum Multiply Concat

REG 0.642 ± 0.004 0.589 ± 0.006 0.555 ± 0.002 0.589 ± 0.006 0.504 ± 0.008 0.533 ± 0.002 0.595 ± 0.004 0.590 ± 0.005
GCN 0.689 ± 0.004 0.684 ± 0.008 0.602 ± 0.006 0.684 ± 0.008 0.653 ± 0.010 0.668 ± 0.004 0.616 ± 0.021 0.694 ± 0.004
GAT 0,693 ± 0,006 0,685 ± 0,005 0,678 ± 0,009 0,685 ± 0,005 0,638 ± 0,015 0,673 ± 0,016 0,647 ± 0,021 0,679 ± 0,013
SAGE 0,650 ± 0,006 0,642 ± 0,016 0,588 ± 0,008 0,641 ± 0,015 0,603 ± 0,024 0,572 ± 0,026 0,623 ± 0,012 0,612 ± 0,003

layers. The maximum, subtract, minimum, and subtract ob-
tained the worst results considering REG, GCN, GAT and
SAGE representations, respectively.
In the recommendation results, for regularized representa-

tions, GAT and SAGE, the non-use of operators improves the
performance. However, for GCN, concatenating the repre-
sentations generate the best results. The manimum, subtract,
minimum, and maximum obtained the worst results consid-
ering REG, GCN, GAT and SAGE representations, respec-
tively.
Generally, the subtraction operator generates better repre-

sentations for one-class problems. On the other hand, we
highlight some interesting particularities in the best results
when comparing operators. In the fake news dataset, sub-
tracting the terms representation from the document repre-
sentation differentiated the document representations to im-
prove the classification performance. When investigating
the collection procedure of this dataset, we observe that the
authors collect the dataset on the fake and real news of the
same topic (politics). Therefore, when modeling the hetero-
geneous graph as a bipartite graph of terms and documents,
documents of different classes will share words and subtract
these shared representations, removing redundant informa-
tion between documents of different classes, which improves

the classification. In addition, the event dataset has fewmain
nodes (see Table 1) in relation to other node types, and there-
fore some operators obtain the same results. This fact also
influenced the result of f1 macro 1 for all folds in the mini-
mum and multuply operator.
The recommendation dataset was the only one with the

best result considering the non-use of operators. We ob-
tain these results in the regularized representation, GAT and
SAGE layers. However, we the have the best result is this
dataset with the concatenation operator in the learned GCN
representations. This dataset also was the only one that ob-
tained the best result with the concatenation operator. Thus,
it is interesting to highlight that depending on the represen-
tation you explore, it may not be worth using an operator or
using a more costly one such as concatenation.
In addition to the analysis of which fusion operators ob-

tain higher f1-scores for each dataset, we carried out a gen-
eral analysis of all operators in all scenarios. We provide
a statistical significance analysis for the results. We show
the critical difference diagram proposed by Demšar (2006).
First, the Friedman test is performed to reject the null hypoth-
esis, and then we proceed with a posthoc analysis based on
the Wilcoxon-Holm method to generate the average ranking
and the critical difference. Figure 2 presents the result of the
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Figure 2. Friedman test with posthoc analysis based on theWilcoxon-Holm
through the critical difference diagram for all operators in all scenarios.

Friedman test with posthoc analysis based on the Wilcoxon-
Holm through the critical difference diagram Ismail Fawaz
et al. (2019). The diagram presents the methods’ average
rankings. Methods connected by a line do not present statisti-
cally significant differences between them. Average obtains
the best average ranking, followed by Sum, Concatenation,
Without, and Subtraction operators. Min, max, and Multi-
plication obtain the worst average rankings. Furthermore,
the average operator obtained a statistically significant dif-
ference from the minimum operator.

5.6 What is the best representation obtained
through graphs to apply early fusion in
one-class tasks?

Representation learning through GAE generated better re-
sults in all datasets. Furthermore, most of the time, regard-
less of the chosen fusion operator, GAE representations gen-
erate better f1-macro. We note exceptions in the fake news
dataset, in which the GCN and GAT representation gener-
ated f1-macro smaller than the regularized representation in
some operators. An indication of these results is the type
of dataset used. This dataset has fake and real news that is
well-behaved in context, type, topic, and veracity. Therefore,
good initial representations of fake news (BERT) already
solve the separation of classes very well, as shown in the
results of other studies of fake news detection through one-
class learning that uses this dataset (de Souza et al., 2021;
Gôlo et al., 2021; de Souza et al., 2022; Gôlo et al., 2023b).
Thus, with a very robust initial representation, the regulariza-
tion already adds enough information to generate good rep-
resentations for the terms of the bipartite graph and does not
need the graph autoencoder.
In addition to comparing the operators’ performances, we

performed another experiment to analyze the representations
generated by the fused representation. Figures 3, 4, and 5
present two-dimensional projections of the fused represen-
tation considering each operator in the fake news dataset
with the graph autoencoder representations. We choose this
dataset because, in this scenario, the operators have the high-
est f1-macro and |Vf |. We generated the representations
using the t-Distributed Stochastic Neighbor Embedding (t-
SNE) for the analysis (Van der Maaten and Hinton, 2008).
In the TSNE results for the GCN layer, the non-use of fu-

sion and minimum operators obtain the worst visual results.
On the other hand, the other operators performed the sepa-
ration of classes satisfactorily, showing good visual results.
In operators with good results, we noticed that there are few
real news closer to fake news and far from the real news re-
gion. In addition, we observe a few real news grouped in the
fake news right-bottom region that could be the differential
between operators for better or worse results, i.e., how op-

erators represent this news group directly impacts their per-
formance. We can observe this fact in the two-dimensional
projection of the concatenation, addition, and average oper-
ators that project this real news in a smaller region than the
subtraction operator, and the subtraction operator obtained
the best f1-macro result.
In the TSNE results for the GAT and SAGE layers, we note

a different behavior. All the operators performed the sepa-
ration of classes satisfactorily, showing good visual results.
We highlight that these layers outperform the GCN layer and
do not show a few real news grouped in the fake news right-
bottom such as the GCN layer. This difference may be what
made the one-class learningmodel obtain higher values of f1.
Therefore, we emphasize that adding attention to the edges
and sampling the neighboring nodes that will be aggregated,
improved the representation learning through graph neural
networks to detect fake news through one-class learning.
We also analyzed GCN and OCSVM best parameters for

the early fusion scenario for data modeled through heteroge-
neous graphs to solve one-class tasks. We present the best
parameters to indicate that better parameters should be used
in future studies for one-class learning and heterogeneous
graphs. We highlight the GAE architecture with one layer
containing 32 neurons, the learning rate 1−4, and the patience
100. For the OCSVM, the polynomial and sigmoid kernels
obtained the best results. Regarding ν, smaller values be-
tween 0.05 and 0.15were better for the sigmoid kernel, while
values between 0.40 and 0.65 were better for the polynomial
kernel. Finally, γ = 1

n·o gave the best results in most sce-
narios. Notably, the projected representations have curved
separation, which indicates the advantage of the polynomial
kernel over the others.

5.7 Which Graph Neural Network layer ob-
tains better representations for one-class
tasks considering unsupervised represen-
tation learning?

Figure 6 present the GCN, GAT and SAGE layers best results
for each dataset independent of the operator, i.e., the best
result of each layer without considering the same operator
in the comparison. In general, GCN obtain the best values
of f1 and GAT obtain the worst values. In the music and
recommender systems datasets GCN outperformed the other
layers. SAGE outperformed the other layers to detect fake
news. On the other hand, we have a tie for GCN and SAGE
layers in the event dataset.
Once again, the particularity of the the fake news dataset

graph modeling influences the best result. The SAGE layer
performs sampling when aggregating information, i.e., con-
sidering the bipartite modeling of documents and terms, in
the sampled aggregation, only a portion of the terms will be
selected, which improved representation learning and conse-
quently the one-class learning to detect fake news. For the
other one-class taskswith others graphmodeling, we indicate
the simple and tradicional GCN layer.
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Without Minimum Concatenation Maximum

Multiplication Addition Average Subtract

Figure 3. Two-dimensional projections (t-SNE) of each fused representation considering each operator and the non-use of an operator in the fake news
dataset for the GCN layer. The colors indicate class real news (orange) and fake news (blue). Operators that show less overlap between classes are more
promising for one-class learning.

Without Minimum Concatenation Maximum

Multiplication Addition Average Subtract

Figure 4. Two-dimensional projections (t-SNE) of each fused representation considering each operator and the non-use of an operator in the fake news
dataset for the GAT layer. The colors indicate class real news (orange) and fake news (blue). Operators that show less overlap between classes are more
promising for one-class learning.

Without Minimum Concatenation Maximum

Multiplication Addition Average Subtract

Figure 5. Two-dimensional projections (t-SNE) of each fused representation considering each operator and the non-use of an operator in the fake news
dataset for the SAGE layer. The colors indicate class real news (orange) and fake news (blue). Operators that show less overlap between classes are more
promising for one-class learning.
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Figure 6. GCN, GAT and SAGE best results for each dataset.

6 Conclusions and Future Work
In this article, we aim to answer some research questions
and significantly contribute to data modeled through hetero-
geneous graphs in one-class tasks. To answer the research
questions ”Does pre-merging the representations regularized
and learned by GNN improve the performance of one-class
tasks?”, ”Which pre-merging operator generates better rep-
resentations to solve one-class problems?”, and ”What is
the best representation obtained through graphs to apply pre-
merging in one-class tasks?”, we propose the use of a graph
neural networks method considering different early fusion
operators in four different one-class tasks. Our objective was
to compare the performance of seven fusion operators, evalu-
ate the impact of using the operators, and evaluate the impact
of using graph neural networks in these scenarios.
The results presented by the study showed that the early fu-

sion of the regularized and learned representations by GCN,
GAT, and SAGE improved the performance of one-class
learning in the four datasets modeled through heterogeneous
graphs. The representations learned through the GCN and
SAGE obtained better results. However, GCN representa-
tions obtained better results in most datasets. In twelve of
sixteen scenarios, fusion operators had a positive impact, im-
proving the classification performance in the four datasets
used. We highlight the average, addition, and subtraction op-
erators as the best early fusion operators for one-class tasks
in which data is modeled using heterogeneous graphs. On
the other hand, we highlight the non-use of operators to rec-
ommend interest movies.
In future work, we intend to propose a GNN that learns the

representations for the different types of nodes while learn-
ing to combine the modalities biased by some task. In this
sense, we intend to explore the one-class graph neural net-
works Wang et al. (2021), considering a heterogeneous ver-
sion of the data in which the method will learn how to com-
bine the heterogeneous data into a single fused representation
through neurons. We intend to explore this pipeline in one-
class edge classification in the homogeneous and heteroge-
neous scenarios. Furthermore, we intend to explore weights
in the early fusion.
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