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Abstract: The challenge of constructing effective sentiment models is exacerbated by a lack of sufficient
information, particularly in short texts. Enhancing short texts with semantic relationships becomes crucial for
capturing affective nuances and improving model efficacy, albeit with the potential drawback of introducing noise.
This article introduces a novel approach, CluSent, designed for customized dataset-oriented sentiment analysis.
CluSent capitalizes on the CluWords concept, a proposed powerful representation of semantically related words.
To address the issues of information scarcity and noise, CluSent addresses these challenges: (i) leveraging the
semantic neighborhood of pre-trained word embedding representations to enrich document representation and
(ii) introducing dataset-specific filtering and weighting mechanisms to manage noise. These mechanisms utilize
part-of-speech and polarity/intensity information from lexicons. In an extensive experimental evaluation spanning
19 datasets and five state-of-the-art baselines, including modern transformer architectures, CluSent emerged as the
superior method in the majority of scenarios (28 out of 38 possibilities), demonstrating noteworthy performance
gains of up to 14% over the strongest baselines.

Keywords: Sentiment Analysis, Classification, Natural Language Processing

1 Introduction

Sentiment analysis has been one of the most active fields
in NLP due to the value of revealing how people feel about
a particular product, service, or topic. Strategies for clas-
sifying sentiments can be roughly divided into supervised
and unsupervised. While supervised strategies train robust
classification models [Socher et al., 2013] using manually
labeled training data from the specific domain of interest,
unsupervised strategies exploit sentiment lexicons com-
bined with grammar rules (negation, intensifiers) to infer
the associated class (positive or negative) with a document.
In the unsupervised realm, lexicon limitations, such as the

coverage problem [Arkin et al., 2018] that has to do with
the number of dataset’s words covered by a lexicon, may
hamper the potential of such unsupervised strategies. Some
automatic techniques to expand the lexicon vocabulary can
ameliorate the coverage problem, but it is not easy to define
universally effective sentiment lexicons to cover words from
many different domains [Wang et al., 2020; Viegas et al.,
2020a].
Supervised strategies usually outperform unsupervised

ones [Shaik et al., 2023], this we focus on the former.

However, we exploit information from unsupervised lexi-
cons, such as polarity and intensity, to help build our novel
solutions.

Another challenge commonly faced by (supervised or
unsupervised) sentiment analysis solutions is related to
information shortage, especially in short texts (sentences),
due to a lack of sufficient information to capture the overall
document sentiment [Hu et al., 2009]. To deal with this
problem, document enrichment strategies, such as n-grams
(a.k.a. Bag-of-n-grams), have been adopted by Huang
et al. [2018]. These simple models, based on positional
information, cannot, however, capture complex semantic
relationships among terms, which have a large potential
to determine class assignments. Recent strategies adopt
techniques to enrich the data representation and deal with
information shortage by capturing more complex semantic
relationships based on word co-occurrence and contextual
information. Examples include c-features [Figueiredo et al.,
2011], the use of word embeddings [Viegas et al., 2019]
and deep learning (Transformer) models based on attention
mechanisms (e.g., BERT [Devlin et al., 2019]).
An undesired side effect of such expansion/enrichment

strategies is the possibility of introducing noise into the
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data. Semantic noise may happen when: (i) the application
domain is distinct from the domain in which the embeddings
were created (e.g., when using pre-trained embeddings) or
(ii) a small training set is used to train the embedding vector
space. The absence of (enough) training information makes
the vector space inaccurate in capturing semantic informa-
tion among words. In both scenarios, the learned embedding
models may not capture the correct information about a
word, especially for infrequent words [Nooralahzadeh et al.,
2018]. These potential problems are exacerbated in the
context of sentiment analysis due to the already-mentioned
issues of information shortage. Given the small number
of terms in a message, especially those carrying polarity
information (necessary for sentiment inference), a single
erroneous expansion or enrichment may completely change
the polarity of a phrase or a whole message.
In this context, our main contribution to this article is the

proposal of a new solution for sentiment analysis – CluSent
– that uses the concept of CluWords [Viegas et al., 2019] that
exploits semantic word clustering representations to tackle
the aforementioned issues of information shortage and noise.
The main idea is to exploit similarity relationships between
words using pre-trained embeddings. We do so by expand-
ing terms with their closely related neighboring words,
thus improving both the (co-)occurrence and discriminative
power of words in short texts.
In more detail, CluSent’s representation exploits the

nearest words of a given pre-trained word embedding to
generate “meta-words” to expand and enhance the document
representation regarding syntactic and semantic information.
CluSent’s main hypothesis is that by exploiting word em-
beddings similarities, and mainly, by filtering out potential
noise (i.e., irrelevant word expansions for the sake of
sentiment inference) and by properly weighting them (in the
case of sentiment analysis, with the appropriate polarity and
intensities), we should be able to construct richer document
representations for sentiment inference. In other words, by
exploiting customized dataset-oriented filtering and weight-
ing mechanisms, CluSent can deal with semantic noise from
pre-trained embeddings, especially for short texts.
We rely on sentiment lexicons to build and adaptCluSent’s

filtering and weighting mechanisms to the sentiment analy-
sis problem. To do so, we propose a new TF-IDF-like (Term
Frequency-Inverse Document Frequency) representation
that exploits polarity and intensity, what we call TF -AL
(Term Frequency-Adaptive Lexicon). We employ the
TF -AL concept as a filtering/weighting mechanism in
the CluSent representation. The idea is to build a cluster
of words (a.k.a. CluWord) of similar polarity and intensity,
keeping only words of the same Part-of-Speech (PoS)
tagging into a CluWord, e.g., only adjectives or nouns with
similar polarity and similar intensity would belong to the
same CluWord for sentiment analysis. In sum, we exploit
information in the sentiment lexicon, i.e., polarity and the
lexicons’ intensity, to filter out words from a CluWord
cluster. All these innovations are encapsulated into the
CluSent’s pipeline, which is dynamically instantiated to
build dataset-oriented document representations.
In our experimental evaluation, we compare CluSent with

a considerable spectrum of sentiment analysis methodolo-

gies encompassing; (i) conventional and widely utilized ap-
proaches, such as Vader and TextBlob; alongside (ii) newly
introduced techniques, such as BERT and kNN Regression
Expansion; as well as (iii) methodologies identified as top-
performers in recent benchmarks on sentiment analysis. Our
experimental evaluations were performed in a large bench-
mark with 19 datasets, our solution achieved the best results
in most scenarios – 28 out of 38 possibilities, considering 19
datasets and two evaluation metrics (i.e. MacroF1 and Ac-
curacy), with gains up to 14.21% (ss_bbc), 7.60% (ss_digg)
and 7.17% (ss_rw) compared to the best baseline in each
dataset, in terms of MacroF1. To promote reproducibility,
all the code, the documentation of how to run it, and datasets
are available on GitLab1.
To summarize, the main contributions of this article in-

clude:

• The proposal of the CluSent method to build rich
document representations for sentiment analysis that
use information from multiple word embeddings;

• The exploration of the CluWords concept that exploits
semantic word clustering representations combined
with sentiment lexicon’s polarity and intensity filters to
tackle information shortage and noise issues;

• The demonstration of how to build and dynamically
instantiate the CluSent’s filtering (aiming at de-noising)
and weighting mechanisms by exploring polarity and
intensity information from unsupervised lexicons.

• A thorough evaluation of our solution, considering 19
datasets and five strong baselines, including modern
transformer-based architectures.

• Code, documentation, and datasets for all our solutions
available in a public repository.

This paper is an extension of the work published in
WebMedia2023 Viegas et al. [2023] and is organized as
follows: Section 2 covers related work. Section 3 explains
and details the CluSent method. Section 4 presents our
experimental setup. Section 5 discusses our experimental
results. Section 6 concludes the paper.

2 Related Work
We review the CluWords concept and the state-of-the-art
(SOTA) strategies in sentiment analysis directly comparable
to CluSent.
CluWords are clusters of semantically related word

embeddings [Mikolov et al., 2018] built by employing
distance functions2. CluWords have been successfully
applied in the realm of topic modeling [Júnior et al., 2022]
and hierarchical topic modeling scenarios [Viegas et al.,
2020b, 2019]. One of our main contributions to this article
is demonstrating how to adapt and extend the Cluwords
concept for specific applications through dataset-oriented
and task-oriented filtering and weighting mechanisms. We
illustrate such adaptation for the realm of sentiment analysis.
BERT [Devlin et al., 2019] 3 is an end-to-end deep
1https://gitlab.com/feliperviegas/cluwords_arc
2CluWords are not limited by any particular type of word embedding

or distance function, being flexible enough to accommodate many options.
3Available in https://github.com/yaserkl/
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learning language model composed of a bidirectional
Transformer encoder. The model is pre-trained with a 3.3
billion word corpus. BERT predicts missing words from
a sentence using a multi-layer bidirectional Transformer
encoder whose self-attention layer acts forward and back-
wards. SentiBERT [Yin et al., 2020] is a variant of BERT
that captures compositional sentiment semantics. During
training, SentiBERT exploits BERT to capture contextual
information by masked language modeling. The model
learns the meaning composition by predicting the sentiment
labels of the phrase nodes. In our experiments, due to
documentation limitations and the unavailability of code
description, we were unable to evaluate the SentiBERT as
provided by its authors4. Thus, we include BERT as a base-
line. Based on the experiments available in Yin et al. [Yin
et al., 2020], SentiBERT presents gains of 4% on average
compared to BERT. As we shall see in our experimental
evaluation (Section 4), our proposed method achieved much
higher gains over BERT when compared to SentiBERT.
Thongtan and Phienthrakul proposed NB-weighted-

BON+dv-cosine[Thongtan and Phienthrakul, 2019] (NB-
W-B+dv-cos)5, a method that trains document embeddings
using cosine similarity. The Cosine similarity helped
to reduce overfitting in the embedding generation task.
The generated embeddings are combined with Naive
Bayes weighted bag-of-n-grams. In their experiments,
NB-weighted-BON showed improved results compared to
strong baselines, including BERT. In some comparative
analyses, NB-weighted-BON+dv-cosine is the current
state-of-the-art (best-known algorithm) in several sentiment
analysis benchmarks, such as in sentiment analysis reviews6.
We include it as a baseline in our experiments.

Socher et al. proposed the Recursive Neural Tensor
Network [Socher et al., 2013] (RNTN). RNTN uses a tree
where each node contains a word, its sentiment, and its
associated label (positive, negative, neutral, very positive,
and very negative). This solution represents a sentence
using word vectors and an analysis tree. Given a new test
document, the tree of this document is generated and com-
pared (by similarity) with existing trees in the training set for
predicting the respective label of the test document. RNTN
is a classical and popular neural method that explores several
paradigms as trees and similarities for sentiment analysis. It
is still used as a “de facto” baseline to surpass[Alissa et al.,
2021; Jin et al., 2021], given its good average results in
general. We also exploit RNTN as a baseline.
VADER [Hutto and Gilbert, 2014] and TextBlob [Qi and

Shabrina, 2023] were recently credited as the two most
prominent and widely utilized lexicon-based methods for
sentiment analysis [Qi and Shabrina, 2023]. VADER is an
unsupervised method that punctuates sentences according
to sentiment intensity (valence-based) lexicons and general
rules incorporating grammatical and syntactic conventions
(for the English language) to express and emphasize the
intensity of sentiments. The robustness of Vader can be
attributed to the significant effort to adopt high-quality

4https://github.com/DeepakDhana/SentiALBERT1
5https://github.com/tanthongtan/dv-cosine
6https://paperswithcode.com/sota/

sentiment-analysis-on-imdb

intensity scores for rules and lexicons from the agreement of
human experts. Because of its popularity and straightforward
unsupervised application, recent adaptations of Vader for
other languages have been proposed, such as the Portuguese
”LeiA” [Jonker et al., 2022], the German ”GerVADER” [Ty-
mann et al., 2019], and the Bengali Vader [Amin et al., 2019].
Similarly, TextBlob [Qi and Shabrina, 2023] is a popular
lexicon-based implementation that exploits a combination
of lexicons from multiple sources, as well as grammatical
clues (e.g., negation, intensifiers, and parts of speech) to
infer the general sentiment of documents. TextBlob has been
recently applied to multiple domains, including politics,
airline opinions, and COVID-19 tweets [Oyebode and Orji,
2019; Aljedaani et al., 2022; Abiola et al., 2023]. Thus, we
include both VADER and TextBlob as baselines.
Sachan et al. proposed the L-MIXED [Sachan et al.,

2019]7 strategies that exploit a BiLSTM model with
pre-trained embeddings. Their training strategy achieves
higher accuracy than more complex models without an
extra pretraining step. To do that, the authors explored the
applicability of semi-supervised learning (SSL), where no
previous pretraining step exists. The authors also proposed
a mixed objective function for SSL that utilizes labeled
and unlabeled data. L-MIXED is the current SOTA solu-
tion (best-known method) in several datasets used in our
experiments. We also included it as one of our baselines.
kNN Regression Expansion (kNN Reg. Exp.) [Viegas

et al., 2020a] is a lexicon-based method that exploits
semantic information from word embedding models to
expand lexicon dictionaries. The method exploits a lexicon
dictionary (VADER lexicons) and word embeddings to map
the sentiment value of new lexicons (new words that will
be added to the lexicon dictionary). The method uses the
nearest neighbors approach to infer the sentiment value
of the new lexicons (words with polarity and intensity).
To predict the polarity at the sentence-level, the method
exploited the VADER’s shell [Hutto and Gilbert, 2014].
VADER shell is a method that implements four general rules
incorporating grammatical and syntactic conventions (for
the English language) to express and emphasize the intensity
of sentiments. The shell exploits these rules and the lexicon
to compute a sentiment value for a sentence. Besides being
highly effective [Viegas et al., 2020a], this method, similarly
to CluSent, exploits word embeddings and distance-based
neighborhoods. Therefore, our experiments include kNN
Regression Expansion as a close baseline.
In another vein, a recent trend in unsupervised learning

involves the application of zero-shot classification using lan-
guage models, initially proposed for the sentiment analysis
task on SST-2, Amazon, and Yelp datasets, with prompting
engineering for the generative GPT-2 language model [Puri
and Catanzaro, 2019]. An alternative approach involves
employing zero-shot learning with BERT pre-trained models
for entailment tasks [Yin et al., 2019], where the goal is
to ascertain whether a premise sentence logically entails
a hypothesis sentence corresponding to a particular label,
such as positive or negative sentiments. However, this
methodology has been deemed ineffective for various un-

7github.com/DevSinghSachan/ssl_text_classification
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supervised classification tasks, including sentiment analysis
on datasets like SST-2 [Ma et al., 2021]. In order to examine
the emerging trend of zero-shot classification, we delved
into the capabilities of the novel open multilingual language
model, BLOOM-560M, incorporating prompting engineer-
ing techniques [Yong et al., 2023]. Our aim is to assess its
efficacy in the realm of unsupervised sentiment analysis.
Finally, we included experiments using the traditional

GloVe word embeddings, which explicitly exploit global
co-occurrences of words in documents to build simplified
yet generalizable semantic representations of words [Pen-
nington et al., 2014]. GloVe can be exploited by supervised
or unsupervised strategies. In our experiments, we exploit
such representation with the supervised logistic regression
to provide a superior limit for its effectiveness.

3 The CluSent Method
Conceptually, CluSent comprises a pipeline with three
generic steps applied to a given text (embedding) represen-
tation: clustering, filtering, and weighting that, together,
build a richer (more informative) representation for a textual
collection. Figure 1 illustrates how CluSent representations
are instantiated for a given collection. Each dot in the Figure
represents an instantiation of a method applied to compose
the CluSent representation. In a nutshell, CluSent builds
clusters of semantically related word embeddings [Mikolov
et al., 2018] through the application of distance functions
(first blue dot in Figure 1) and filtering mechanisms (second
and third-half dot in Figure 1). More than simple groups
of (filtered) related words, CluSent´s clusters apply specific
weighting schemes8 to model their importance to sentiment
analysis tasks (purple dots in Figure 1). In Section 3.1,
we present the clustering solution. Next, we describe
(Section 3.2) CluSent’s part-of-speech filtering method,
followed by (Section 3.3) the filtering and weighting steps
that exploit sentiment information and are used to build the
document representation (Section 3.4).

3.1 Clustering
Clustering is a crucial step in the CluSent’s instantiation. It
employs strategies to capture semantic relationships between
words captured by their embedding representations. As we
can observe in Figure 1, this step requires a word embedding
vector space as input. Word (vectors) can be represented
using static or contextual word embeddings. Static word
embedding generates a single embedding representation for
every single word in a given corpus, while contextual word
embeddings, induced by attention mechanisms within trans-
former architectures [Devlin et al., 2019], produce poten-
tially several representations for the same word w depending
on the context (surrounding words) in which w appears.
Cluword’s clustering step can only receive as input static

word embeddings. In this context, a preprocessing step
is required to transform contextual word embeddings into
static ones, employing pooling techniques for all contextual

8These weighting schemes combine the raw document representation
with relevant information, such as semantic and/or lexicon information.

embeddings referring to the same word w. In this work,
we exploit the Average Pooling, previously proposed to
improve the representative power of words embeddings for
computing word similarities [Bommasani et al., 2020], and
to provide robust word representations for the word sense
disambiguation problem [Loureiro and Camacho-Collados,
2020]. Such previous works motivated our proposed ex-
periments to evaluate the representative power of averaged
contextual embeddings for the sentiment analysis task with
ClueSent considering the wide range of scenarios in our
benchmark. Formally, the adopted average pooling is de-
scribed in Equation 1, where −→wi corresponds to a contextual
embedding for word w in the contextual word space.

−−→µwi =
∑N

1
−→w i

|N| (1)

Let W be the set of static vectors representing each word
w in the dataset vocabulary (represented as V). Each word
w ∈ V has a corresponding vector −→w ∈ W . The semantic
matrix in Figure 1 is defined as C ∈ R|V|×|V|, where each
dimension has the size of the vocabulary (|V|), w represents
the rows of C while the dimensions of −→w correspond to the
columns. Finally, each index Cwi,wj

is computed according
to Equation 2.

Cwi,wj =
{

ω(−→wi,
−→wj) , if ω(−→wi,

−→wj) ≥ α
0 , otherwise (2)

where ω(−→wi,
−→wj) is the cosine similarity defined in Equa-

tion 3 and α is a similarity threshold that acts as a regularizer
for the representation. Larger values of α lead to sparser
representations. In this notation, each column wi of the
semantic matrix C will form a CluWord wi, and each value
of the matrix Cwi,twj will receive the cosine similarity
between the vectors wi and wj in the embedding space W ,
if it is greater than or equal to α. Otherwise, Cwi,wj

receives
zero, according to the Equation 2.

ω(−→wi,
−→wj) =

∑|V|
1

−→wi · −→wj√∑|V|
1

−→wi
2 ·
√∑|V|

1
−→wj

2
(3)

The vector
−→
Cw represents the semantic information of a

cluster of words (a.k.a., CluWord) for word w, and the α val-
ues filter potential noisy words (i.e., words that do not have a
significant relationship withw). Since thresholdα is a cosine
similarity value, it is contained within the interval [0, 1]. If
α = 0, the similarities of every term in V are included in the
CluWord of w. If α = 1 only the similarity of w to itself (i.e.,
ω(w, w)) is included in CluWord w. Thus, the appropriate
selection of a value for parameter α is an important aspect of
generating “good” CluWord for w. Moreover, α controls the
sparsity of the resulting document representation. With high
α values, only a few CluWord terms relate to a document.
This representation is similar to the traditional BoW repre-
sentation, where the occurrence of a word in a document
determines whether that word will be used in the document
representation. With lowα values, more CluWord terms tend
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Figure 1. Diagram showing the steps for building the CluSent representation.

to be related to the document, reducing the document repre-
sentation’s sparsity. Once we select an appropriate value for
α, each CluWord w keeps the values of similarities of the
terms most similar to w according to the criteria (e.g., con-
text, co-occurrence) established by the word embeddings.
The nearest neighbor search is critical for building

the CluSent document representation. In the Clustering
step, we employ Hierarchical Navigable Small World
(HNSW) [Malkov and Yashunin, 2020], a data structure
and algorithm designed for efficient approximate nearest
neighbor search in high-dimensional spaces. HNSW builds
a hierarchical graph where each node represents a data
point (in our scenario, a word embedding). The connec-
tions (edges in the graph) represent their proximity in the
high-dimensional vector space. The hierarchical structure
speeds up the search, efficiently exploiting the search space.
HNSW produces high efficiency in scenarios requiring
approximate nearest-neighbor search retrieval [Foster and
Kimia, 2023; Cunha et al., 2023b,a].
Figure 2 illustrates the sub-steps used to construct the

approximate nearest neighbor search inside the Clustering
Step (illustrated in Figure 1). First, a dataset collection and
a word vector space are required as input. The dataset is
used to extract all the tokens (a.k.a. words) that will be used
to filter out the word vectors from the word vector space.
This step keeps track of the vocabulary that CluSent will
use. It also removes unnecessary tokens in the CluSent
generation. Since the generation of the similarity matrix C
is an exhaustive nearest neighbor search, we exploit in this
step the previously described HNSW graph structure.9.
To summarize, any embeddingmodel (static or contextual)

can be exploited to build the semantic matrix C. It is also im-
portant to note that it can also be applied to other languages.
Nowadays, plenty of pre-trained embedding models exist
for languages other than English and even multi-languages.

9https://docs.vespa.ai/en/approximate-nn-hnsw.html

3.2 Part-of-Speech Filtering

Here, we describe the part-of-speech filtering mechanism
used to smooth noise in the semantic matrix C ∈ R|V|×|V|.
This filter removes pairs of words that do not belong to the
same grammatical group. Thus, this filter keeps in a neigh-
borhood of a CluWord w (

−−→
C,w) only terms (wj) that have a

semantic similarity and share the same grammatical group.
The intuition is that, for the sake of sentiment analysis, we
want to keep adjectives that are semantically similar to other
adjectives, verbs that are semantically similar to other verbs,
same for adverbs, and so on. We will analyze the impact of
this very conservative filter in our experiments.
Formally, the Part-of-Speech (PoS) filtering method uses

a function pos(.) to filter each term wj of
−−→
C,w that does

not belong to the same part-of-speech category of term w
(Equation 4). We exploit the PoS tagging from Spacy10 to
build function pos(.). Spacy PoS tagging is available for
over 24 languages and has a PoS tagging for multi-language
texts. In addition, any PoS tagging can be applied to build
the function pos(.).

Cwi,wj
=
{

Cwi,wj if pos(wi) = pos(wj)
0 otherwise, (4)

3.3 Sentiment Filtering and Weighting

Several sentiment analysis approaches employ lexicon dic-
tionaries A lexicon is formed by a set of words tagged
with their respective sentiment value, consisting of a num-
ber (within a defined range) that expresses both the words’
polarity (given by the number’s sign) and intensity (given by
number’s absolute value). The intuition of this filter block in
the CluSent is to use information from a lexicon dictionary
to filter out semantic noise that can affect the quality of the
representation, especially in the sentiment analysis scenario.

10https://spacy.io/usage/linguistic-features#
pos-tagging

https://docs.vespa.ai/en/approximate-nn-hnsw.html
https://spacy.io/usage/linguistic-features#pos-tagging
https://spacy.io/usage/linguistic-features#pos-tagging
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Figure 2. Creation of the HNSW graph structure inside the Clustering step. This process speeds up the construction of the similarity matrix since all the
word vectors are mapped in the graph structure.

Without this filter, words with opposite polarities may be co-
located in the same neighborhood of a CluWord w since the
semantic similarity of embeddings correlated with positional,
contextual, and co-occurrence information does not consider
a word’s polarity. Thus, words of opposite polarities may
belong to the same CluWord. Indeed, this phenomenon has
been observed in the literature [Viegas et al., 2020a].
Indeed, for a given a set of words represented by their word

embeddings and tagged with their respective sentiment val-
ues (i.e., a lexicon dictionary), it is very mcuh possible for
a single cluster of words, constructed exclusively based on
the similarity between word embeddings, to encompass both
positively and negatively tagged words. Consequently, if a
single positive word appears within a cluster primarily com-
posed of negative words, documents containing this positive
word may exhibit a bias towards the negative words present
in the cluster. Our filtering approach is designed precisely to
avoid such bias.
Furthermore, without filtering, there are more clusters

comprising multiple words that appear across multiple doc-
uments. Consequently, the information provided by these
high-coverage clusters tends also to be more biased towards
the majority class on imbalanced datasets.
We adopt this filter, which we call TF-AL (Term

Frequency-Adaptive Lexicon) to keep polarity consistency
within a CluWord. We also exploit the lexicon’s word
intensity as a weighting scheme to enhance the semantic in-
formation within a CluWord. More formally, the lexicon dic-
tionary is represented as L = {⟨w1, v1, ⟩, · · · , ⟨w|L|, v|L|⟩},
where wi is a word and vi is the sentiment value of the
word wi, 1 ≤ i ≤ |L|. The sentiment value vi of a word wi

expresses the word’s polarity and intensity. The sentiment
absolute values may vary according to the lexicon used. In
CluSent, we use an expanded version of the VADER [Hutto
and Gilbert, 2014] lexical dictionary proposed in [Viegas
et al., 2020a], where the sentiment absolute values range be-
tween (−4, 4). We adopt a VADER-based lexicon because
its lexicons vary from (−4, 4), and this range of values can

be more sensitive in terms of weighting the words, but any
lexicon dictionary (even for languages other than English)
can be applied in the building block. For instance, there is
a version of the VADER lexicon for Portuguese 11.
Given the semantic matrix, C, the method exploits

Equation 5 to filter terms wj of
−−→
C,wi

that do not share the
same polarity as term wi. In addition, the sentiment value
of the term wi is used to weight the semantic value Cwi,wj .

Cwi,wj
=
{

Cwi,wj × vwi , if sign(vi) = sign(vj)
0 , otherwise

(5)

3.4 Building the CluSent Representation
This step is responsible for building the CluSent represen-
tation (the last purple dot in Figure 1), which is defined
as the product between the term-frequency matrix and
semantic matrix C. The term-frequency matrix (TF ) can
be represented as a TF ∈ R|D|×|V|, where each position
TFd,t relates to the frequency of a word w in document d.
Thus, given a CluSent (CS) term w for a document d, its
data representation corresponds to:

CSd,w =
−−→
TFd × −−→

C,w (6)

where
−−→
TFd has the term-frequencies of document d, and−−→

C,w is the semantic scores for the term w.
The entire process of generating the CluSent representa-

tion and its instantiation for a given task are illustrated in
Figure 3. CluSent is an unsupervised method that builds
a matrix-based model. The Clustering and Filtering steps
build the Semantic Matrix C. Then, the Weighting step
receives the matrix-based model and the input documents,
either in-batch mode, allowing the whole collection process
or, on the fly, to build the CluSent representation of a new
single input document.

11https://github.com/rafjaa/LeIA/blob/master/lexicons

https://github.com/rafjaa/LeIA/blob/master/lexicons
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Figure 3. Diagram illustrating CluSent’s flow for in-batch and on-the-fly data representation creation.

3.5 Complexity of CluSent
The complexity of building the clustering step (Section 3.1)
is the nearest neighbor search, which can be exploited
by using the fast approximate nearest neighbor search
(HNSW) [Malkov and Yashunin, 2020] with the complexity
of O(logN). The CluSent’s steps described in Sections 3.2
and 3.3 are search terms in a sparse matrix (R|D|×|V|) repre-
sentation, and the complexity of those searches is O(NNZ),
where NNZ represents the non-zero values. Finally, the
complexity of Section 3.4 is the matrix multiplication
(
−−→
TFd × −−→

C,w) in Equation 6). Since both matrices are sparse,
the complexity is defined in Equation 7, where |V| is the
vocabulary size.

O

(
NNZ(

−−→
TFd)NNZ(

−−→
C,w)

|V|

)
(7)

3.6 CluSent Working Example
Let us consider the following sentence: “The team did an
excellent job on the project; the results were outstanding.”.
For didactic reasons, let us assume that the vocabulary is the
following words V = {bad, do, does, excellent, great, job,
on, outstanding, results, team, the, worst}. All the words in
V have a respective embedding representation inW. During
the clustering step, and assuming that we selected a conserva-
tive cosine threshold to limit the nearest neighbor search, the
row of the following word excellent in the Semantic Matrix
C (

−→
C excellent) will contain as its neighbors the words {great,

worst, do, does}. This happens because the word embedding
also considers the contextual position in the sentence to
determine the semantic relationship between words.
Since the Semantic Matrix C is symmetric, the same will

happen for the words great, worst, do, does. The importance
of the PoS filtering is to filter out words with different
PoS, so, in the same example, after the PoS filtering, the−→
C excellent row will contain only adjectives – {great, worst},
as well as, the rows for the words do (

−→
C do) and does (

−→
C does)

will only contain verbs.
The role of the Sentiment Filtering step is to eliminate

potential noise related to sentiment polarity. In the same ex-
ample, the

−→
C excellent row will contain only adjectives that

share the same (positive) polarity of the word excellent, in
the case, the word {great}, after the application of this step.
Finally, theWeighting step will increase the importance of

each word in the sentence and the words in their respective
neighborhood. So, if we disregard the BoW representation
and the weights, the final representation of the sentence “The
team did an excellent job on the project; the results were
outstanding” will be the weights of the following words
”the team did an excellent job on the project the results were
outstanding does great“. The word great is added in the
final representation because of its semantic similarity with
the word excellent, and the does because of its relationship
with the word do.

4 Experiments

4.1 Textual datasets
To evaluate the quality of the proposed methods, we
adopt nineteen real-world textual datasets gathered from
various sources, such as the highly popular SEMEVAL
(semeval_tw) [Rosenthal et al., 2019], stanford_tw [Go
et al., 2009] and Stanford Sentiment Treebank v2 (SST-2)12
datasets. Besides those, we exploit 16 other datasets with
various news, reviews, and social media domains with
different characteristics, such as class distribution, density,
etc. These datasets have high relevance for sentiment
analysis, used, for instance, in popular benchmarks [Ribeiro
et al., 2016], as well as in highly cited papers such as the
VADER lexicon one [Hutto and Gilbert, 2014].

Table 1 shows some characteristics of these 19 datasets.
Each column depicts, respectively, the dataset’s name,
number of messages, number of words, the average number
of words (density) in each message, and the number of
positive and negative messages. As we can see, most of
the datasets are highly imbalanced, i.e., they have a skewed
distribution, increasing the bias towards the largest class.

12https://www.kaggle.com/atulanandjha/
stanford-sentiment-treebank-v2-sst2

https://www.kaggle.com/atulanandjha/stanford-sentiment-treebank-v2-sst2
https://www.kaggle.com/atulanandjha/stanford-sentiment-treebank-v2-sst2
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4.2 Evaluation, Algorithms, and Procedures

The effectiveness of the experiments was evaluated using
two standard text categorization measures: MicroF1 and
MacroF1 [Lewis et al., 2004]. While MicroF1 mea-
sures the classification effectiveness of overall decisions,
MacroF1 measures the classification effectiveness for each
class and averages them. MacroF1 is very suitable for
datasets with high imbalance as all classes have the same
importance in the measure. It is worth considering both
evaluation metrics since most of the datasets used in the
experimental evaluation present class imbalance (i.e. debate,
semeval_tw, etc.). This information can be seen in Table 1,
columns #pos and #neg.
All experiments were executed using a 5-fold cross-

validation procedure. All tuning parameters for the baselines
and our methods were discovered in the validation partitions
while the reported results correspond to the average on the
5 test sets of the folded cross-validation procedure.
We assess the statistical significance of our results by ex-

ploiting a Two-way ANOVA test with 95% confidence. This
test assures that the best results are statistically superior to all
others. In Table 4, the best results were marked with a green
triangle (▲), statistical ties are represented as a yellow dot (•),
while losses are represented as red downward triangles (▼).

Table 1. Dataset characteristics

Dataset #msgs #feat density #pos #neg
aisopos_tw 278 1,586 83.60 159 119
debate 1,979 4,179 86.49 730 1,249
narr_tw 1,227 4,002 74.76 739 488

pappas_ted 727 1,886 92.16 318 409
sanders_tw 1,091 3,601 97.08 519 572
ss_bbc 752 7,674 396.82 99 653
ss_digg 782 5,164 188.49 210 572

ss_myspace 834 2,914 104.26 702 132
ss_rw 705 5,643 345.02 484 221

ss_twitter 2,289 8,835 94.19 1,340 949
ss_youtube 2,432 7,534 90.04 1,665 767
stanford_tw 359 1,746 81.62 182 177
semeval_tw 3,060 10,507 115.99 2,223 837
vader_amzn 3,610 5,039 88.54 2,128 1,482
vader_movie 10,568 17,759 111.67 5,242 5,326
vader_nyt 4,946 12,932 105.42 2,204 2,742
vader_tw 4,196 9,046 79.69 2,897 1,299

yelp_review 5,000 25,494 681.46 2,500 2,500
SST-2 68,221 14,583 53.17 38,013 30,208

We use as baselines popular and effective methods
used in other public benchmarks [Mabrouk et al., 2020]
such as RNTN, NB-weighted-BON+dv-cosine, kNN
Regression Expansion, and L-MIXED. In one of these
benchmarks [Mabrouk et al., 2020], L-MIXED produced
the best-known results in the literature in some of the
tested datasets. We also consider BERT as a solid baseline
since it was surpassed only marginally (without statistical
significance) by another recent SOTA baseline (SentiBERT),
which could not be used in our experiments due to a lack of
code and reproducibility information in the original paper.
Finally, we also adopted the kNN Regression Expansion,
a recent and effective sentiment analysis SOTA baseline

especially designed for short-text datasets, as is the case
with most experimented datasets [Viegas et al., 2020a].

For BERT, we configured hyperparameters as suggested
by [Cunha et al., 2023c; de Andrade et al., 2023]. We
performed a search for the best hyperparameters following
a trial-and-error process, and the best set for the remaining
ones was chosen with fine-tuning using nested cross-
validation within the training sets (batch size: 32, initial
learning rate: 5e-5, max sequence length: 150 tokens, max
patience: 5 epochs). For other baselines, we performed
fine-tuning according to the appropriate author’s scripts
in the source code. For RNTN, the hyperparameter word
vector size, learning, and mini-batch size are adjusted with
the AdaGrad algorithm, while the activation function is
hyperbolic tangent. For NB-weighted-BON+dv-cosine and
L-MIXED, we used grid search to optimize the number
of iterations, learning rate, and regularization force. For
kNN Regression Expansion, we exploited the pre-trained
FastText embedding and performed fine-tuning of neighbors
according to the author’s script in the source code.
For CluSent, we consider the pre-trained FastText

embedding 13 to build the semantic matrix, described in Sec-
tion 3. This embedding model was trained using data from
Wikipedia 2017, UMBC webbase corpus, and statmt.org
news dataset. FastText is essentially an extension of the
Word2Vec model, which treats each word as composed
of character n-grams, allowing to (i) generate better word
embeddings for rare words and (ii) construct word vectors
for a word that does not appear in the training corpus. Both
improvements are not implemented in GloVE [Pennington
et al., 2014].
The α parameter (in Equation 2 Section 3.1) is strictly

sensitive to the embedding space, being responsible for
controlling the CluSent’s density. The smaller the alpha
value, the greater the CluSent representation’s density. A
small alpha may increase the noise in the CluSent represen-
tation, while a large alpha may impoverish it. We adopted a
percentile-based strategy to select the 5% of word pairs with
the highest cosine similarity scores in the embedding space.
This process was performed empirically over the FastText
embeddings.
We run nested cross-validation over the training set to

select the best CluSent instantiation for each dataset. In other
words, our aim is to automatically determine the optimal
instantiation of our approach for each dataset. Consequently,
the decision regarding whether to employ mechanisms such
as PosTagging filtering or TF-AL weighting is automatically
made based on the most effective variation observed in the
averaged (cross-validation) training/test splits, exclusively
sampled from the training dataset. We exploit the Linear
SVM classifier in the CluSent, a top-notch method for text
classification that is even superior to neural architectures
such as BERT when faced with information shortage [Cunha
et al., 2021]. The regularization parameter was chosen
among eleven values from 2−5 to 215, also by using 5-fold
nested cross-validation within the training set.

13https://dl.fbaipublicfiles.com/fasttext/
vectors-english/wiki-news-300d-1M.vec.zip

https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip
https://dl.fbaipublicfiles.com/fasttext/vectors-english/wiki-news-300d-1M.vec.zip
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5 Experimental Results
In this Section, we discuss the effectiveness results of our
method. We start by evaluating the impact of the word
embedding representation in the method (Section 5.1).
Next, we present an ablation experiment showing different
CluSent instantiations and how the inclusion (or not) of
its different steps impact the final solution (Section 5.2).
Then we directly compare the best CluSent version with the
baselines. Finally, an analysis of difficult cases as well as
of the density of the CluSent representation are presented in
Sections 5.4 and 5.5.

5.1 Impact of theWord Embedding Represen-
tation

We start our analysis by comparing the impact of the two
word embedding vector spaces in the CluSent instantiations.
For the static version, we adopt the pre-trained fastText
embedding model described in Section 4.2, trained using
data from Wikipedia 2017, UMBC WebBase corpus and
statmt.org news dataset. For the contextual version, we used
the BERT embedding representation transformed into a static
embedding using the average pooling as described in Sec-
tion 3.1. Regarding BERT, we fine-tuned the model for each
dataset, using pre-trained bert-base-cased as a backbone
model. In the fine-tuning process, we trained using batch
sizes of 16, 10 epochs, AdamW optimizer with learning rate
equal to 1e − 5, 20 warm-up steps, and NLLLoss.
Table 2 shows the MacroF1 results of both CluSent

instantiations – fastText and pooled BERT, respectively. As
we can observe, in most cases (14 out of 19 datasets), both
instantiations have statistical ties. In five out of 19 datasets,
CluSent using fastText presents better results than CluSent
using pooled BERT embeddings. We hypothesize that this
happens for two reasons: (i) the average pooling mechanism
that transforms BERT embeddings into static ones may
lose relevant semantic information during the aggregation
process when documents are very short; (ii) the corpus
used to train the pre-trained embeddings may impact the
quality of the semantic relationship. FastText embeddings
were created based on some news datasets – this may favor
this representation during the CluSent instantiation when
evaluating news-oriented datasets such as ss_bbc, ss_digg.
On the other hand, BERT’s pre-trained model was trained in
BookCorpus and English Wikipedia, and since most of the
evaluated datasets are small, the lack of information may
have impacted the fine-tuning process, not giving enough
information to enhance this embedding representation.
Indeed, the negative impact of limited training datasets on

the fine-tuning of BERT has been previously reported in the
literature [Edwards et al., 2020], which compared BERT to
fastText on various training sizes and classification datasets.
Empirical findings indicated that when applied to small
training datasets, the utilization of fastText in conjunction
with domain-specific word embeddings leads to comparable
or superior performance to BERT, even when the latter is
pre-trained on domain-specific data. This is consistent with
our results.
Regarding reason (i), despite evidence in the literature

Table 2. MacroF1 results of different word vectors in the CluSent
instantiations combined with the linear SVM classifier. We contrast
the use of the pre-trained fastText embeddings with pooled BERT
embeddings fine-tuned for each dataset.

Dataset CluSent (fastText) CluSent (pooled BERT)
aisopos_tw 87.74 ▲ 77.5752 ▼
debate 75.13 • 75.6995 •
narr_tw 86.50 ▲ 82.8189 ▼

pappas_ted 78.82 • 77.6617 •
sanders 80.37 • 79.3968 •
ss_bbc 68.94 ▲ 61.2315 ▼
ss_digg 71.07 • 70.9715 •

ss_myspace 73.35 • 70.3655 •
ss_rw 75.62 • 73.3187 •

ss_twitter 75.44 • 73.069 •
ss_youtube 79.02 • 78.8033 •
stanford_tw 77.07 • 78.1776 •
semeval_tw 76.51 • 74.2607 •
vader_amzn 71.94 • 73.5744 •
vader_movie 75.11 • 75.5499 •
vader_nyt 65.56 • 65.9122 •
vader_tw 89.63 ▲ 85.8376 ▼

yelp_review 92.36 • 92.4193 •
SST-2 89.02 ▲ 77.6441 ▼

demonstrating benefits of the average of BERT word embed-
dings, it achieved significantly inferior results in comparison
to fastText on our largest dataset (SST-2). By examining the
document’s density for each dataset in Table 1, it is evident
that SST-2 documents exhibit the shortest text lengths among
all evaluated datasets. As a consequence, the process of fine-
tuning using the SST-2 dataset produces highly specific con-
textual information for the SST-2 word embeddings, since
these embeddings are prone to exhibit a strong contextual
bias towards the few words within concise sentences.
The strategy of averaging such high-variance embeddings

leads to a misleading summary of the contextual information
within theseword embeddings. This SST-2 pattern alsomani-
fests in other datasets, since almost all statistically significant
losses (4 of 5) of BERT compared to fastText also occur in
datasets containing the shortest texts.
From now on, we will only consider the CluWords version

with the fastText static embeddings as they generalize better
for most situations.

5.2 Ablation Analysis - CluSent Instantiations
We perform an experiment to observe the impact of varying
the Clusent instantiation. The intuition of this experiment is
to evaluate different forms of instantiating the method and
the impact on effectiveness by turning on/off some of the
proposed steps in a per dataset basis. Since the effective-
ness of filtering and weighting may be different on distinct
datasets, we also evaluate a CluSent instantiation in which
the steps that will be included are automatically chosen
with tuning using nested cross-validation in the training set.
In other words, in CluSent, the filtering/weighting steps
that will be turned on/off are automatically chosen, being
potentially different for each dataset.
Each evaluated instantiation is seen in Table 3, where

effectiveness the results were performed over a nested
cross-validation over the training (a.k.a effectiveness results
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Table 3. MacroF1 results of different CluSent instantiations combined with the linear SVM classifier. Auto CluSent corresponds to the
results of an automatic instantiation of the CluWords, where X stands for the components used in the CluSent instantiation.

Dataset CW
CW Auto CluSent

CW CW + PoS MacroF1 Instantiations
+ PoS + TF-AL + TF-AL PoS TF-AL

aisopos_tw 86.95 83.61 87.71 89.38 87.74 • × ×
debate 74.50 75.23 75.73 75.76 75.13 • × ×
narr_tw 84.77 82.67 86.51 85.15 86.50 • ×

pappas_ted 78.35 77.75 77.53 77.86 78.82 •
sanders 81.61 80.80 81.36 80.06 80.37 •
ss_bbc 68.19 64.12 67.35 66.03 68.94 • × ×
ss_digg 71.73 66.80 71.86 71.85 71.07 • × ×

ss_myspace 74.76 70.71 71.86 70.47 73.35 • × ×
ss_rw 76.78 70.81 76.41 77.03 75.62 • × ×

ss_twitter 76.73 75.93 77.16 76.49 75.44 •
ss_youtube 82.14 80.36 79.94 79.23 79.02 • × ×
stanford_tw 75.93 75.93 79.79 79.89 77.07 • ×
semeval_tw 76.29 75.80 76.99 76.94 76.51 •
vader_amzn 69.26 68.99 71.64 72.22 71.94 • × ×
vader_movie 75.03 75.47 73.59 74.65 75.11 • ×
vader_nyt 66.15 65.69 66.56 66.41 65.56 • ×
vader_tw 86.62 86.41 89.64 90.05 89.63 • × ×

yelp_review 92.72 92.54 92.10 92.14 92.36 •
SST-2 88.49 88.49 88.22 88.25 89.02 •

of the grid search). Each column in the Table represents a
different instantiation described as follows: (i) CW – is the
core of the CluSent representation, corresponding to the in-
stantiation of the clusterization method (Section 3.1), and the
merge between Term Frequency and Semantic information
(Section 3.4); (ii) CW + PoS – adds to the previous CluSent
instantiation CW, the Part-of-Speech filtering method
(Section 3.2); (iii) CW + TF-AL – builds the CluSent rep-
resentation adding the core methods (Sections 3.1 and 3.4),
and the sentiment filtering and weighting technique (Sec-
tion 3.3); CW + PoS + TF-AL – turns on all components to
build the representation; (iv) Auto CluSent – is the automatic
instantiation of the Part-of-Speech and Sentiment filtering
and weighting approaches that choose the best components
to turn on/off for each dataset based on automatic tuning.

Table 3 shows the MacroF1 effectiveness. Besides the
explained marks for the statistical tests (▲, •,▼) best results
in all datasets (including ties) are also marked in bold in
the Table. The results showed that Auto CluSent ties with
the best manual CluSent instantiation in every dataset, the
only instantiation to obtain the best effectiveness in all
19 experimented datasets. In the next sections, we will
adopt Auto CluSent, hereafter simply called CluSent, as the
method of choice to compare against the baselines.

Finally, for analysis purposes, we added in Table 3
the instantiated components (marked with ×) selected in
CluSent’s tunning process. We can see that when the PosTag-
ging component is turned on, the TF-AL filtering/weighting
is also selected. There are a few cases in which only the
TF-AL component is selected, such as narr_tw, stanford_tw,
and vader_tw. In these datasets, the PosTagging filtering,
which is very conservative, tends to be detrimental. Finally,
both components are turned off in a few other datasets,
such as pappas_ted and sanders. In these datasets, these
components tend not to have much impact.

5.3 Effectiveness Comparison

Table 4 shows the MacroF1 effectiveness results. Best
results in all datasets (including ties) are marked in bold.
As we can see, CluSent (fasText) is the best overall method
– it outperforms the baselines with three overall wins
(statistically superior results over all others ▲) and 12 ties
in first (best) place (•), considering the 19 datasets. In other
words, CluSent was the best method in 15 out of 19 cases,
either in isolation or tied with some other method.
In the cases in which CluSent outperformed the best

baseline (runner-up method) in each dataset, it did by large
margins, such as in ss_bbc with gains of 14.21% over
KNN Regression, 7.60% in ss_digg over RNTN, and 7.2%
in ss_rw over BERT. Among the three CluSent’s losses,
one was only against L-MIXED (in vader_movie), in stan-
ford_tw against L-MIXED and kNN Regression Expansion,
in vader_nyt against GloVE, and SST-2 against BERT and
L-MIXED. This analysis also emphasizes L-MIXED as the
strongest of the baselines, with 12 ties in the first place,
five losses, and only two wins when directly compared with
CluSent. Remind that L-MIXED is considered a very solid
SOTA baseline in public benchmarks.
BERT and kNN Regression Expansion lost to CluSent

in most cases - 9 and 10 losses, respectively. BERT only
surpassed Clusent in SST-2, tying with L-MIXED, while
KNN Regression outperformed CluSent only in stanford_tw.
As observed, the baseline approaches demonstrated

statistically superior results against CluSent in only three
datasets, namely stanford_tw, vader_movie, and SST-2.
Particularly, the stanford_tw dataset contains only 359
instances obtained from 72 arbitrary twitter queries about
multiple domains using names of locations, people, movies,
products, etc. [Go et al., 2009]. Due to the substantial
observed heterogeneity, CluWords are more susceptible to
clustering embeddings of words from unrelated domains,
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Table 4. MacroF1 results. CluSent is the best method (winning or tying) in 16 out of 19 datasets. ♦ indicates the supervised methods, while
■ indicates the unsupervised methods.

Dataset BERT ♦ NB-W-B RNTN ♦ L-MIXED ♦ kNN Reg. TextBlob■ VADER■ GloVe ♦ Bloom■ CluSent ♦+ dv-cos ♦ Exp. ♦
aisopos_tw 86.73 84.74 63.63 83.58 82.95 68.60 70.70 75.10 42.00 * 87.74•
debate 73.79 66.42 62.4 77.41 61.53 59.80 64.90 80.30 47.40 75.13•
narr_tw 79.71 63.42 74.12 82.48 83.46 76.60 80.90 81.80 57.70 86.50•

pappas_ted 73.52 74.85 63.42 77.64 65.43 67.00 71.80 79.00 50.20 78.82•
sanders 78.07 76.29 68.02 80.47 69.81 68.00 73.00 80.20 58.70 80.37•
ss_bbc 55.99 46.48 55.55 51.28 60.36 44.30 54.60 58.70 38.20 68.94▲
ss_digg 65.68 43.20 66.05 55.87 65.55 59.80 65.80 68.50 47.90 71.07▲

ss_myspace 61.02 45.67 62.47 49.88 75.35 60.70 68.30 63.40 54.00 73.35•
ss_rw 70.56 42.12 62.90 57.72 67.53 68.00 73.00 65.60 62.00 75.62▲

ss_twitter 72.21 55.99 68.17 74.81 73.94 67.60 71.50 73.90 49.20 75.44•
ss_youtube 76.55 54.40 71.31 79.69 77.09 70.90 75.00 78.80 58.30 79.02•
stanford_tw 75.70 72.88 77.52 79.54 81.41 71.50 78.50 80.70 47.80 77.07▼
semeval_tw 74.09 48.60 68.92 68.37 75.52 66.60 71.60 73.40 54.80 76.51•
vader_amzn 71.48 62.85 69.33 73.89 62.49 65.70 68.00 73.40 60.20 71.94•
vader_movie 78.09 76.59 75.31 82.63 64.59 63.60 64.10 76.90 61.10 75.11▼
vader_nyt 65.56 53.19 60.92 66.92 66.00 58.90 64.50 70.80 42.00 65.56▼
vader_tw 81.92 61.23 71.67 82.53 89.25 72.70 88.70 81.80 61.30 89.63•

yelp_review 94.08 93.30 74.33 94.59 62.46 66.70 73.70 90.40 90.20 92.36•
SST-2 94.39 86.87 82.75 93.13 55.11 72.50 67.30 79.20 60.10 89.02 ▼

leading to poor semantic expansions. Our filtering methods
aim to avoid such poor semantic expansions. However,
despite the potential improvements of our proposed filtering
approaches on stanford_tw (as shown in Table 3), the
proposed Auto CluSent incorrectly estimates (due to the
small and heterogeneous training data) instantiations of
CluSent that automatically disables such filtering methods,
leading to an average decrease of 3.7% inMacroF1. Without
such a decrease, there would be no statistically significant
gains by the baselines compared to our proposal on the stan-
ford_tw dataset. This also indicates that there is room for
improvements in our Auto CluSent approach in future work.
In contrast, our filtering steps do not produce any effect

on the vader_movie dataset (as shown in Table 3), which
suggests the prevalence of high-quality and semantically
related groups of word embeddings within the dataset
vocabulary. Such conformity can be explained by the
composition of the final version of vader_movie [Hutto
and Gilbert, 2014], which comprises 10,605 (sentence-level
pre-processed) snippets extracted from 2000 movie reviews
written by only 312 authors [Pang and Lee, 2004]. In such
a scenario, multiple instances are sampled from the same
review/reviewer, which mitigates the need for semantic ex-
pansions and noise filtering. The best baseline (L-MIXED)
successfully exploits the bi-LSTM advantage of identifying
common sequential patterns among multiple sentence-level
snippets sampled from the same review.
Similarly to vader_movie, the filtering steps do not pro-

duce any effect on the SST-2 dataset (as shown in Table 3),
also suggesting the prevalence of high-quality and semanti-
cally related groups of word embeddings within the dataset
vocabulary. As in vader_movie, the highly related instances
are produced by multiple samples from the same reviews. In
fact, despite the large number of instances in the final ver-
sion of the SST-2 [Wang et al., 2018], its 68,221 instances are
very small phrases sampled from only 11,855 sentence-level
snippets extracted from movie reviews. In such a scenario,
the common distribution of samples mitigates the need for
semantic expansions and noise filtering. The best baselines
(L-MIXED and BERT) both successfully exploit the advan-
tage of representing common contextual patterns in small se-
quences sampled from the same review.

Figure 4 shows the effectiveness of the results in terms of
MicroF1 (Accuracy). In this scenario, CluSent tied for first
place in 13 out of 19 cases, twelve of them with L-MIXED,
the strongest baseline in terms ofMicroF1. This result makes
CluSent the best overall method along with L_MIXED. The
slightly better CluSent results in terms of MacroF1 when
compared to MicroF1 is due to the high skewness (class im-
balance) of some datasets (e.g., debate, ss_bbc, ss_myspace).
When faced with an information shortage, there is a tendency
to increase the classifier’s natural bias towards the largest
class. The CluSent semantic expansion helps counterbalance
this natural bias, making the classification fairer to the minor-
ity class. This fact is better reflected in the MacroF1 results.

Figure 4. MicroF1 results. CluSent is the best method, tied with L-Mixed,
winning or tying in 14 out of 19 datasets.

To summarize the results we perform an analysis using
Fractional rankings to determine the most effective overall
method across the multiple datasets. In Fractional rankings,
items that perform equally (i.e., statistical ties) receive the
same ranking number, the mean of the ranking they would
receive under ordinal rankings considering the ties. In our
scenario, we rank each method for each dataset based on the
MacroF1 score and the statistical tests. As mentioned, ties
receive the same rank position.
Table 5 shows the fractional ranking for the MacroF1

results, and the last row, called Aggregated (Aggr.) Ranking
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Table 5. Fractional Rank for MacroF1 results. CluSent is the best overall method in the Aggregated Ranking. The R(∗) indicates the rank
position.

Dataset BERT NB-W-B RNTN L-MIXED kNN Reg. TextBlob VADER GloVe Bloom CluSent+ dv-cos Exp.
aisopos_tw 2 2 9 4 5 8 7 6 10 2
debate 4 5 7 2 8 9 6 2 10 2
narr_tw 6 9 8 3 1.5 7 5 4 10 1.5

pappas_ted 5 4 9 2 8 7 6 2 10 2
sanders 2.5 5 8 2.5 7 9 6 2.5 10 2.5
ss_bbc 4 7 5 8 2 9 6 3 10 1
ss_digg 3 10 4 8 6 7 5 2 9 1

ss_myspace 6.5 10 5 9 1.5 6.5 3 4 8 1.5
ss_rw 2 10 7 9 5 4 3 6 8 1

ss_twitter 5 9 7 2.5 2.5 8 6 2.5 10 2.5
ss_youtube 3 10 7 3 3 8 6 3 9 3
stanford_tw 7 8 5 2 2 9 4 2 10 6
semeval_tw 2.5 10 6 7 2.5 8 5 2.5 9 2.5
vader_amzn 2.5 8 5 2.5 9 7 6 2.5 10 2.5
vader_movie 2 4 5 1 7 9 8 3 10 6
vader_nyt 4.5 9 7 2 3 8 6 1 10 4.5
vader_tw 5 10 8 4 1.5 7 3 6 9 1.5

yelp_review 2.5 2.5 7 2.5 10 9 8 5 6 2.5
SST-2 1.5 4 5 1.5 10 8 7 6 9 3

Aggr. Ranking 70.5R(3) 136.5R(8) 124R(7) 75.5R(4) 94.5R(5) 147.5R(9) 106R(6) 65R(2) 177R(10) 48.5R(1)

is the summation of all datasets’ rankings for each method.
For instance, in ss_bbc, ss _digg and ss_rw where CluSent
is the sole best method with no tie, it receives a ranking of
1 while in narr_tw, pappas_ted, ss_myspace, and vader_tw,
where Clusent ties as the best method with another baseline,
it receives a ranking of 1.5 (Rank: 1.5, 1.5, 3, ....).
As can be seen in the Aggregated Ranking, CluSent is by

far the best overall method (lowest aggregated ranking: 48.5)
considering the 19 datasets, with GloVe coming in a distant
second place (Aggr. ranking: 65.0) and BERT in third place
(Aggr. ranking: 70.5). This analysis emphasizes CluSent’s
consistency across many different domains and scenarios.

5.4 Difficult cases solved by CluSent

As an example of a difficult case that CluSent can handle and
other methods can not, in ss_bbc. The negative document
“that’s why the meeting may well be just a joke” has been
misclassified by a simple base classifier (Linear SVM).
CluSent expanded the original document representation into
a vector with 47 non-zero new dimensions related to the
semantic neighborhood, including new words such as “silly”
and “apology”. This information and the weighting step
allowed it to correct the misclassification.
Another example in the same dataset is the document

“Science once again ignored by the mainstream so they
can continue to collect dollars with the marketing of the
green business agenda.”. Comparing the CluSent with
Linear SVM, we observe that CluSent added more negative
information, such as “abandoned”, “blinded”, and “blurred”.
The filters also removed positive words in the same neigh-
borhood, i.e., no positive words were added. Both actions
helped to correct SVM’s misclassification.

Table 6. Density analysis of the CluWord Instantiations

Dataset Density

CW CW
+ PoS

CW
+ TF-AL

CW
+ PoS

+ TF-AL
ss_bbc 3,916 2,608 1,957 1,192
ss_digg 1,964 1,167 910 488

ss_myspace 1,126 661 510 268
ss_rw 2,745 1,758 1,328 770

vader_movie 4,338 2,164 1,649 766

5.5 Density Analysis of the CluSent Represen-
tation

Table 6 shows the document density (average number of
words per document) for some CluSent instantiations in
some of the datasets in which CluSent outperforms all
baselines by large margins – ss_bbc, ss_digg, ss_myspace,
and ss_rw). When compared with their original density
(Table 1), we can see that the density increases considerably
in these datasets, regardless of the CluSent instantiation.
For instance, in ss_myspace, the density of documents
increases by at least 1822%. This is a direct consequence of
Cluwords’s (CW) semantic expansion.
We also notice that in the CW + TF, CW + Pos + TF-AL,

and the CluSent instantiations, the sentiment-based filtering
and weighting mechanism was turned on in ss_bbc, ss_digg,
ss_myspace, and ss_rw. In Table 6, the document density of
the CluSent instantiation was further broken down into two
sentiment polarities (positive and negative). The TF-AL
instantiation makes it possible to identify the polarity of
words based on the lexical dictionary used by the method.

As we can see, in all the cases shown in Table 6, the
density was reduced due to the noise filtering mechanism,
but it is still much higher than in the original representation.
This justifies the robustness of CluSent in capturing the best
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document representation – semantically expanded, with
noise removal and sentiment-based weighting, ultimately
justifying its effectiveness.
Table 6 also includes information about one dataset in

which CluSent did not surpass the baselines – vader_movie.
We can see in Table 1 that this dataset is larger, more
balanced, and have already a high density. In other words, it
suffers less from information shortage problems. Although
there was a similar expansion in vader_movie, the sentiment-
based filtering/weighting was turned off in this dataset (indi-
cated as ’-’ in Table 6). This may suggest that the CluWord
expansion in this dataset produced a less noisy representa-
tion. However, this expansion was not enough to surpass the
baselines, which took advantage of the higher amount of in-
formation in this dataset. This indicates room for further im-
provements in expansion and filtering strategies for CluSent.

6 Conclusion

We proposed a new solution for sentiment analysis – CluSent
– that exploits semantic expansion and tackles issues of
information shortage and noise. It combines supervised and
unsupervised solutions, taking advantage of external infor-
mation from word embeddings and unsupervised lexicons.
CluSent generalizes and expands the CluWords concept to
sentiment analysis in a dataset-oriented manner. Indeed,
our novel framework can be adapted to different NLP
tasks/applications and the idiosyncrasies of each dataset by
turning on/off its steps depending on the characteristics of
the dataset.
In our experiments, CluSent outperformed strong base-

lines in 28 out of 38 possibilities, excelling in a Fractional
Ranking aggregated analysis, with gains of more than 14%
against some of the best baselines. Our analyses show that
all components of our solution are important for the final
results and that the ability to adapt the solution to different
datasets’ idiosyncrasies is key to CluSent’s success.
In future work, we will exploit CluSent’s ideas in other

classification tasks, e.g., topic classification. We also want to
investigate other manners to exploit contextual embeddings
(other than simple average pooling) to see whether they can
improve effectiveness. The use of Large Language Models
(LLMs) to infer the polarities of words in order to improve
the coverage of the used lexicons is also an idea worth trying.
Finally, we have seen that there is space to improve the fil-
tering and weighting steps on top of the Cluwords’ semantic
expansion, and this is a venue we will certainly exploit.
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