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Abstract: An Automatic Speech Recognition (ASR) System is a software tool that converts a speech audio wave-
form into its corresponding text transcription. ASR systems are usually built using Artificial Intelligence techniques,
particularly Machine Learning algorithms like Deep Learning, to address the multi-faceted complexity and variabil-
ity of human speech. This allows these systems to learn from extensive speech datasets, adapt to several languages
and accents, and continuously improve their performance over time, making them each time more versatile and
effective in their purpose of transcribing spoken language to text. Much in the same way, we argue that the noises
commonly present in the different environments also need to be explicitly dealt with, and, when possible, mod-
eled within specific datasets with proper training. Our motivation comes from the observation that noise removal
techniques (commonly called denoising), are not always fully (and generically) efficient. For instance, noise degen-
eration due to communication interference, which is almost always present in radio transmissions, has peculiarities
that a simple mathematical formulation cannot model. This work presents a modeling technique composed of an
augmented dataset-building approach and a profile identifier that can be used to build ASRs for noisy environments
that perform similarly to those used in noise-free environments. As a case study, we developed a specific ASR
for the interference noise in radio transmissions with its specific dataset, while comparing our results with other
state-of-the-art work. As a result, we report a Character Error Rate value of 0.3163 for the developed ASR under

several different noise conditions.
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1 Introduction

Speech recognition is the process of converting the human
voice into a sequence of words and linguistic resources that
provide an understanding of what is being said [Huang et al.,
2001]. When it is done through an automated process, typi-
cally with software embedded in a device, this tool is often
called an Automatic Speech Recognition (ASR) System [Li
et al., 2014] that converts an audio waveform into a speech
text transcription [Duarte and Colcher, 2021].

Due to their complexity and diversity caused by differ-
ent languages and accents, such tools are usually built us-
ing Artificial Intelligence (AI) techniques that can be applied
to construct an ASR efficiently and effectively, ensuring a
good performance both in transcription quality and process-
ing time. Currently, Machine Learning (ML) is the most
well-known technique for building such recognizers, as it has
the ability to learn from historical data—in this case, pairs of
waveforms and their transcriptions. More specifically, Deep
Learning (DL) techniques can be used not only to learn from
the data but also to create expressive attributes from the raw
waveform signal, replacing the work of a specialist in creat-
ing the essential attributes for the model.

In this context, Deep Speech [Hannun ef al., 2014] stands
out as a robust end-to-end speech system framework for de-
veloping and evaluating ASRs. It uses a Recurrent Neural
Network (RNN) and the Connectionist Temporal Classifica-
tion (CTC) loss functions to learn from data, in conjunction

with a Language Model (LM), allowing the adjustment of
several hyperparameters. Deep Speech has proven to have
good results for the task, especially when considering the
compromise of performance over training time, for the task
on languages such as English and Mandarin [Amodei et al.,
2016].

As ASRs are increasingly becoming part of everyone’s
daily life [Duarte and Colcher, 2021], built into personal
assistants and helping in the execution of common daily
tasks, noise robustness is also becoming a natural require-
ment. Nevertheless, the construction of good ASRs is still a
challenging task [Li et al., 2014], since they are increasingly
employed in environments with high distortions and differ-
ent characteristics from those employed when recording the
datasets used for their training.

Much in the same way that ASRs need to have differ-
ent training for each employed language, the noises com-
monly present in the environments in which they are used
also need to be mapped and, when possible, modeled within
the datasets, since natural removal techniques, like denoising,
face several challenges related to limited training sources,
where obtaining both clean and noisy audio samples proves
difficult, and the fact that real-world audio signals usu-
ally contain inseparable noises. Consequently, denoising
may not exhibit comparable performance in real-world set-
tings in the same way as in controlled experimental environ-
ments [Zhang and Li, 2023].

Furthermore, most of the current work considers the noise
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in ASRs as being a simple Additive White Gaussian Noise
(AWGN) [Carlson et al., 2002], or uses collected noise sam-
ples from regular household appliances and urban noises
[Yilmaz et al., 2014; Prodeus and Kukharicheva, 2017; Shi-
mada et al., 2019; Maruf et al., 2020] such as cars or loud
chats. Also, some works reduce the complexity of ASRs
by using datasets with simple commands, names, or digits
[Menéses Santos, 2016; Pervaiz et al., 2020]. These pre-
sumed simplifications frequently fall short of accurately cap-
turing the true complexity of the noise environments in which
the ASR will operate. This holds true despite the capability
of neural networks, particularly those trained in a DL con-
text, to extract hierarchical features from noisy data without
necessarily relying on a priori knowledge of the noise model.
For instance, noise degeneration due to communication in-
terference, which is almost always present in radio transmis-
sions, has peculiarities that a simple mathematical formula-
tion cannot model [ITU, 1992]. For example, this is espe-
cially true in military communication environments such as
high-frequency (HF) channels used in the Amazon rainforest.
Also, the attempt to model noisy environments as reliably
as possible has been addressed in various ways, as we see,
for example, in published recommendations [ITU, 1992] for
noise parameter setup.

In this sense, the Brazilian Army’s priority 1.1 [Centro Tec-
nologico do Exército, 2020] is the Software Defined Radio
Project [Exército Brasileiro, 2019], and radios developed un-
der this project can benefit from a technology that can auto-
matically generate transcripts of received audio across differ-
ent platforms. This is even more useful if incoming message
storage is a requirement.

The main objective of this article is to present the pro-
posal of modeling techniques that can be used to build ASRs
used in specific noise environments that perform similarly to
those trained and evaluated in noise-free environments. As a
case study, noise from interference in radio transmissions is
applied to a set of transcriptions in Portuguese [Duarte and
Colcher, 2021]. The choice for the Portuguese language is
due to the scarcity of related articles in this language [Quin-
tanilha et al., 2020; Gris, 2021; Gris et al., 2022]. However,
the methodology proposed here is generic and can be applied
to any language.

We evaluate the developed ASRs with a dataset as close as
possible to the noisy environments in which they are meant
to be used while comparing them with the state-of-the-art.

To summarize, the contributions of this work are three-
fold. First, we contribute to the development of noise-robust
ASRs by showing results obtained in a noisy communica-
tion environment. The steps presented here can be repro-
duced in any noisy environment as long as real-world data
sets or mathematical models are available; Second, we also
contribute to the development of Portuguese ASRs by com-
paring our results with other works that used similar datasets
and language models. This can be used in any other language
as long as datasets with pairs of audio and transcriptions are
provided; Finally, we contribute to the development of a pro-
file identifier that determines the best ASR to be applied in an
audio file where its noise characteristics are unknown. Such
profile identifier performs similarly (in terms of the perfor-
mance measures) to the ASRs when compared to a perfect
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theoretical identifier.

In the remainder of this article, we will present the nec-
essary steps to reproduce our results. First, in Section 2,
we show related work, focusing on Portuguese ASRs as
well as other works dealing with noisy environments. Sec-
tion 3 presents the Deep Speech framework used in our ex-
periments, while Section 4 presents the used dataset and
proposed configuration for the development of noise-robust
ASRs. We then conclude our evaluation in Section 5 with
our experiments that show near state-of-the-art results for the
task. Finally, concluding remarks and possible future work
are presented in Section 6.

2 Related Work

This section frames our contribution in the context of existing
research both on Portuguese and noise-robust ASRs, as these
are the two main aspects for comparison with the results of
our work.

Initially, Li ef al. [2014] provide an in-depth survey of the
theme of robust noise ASRs, comparing more than 50 works
in the field in terms of domain processing (feature versus
model), distortion modeling (implicit versus explicit), prior
knowledge of the distortion, processing (deterministic versus
uncertain) and training (joint versus disjoint). The authors
point out the good results as well as the challenges in using a
Deep Neural Network (DNN) for this type of system, since
DNNs provide a strong normalization to heterogeneous data
present in noisy audio in the form of new powerful features
that can then be used by other techniques such as an Hid-
den Markov Model (HMM). We highlight, then, more recent
works on the theme of noise-robust ASRs.

Yilmaz et al. [2014] propose the use of Noise Robust Ex-
emplar Matching (N-REM) with the Active Noise Exemplar
Selection (ANES) technique that extracts noise exemplars
from noise-only training sequences. The authors used the
Chime-2 and Aurora-2 datasets formed by utterances in En-
glish combined with several types of noise such as subway,
car, restaurant, and street, among others, and obtained results
of 93.5% accuracy (Signal-to-noise ratio (SNR) 9 dB) and
Word Error Rates (WERs) of 4.9% and 5.6% (SNR 10 dB).

Conversely, Wang and Wang [2016] combine two DNNs
with a speech separation front-end and an acoustic model
to form a better network for ASR, while adjusting the
weights for each module. Experiments that were conducted
by adding reverberant noises such as speakers, electronic
devices, footsteps, and laughter to the English Chime-2
dataset consisting of multiple utterances, achieved an WER
0f 10.63%.

Menéses Santos [2016] proposes the use of a hybrid model
that uses both a CNNs and a HMM to build an ASR for a
dataset that contains Portuguese utterances and digits. He
used noises from different sources like chitchat, engines, and
industry while obtaining accuracies ranging from 88.91% to
99.67%.

In two different works, Prodeus and Kukharicheva [2016;
2017] propose the use of training ASRs with noise samples
such as grinders, computers, and trucks that use the Fully
Matched Training (FMT) and Spectrum Matched Training
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(SMT) techniques. Experiments performed on a simple Rus-
sian dataset showed 95% performance in terms of accuracy
for an SNR of 10dB or more.

On the other hand, Wang et al. [2018] proposes the use
of a 6-layer Context-dependent (CD)-DNN-HMM in order
to train a dataset composed of English utterances. Those
utterances were extracted from the WSJO corpus that was
processed with reverberation, interference, and background
noises, and achieved an WER of 6.56%.

Throat microphones are highlighted by Ribeiro [2019] as
a way to enhance the performance of ASRs in an environ-
ment of multimedia noises such as music and acoustic video
content. Experiments with Multilayer Perceptrons (MLP)
and Self-Organizing Maps (SOM) were conducted on a Por-
tuguese dataset containing simple command strings. The use
of the proposed device presented a WER reduction of 19.6%.

Shimada et al. [2019] propose the use of online Minimum
Variance Distortionless Response (MVDR) beamforming to
initialize and update the parameters of Multichannel Nonneg-
ative Matrix Factorization (MNMF) instead of DNN beam-
forming methods to build noise robust ASRs. Experiments
conducted on the Chime-3 utterance dataset mixed with ur-
ban noises such as buses, cafeterias, pedestrian areas, and
streets, showed a performance in terms of WER ranging from
13.88% to 16.16%.

The use of Mel Frequency Cepstral Coefficients (MFCC)
and Relative Spectral Transform-Perceptual Linear Predic-
tion (RASTA-PLP) features are investigated by Maruf et al.
[2020] to train a CNN-based ASR. A Bangla dataset consist-
ing of digits and utterances combined with urban noises was
evaluated, providing a reported accuracy of 93.18%.

Pervaiz et al. [2020] analyze the use of data augmen-
tation techniques in conjunction with Deep Feed-Forward
Networks, Long Term Memory Networks (LSTMs) and
CNNs.  Their proposed methodology was applied to an
Asian-accented English data set called Speech Command
Dataset, which includes several public utterances combined
with background noise files such as running taps, dishwash-
ing, and white and pink noises. The authors report the best
result of 88.2% in terms of Top-One error.

A Gated Recurrent Fusion (GRF) method used in conjunc-
tion with a joint training framework to dynamically combine
features that can remove noise signals and also learn raw
fine structures to alleviate speech distortion is proposed by
Fan et al. [2021]. The method is applied to a speech cor-
pus called AISHELL-1 that consists of Mandarin utterances,
combined with several noises from the Nonspeech Sounds
noise database, such as traffic, animals, claps, and showers,
among other noises. The reported results presented a perfor-
mance of 10.04% in terms of Character Error Rate (CER)
reduction.

In order to finish the literature review, we now present
works whose focus is on the construction of ASRs for the
Portuguese language with only limited applicability to use in
noisy environments.

Quintanilha ef al. [2020] propose the use of DNNs inside
the Deepspeech framework by adding a newly trained 15-
gram language model. The authors presented experiments
with the LibriSpeech and BRSD (v1 and v2) datasets, show-
ing results in terms of CER (10.49%) and WER (24.45%)).
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Spread across two different works, Gris et al. [2021;2022]
proposed a fine-tuned version of Wav2vec 2.0 XLSR-53 for
the development of a Portuguese ASR, using only open avail-
able audios. Several different Portuguese datasets were used
for the training of this ASR, such as CETUC, LAPSBM 1.4,
VoxForge, Multilingual LibriSpeech, and Common Voice
Dataset. An WER of 11.95% was reported as the best result
for this task.

Candido Junior et al. [2023] introduced CORAA (Corpus
of Annotated Audios) ASR, a publicly available dataset de-
signed for ASR in both Brazilian and European Portuguese,
aiming to fill the gap in datasets containing spontaneous
speech. Additionally, they presented results for a public ASR
model also based on Wav2Vec 2.0 XLSR-53, fine-tuned us-
ing CORAA ASR. This model achieved a WER of 24.18%
and 20.08% on CORAA ASR and Common Voice datasets,
respectively, along with a CER of 11.02% and 6.34%.

Finally, Scart et al. [2022] proposed the use of a simpli-
fied training version of wav2vec, which only fine-tunes a
pre-trained model. The data set used was derived from the
Common Voice Portuguese subset and built by simulating,
through software, the characteristics of a narrowband FM
transmitter and receiver, in addition to a noisy communica-
tion channel. This proposed methodology presented results
of a relative reduction of 51.7% in terms of CER when using
a value of SNR of 0 dB.

Although a direct comparison between the works pre-
sented is challenging to achieve, due to the use of different
datasets, performance metrics, and validation strategies, Ta-
ble 1 provides a summary of the main characteristics of these
works. It can be noticed that few works fully consider all
the aspects necessary for the construction of an ASR, but
rather focus on or are limited to basic commands and utter-
ances. Moreover, a significant portion of these works pre-
dominantly concentrate on the English language, and even
those that incorporate the Portuguese language tend to over-
look real noisy data, relying on generic data augmentation
techniques instead. Furthermore, even considering different
types of noise, only one of them considers the analysis of
the influence of interference noise on radio communications,
which is the case study of this work.

3 The Deep Speech framework

Deep Speech [Hannun et al., 2014] is an end-to-end open-
source ASR framework that uses Google TensorFlow [Abadi
et al., 2015] to implement the deep neural networks used for
the character-based classification process.

The choice of Deep Speech as the tool for ASR genera-
tion in this work is due to its ease of conducting experiments
and feasibility of execution on low-cost computing platforms.
This allows for the evaluation of the proposed methodology
in a highly reproducible environment that can be extended
to other applications, while allowing a wide range of setups
and scenarios. Naturally, other modern approaches to ASR
generation, such as Whisper [Radford et al., 2023] based on
transformers, could also be utilized, albeit it would require
extensive more computational resources. Nevertheless, the
experiments conducted here enable the evaluation of the pro-
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Table 1. Related work summary for noise-robust and Portuguese-based ASRs

Work Techniques Datasets Noise types Language Main result
, N-REM, Chime-2, . . . o
Yilmaz et al. [2014] ANES Aurora-2 mainly street noises English Acc. - 93.5%
Wang and Wang [2016] | DNN Chime-2 ;‘;EZ:S"“ reverberant  poisch  WER - 10.63%
R Utterances chitchat, engines, and Acc. - 88.91% to
Menéses Santos [2016] CNN, HMM and digits industry noises Portuguese 99.67%
Prodeus and Kukharicheva Names and . . 0
[2016: 2017] FMT, SMT numbers urban noises Russian Acc. - 95%
reverberation, interfer-
Wang et al. [2018] DNN Utterances ence, and background English WER - 6.56%
noises
Ribeiro [2019] MLP, SOM Simple com- 1 1imedia noises Portuguese WER reduction -
mands 19.6%
. MVDR, . . . WER - 13.88% to
Shimada et al. [2019] MNMF Chime-3 urban noises English 16.16%
Maruf et al. [2020] CNN Uttergnf:es urban noises Bangla Acc. - 93.18%
and digits
running taps, dish-
. DNN, LSTM, Speech Com- . . . Top-One error -
Pervaiz et al. [2020] CNN mand washl}lg, a}nd white  English 882
and pink noises
traffic, animals, claps, . CER reduction -
Fan et al. [2021] GRF AISHELL-1 and shower noises Mandarin 10.04%
LibsiS h CER - 10.49%
Quintanilha ez al. [2020] DNN Bleleeec > clean speech Portuguese WER - 24.45%
Gris [2021] DNN mainly .Com— clean speech Portuguese  WER - 11.95%
mon Voice
CER - 11.02%
Candido Junior et al. DNN goorirﬁ(i; background noise, Portugtese 6.34%
[2023] Voi spontaneous speech & WER - 24.18%
olee 20.08%
Common narrowband FM chan- CER reduction -
Scart et al. [2022] DNN, CNN Voice nel Portuguese 51.7%
Common communication inter- CER - 31.64%
This work DNN Voice ference noises Portuguese (SNR>0) CER -
23.00% (SNR30)

posed methodology, highlighting its contribution.

Deep Speech allows not only the use of pre-trained ASR
models but also their construction from scratch, simply feed-
ing the tool with a dataset of audio files and respective tran-
scriptions in the target language, as well as setting a diverse
set of hyperparameters for the neural networks used, such as
the number of neurons per layer, dropout and learning rates,
among others.

Figure 1 shows the basic architecture of Deep Speech,
which consists of an RNN architecture with five hidden lay-
ers. The first three layers, like the fifth, are composed of non-
recurring neurons and use a clipped rectified-linear (ReLu)
activation function. The outputs from the previous layers are
used as the inputs to the next ones. The fourth layer is a recur-
ring LSTM that includes a set of hidden units with forward
recurrence. Finally, the output layer uses a softmax function
that outputs the probabilities for each character considered in
the alphabet.

Layer 5

Feature Extraction

[L0i0%

Layer 4

Layer 3

Layer 2

Layer 1

Feature Extraction Feature Extraction

Feature Extraction

Figure 1. Deep Speech basic architecture. Source: Duarte and Colcher
[2021]

In order to train their RNNs, Deep Speech uses the Connec-
tionist Temporal Classification (CTC) [Graves et al., 2006;
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Hannun, 2017] loss function that transforms the outputs into
conditional probabilities over all alphabet sequences. Those
probabilities can then be used to predict the most probable
labels for a given sequence.

The main idea of CTC is to provide a free alignment be-
tween the input and output sequences. CTC works by sum-
ming over the probability of all possible alignments among
all possible outputs of an input. With this in mind, the tran-
scription BAR, for instance, also depicted in Figure 1, can be
recognized by multiple outputs such as BARR, BAAAR, and
BAR itself. To recover the output sequence, any sequence
of the same characters from the alphabet is replaced by that
character, which results in two problems. First, the input can
have silence streaks without a character for the output. Also,
multiple characters in a row can appear in a transcript, such
as in the word passes.

To solve these problems, CTC introduces a dummy blank
token (¢) for the alphabet that can represent the absence of a
character or sequences of the same character. Whenever the
token ¢ is generated, the sequences of the same characters
are not merged and, in the end, the token is simply removed
from the output. With this simple approach, the word passes,
for instance, can be produced by the paseses output, without
loss of representation.

In addition to the classification process that uses DNNss,
Deep Speech allows the use of an “external scorer” that
makes corrections in the transcriptions after the neural net-
work recognition process. This external scorer is composed
of a prefix tree data structure that contains all possible vo-
cabulary words and a language model [Mozilla Corporation,
20201].

A Language Model (LM), applied as a post-processing
step, assigns probabilities for word sequences present in a
training corpus [Jurafsky and Martin, 2021]. The idea be-
hind this is that spoken words correlate, meaning that the
next possible words in a sentence have probabilities based
on their general appearance in the language. For instance,
after the definite article the, there cannot be a verb, so the
probability of any verb after the word /e is null.!

Using language models helps fix small mistakes made
by the recognizer, which would deteriorate performance in
terms of word recognition. Deep Speech supports the usage
of the KenLM Language Model Implementation [Heafield,
2011] and two hyperparameters to control the effects of the
language model, « and 3. « controls the weight of the lan-
guage model about the output of the neural network. A value
of zero, for example, disables its usage. Conversely, 3 con-
trols the weight of word insertion, which can be useful, espe-
cially if the recognizer misses some small words. A model
optimizer script provided by Deep Speech can automatically
determine these values.

4 Designing a noise-robust automatic
speech recognition

This section presents the setup necessary to reproduce the
experiments reported in Section 5 and is divided into two

I'There are special cases where noun verbs can follow a definite article.
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parts. The first one contains the details about the dataset used
and its subsets used in the training and evaluation phases of
the ASRs developed in this work. The second part describes
the selected hyperparameters for configuring Deep Speech.

4.1 Dataset

In all our experiments we use the Common Voice Dataset
[Ardila et al., 2020], more specifically, the Portuguese sub-
set of the noisy version developed by Duarte and Colcher
[2021]. The reason for choosing such a dataset is that, cur-
rently, Common Voice is a benchmark for comparing ASRs.
Particularly, its noisy version fulfills the necessary require-
ments for this work, which are: Portuguese language; and
different noises from radio communication interference.

The noisy dataset has four distinct subsets, and each subset
has noises with the following Signal-to-noise ratio (SNR) re-
lations: {-30, -20, -10, -5, 0, 5, 10, 20, 30}, following all rec-
ommendations provided by ITU [1992]. SNR measures the
degree of noise contamination in the signal [Carlson ef al.,
2002]. A small value, usually negative, indicates a high de-
gree of degeneration due to noise. Thus, even reporting statis-
tics on all listed SNRs, the discussion of results will be lim-
ited to their positive values, since for negative SNRs, even
the human ear has extreme difficulty in understanding what
is being said.

The four different subsets contain different ways to add
noise to the original base. The first subset uses a sim-
ple and generic Additive White Gaussian Noise (AWGN).
Conversely, the second subset contemplates the addition of
noises collected directly from HF receivers in the form of
files that can be merged into the original base. The third sub-
set implements, via software, complex mathematical models
for the representation of such noises. Such models incorpo-
rate the simulation of parameters reported in official recom-
mendations [ITU, 1992]. Finally, the fourth subset contains
files generated through a dedicated device that performs the
complete simulation of a customized HF channel using sev-
eral parameters also present in recommendations [Duarte and
Colcher, 2021].

Figure 2 shows an example of the same file subjected to
different forms of noise (SNR = 10) in the dataset. It is inter-
esting to note that, although the files are very similar visually,
the built ASRs lose performance when submitted to different
subsets than those for which they were trained.

The fourth subset implements the most effective way to
generate simulated noise through an HF channel. For this
reason, this subset is used in the training phase of our SNRs.
Regardless of that, to be able to compare the four strategies
implemented in the dataset, we report the results in all sub-
sets.

4.2 Deep Speech Setup

Since Deep Speech implements the development of ASRs
through deep neural networks, the choice of hyperparame-
ters plays an important role in its training and consequent
performance. Thus, a poor choice of hyperparameters can
invalidate the comparison of ASRs, even when the objective
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is mostly to verify the impact of using noisy datasets in their
training.

Conversely, choosing the “best”” hyperparameter set can
be a costly task, especially with very large datasets. Keep-
ing that in mind, we followed some recommendations also
used for developing ASRs for others languages [Duarte and
Colcher, 2021]. All hyperparameters were set to the default
values, except the ones provided in Table 2. Also, the batch
training size was set to 16. This was the maximum value at
which the experiments could be run on our computing infras-
tructure, due to memory limitations available to each Graph-
ics Processing Unit (GPU).

Parameter Value
Epochs 100
Neurons per Layer 2048
Feature Extraction Audio Window Length 32 ms
Learning Rate 0.0001
Dropout Rate 0.40

Table 2. Deep Speech hyperparameter settings

In terms of using the language model, the same principle
cannot be applied. Language models are language depen-
dent and their best parameters (o« and () should be chosen
according to the data sets and alphabets used for training
the ASR. Following this idea, a straightforward language
model was trained using the KenLM tool [Heafield, 2011]
compatible with Deep Speech. Furthermore, Deep Speech’s
Im_optimize script was used to find the best values for o and
(5. The language model generation was performed using the
validated subset of the dataset, and, of course, better mod-
els can be created using larger text Portuguese corpora, but
for our tests, the derived language model has already greatly
improved the performance of the ASRs in terms of WER.

4.3 ASR Profile Identifier

Noise environments exhibit significant variation in terms of
type and conditions, posing a challenge for a singular ASR to
effectively handle every aspect. By training multiple ASRs
under different setups, it is possible to employ a strategy to

(b) AWGN noise (SNR = 10)

-80 4B

8192
4096
20481

1024

(e) Hardware Sim Noise (SNR = 10)
Figure 2. Spectrogram plots of the same file applied to all noise strategies

selectively choose the most appropriate one. In essence, this
approach allows the implementation of a strategy for deter-
mining the optimal ASR to use at any given time.

Here, as we may have ASRs trained in different circum-
stances, in our case trained with different SNR values, we
could choose the most suitable ASR for each processed au-
dio. In our case, we train a MLP neural network called Pro-
file Identifier (PI), whose main objective is to choose, among
the trained ASRs, which one was trained under the most sim-
ilar noisy or noise-free environment.

To train the PI, we extract the MFCC features from the
training dataset, dividing all files into audio slices. These
MFCC features are then used as inputs to a MLP training
process.

5 Experiments and Results

We present here the analysis of the results of the experi-
ments carried out in order to show our methodology for
building noise-robust ASRs. The materials needed to repro-
duce the experiments are listed in the “Availability of data
and materials” of this article, making available the source
codes for Deep Speech [Hannun et al., 2014], Common
Voice [Ardila et al., 2020] and its noisy-version [Duarte and
Colcher, 2021].

Basically, we want to provide evidence of three main as-
pects, which are: dealing with noisy audio data in the training
process, applying an LM after the classification process, and
using a profile identifier to determine the better ASR to be
applied for each instance. As already stated in Section 4, we
will only consider the fourth subset of the full dataset, limited
to its positive values of SNR for training, in order to ensure
a fair evaluation. Conversely, all subsets will be reported in
the evaluation.

We begin with the premise that random white noise cannot
accurately represent a real-world noisy environment. This
is supported by our initial experiments [Duarte and Colcher,
2021] and is consistent with the findings of all related works
on noise in ASRs presented in Section 2.

First, we evaluate the performance results in terms of CER
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for the trained ASR using only noiseless audio, as shown in
Figure 3. This is similar to the initial evaluation conducted by
Duarte and Colcher [2021] and it will serve us as a baseline
result. We can see that all subsets show the same pattern,
where the results improve with higher values of SNR. The
best results are always for the clean (noise-free) subset.

Character Error Rate (CER) x Signal-to-noise Ratio (SNR)
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Figure 3. CER results for the noise-free trained ASR

Continuing, in Figure 4, we present the same evaluation,
but now using ASRs trained with noise variant audios. Fig-
ures 4.a, 4.b, 4.c, and 4.d show, respectively, the results in
the test dataset for the ASRs trained with SNR values of 30,
20, 10, and 5.

As expected, better results are achieved for the fourth test
subset. However, it is also possible to observe a pattern
where results improve for SNR values close to those used
in training. This fact confirms the importance of performing
the ASR training in channel conditions similar to those where
it will be used, represented here by the SNR value. For in-
stance, the CER for the 4th subset and SNR30 is 0.4538 for
the noise-free trained ASR, while it improves to 0.3265 for
the ASR trained with the SNR30 audio variants. This behav-
ior is also present in ASRs that were trained with the other
audio variants.

Next, we present results where we mixed different audio
variants with their noiseless versions. The idea here is to
provide some sort of data augmentation by embedding noisy
audio in the training dataset. We incorporated the noisy audio
in stages, from the least noisy (SNR30) to the most noisy
(SNRS). Figures 5.a, 5.b, 5.c, and 5.d show, respectively,
the results of incremental addition on the noise-free training
dataset of noisy audio with SNR values of 30, 20, 10 and 5.

When comparing Figures 3 and 5, we can notice some in-
teresting behaviors. First, we see the anticipated result that,
the noise-free test subset shows superior performance when
training with a dataset composed of clean and noisy (SNR30)
audio than when training only with clean audio. As it can be
seen in the second column of Table 3 (CER (Clean)), the re-
sults in terms of CER with the ASR trained only with noise-
free audio is 0.3049, while the ASR trained with noise-free
and noisy audio (SNR30) has a performance of 0.2886. On
the other hand, augmenting the training dataset further does
not improve the results. This shows that the method can work
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just like a traditional data augmentation technique, where the
augmented dataset gives better results than the original one.

Table 3. Results for the data augmented sets

CER CER
(Clean) | (SNR>0)
Clean 0.3049 | 0.5275
SNR30+Clean 0.2886 | 0.4608
SNR20+SNR30+Clean 0.2936 | 0.4058
SNR10+SNR20+SNR30+Clean | 0.2981 0.3709
Full Training Set 0.3306 0.3902

Second, when comparing all generated SNRs by further
augmenting the training dataset, we see better results in terms
of average CERs across all test subsets with a positive SNR
value. We show these values on the third column of Table 3,
where we can see the improvement behavior in terms of the
average CER up to the second-to-last augmented set. This
indicates that augmenting with very noisy audio can degrade
performance.

In the next experiment, we want to evaluate the impact of
adding a LM to the output of the generated ASRs. This is
extremely important since ASRs make many single charac-
ter mistakes which impact little on CER but a lot on WER.
For instance, a single character error in a ten-length word pe-
nalizes 10% in terms of CER, while completely nullifying
(100% error) that word, in terms of WER. A good LM can
slightly improve CER results while greatly improving WER.

Table 4 presents the results of each individual ASR, while
training and evaluating with the same SNR values, with and
without the LM. For all trained ASRs, the LM is the same, as
already stated in Section 4.

Table 4. Impact of the Language Model in each individual ASR

CER WER
w/o LM | withLM | w/o LM | with LM
SNRO5 0.5169 0.4492 0.9173 0.6879
SNR10 0.4478 0.3777 0.8595 0.5927
SNR20 0.3741 0.2801 0.7869 0.4492
SNR30 0.3265 0.2300 0.7318 0.3773
CLEAN | 0.3049 0.1936 0.7158 0.3167

As we can see in Table 4, both CER and WER take ad-
vantage of using the LM. CER shows an average percent im-
provement of 8.79% while WER presents a huge 31.75% im-
provement on average.

Finally, we report the results of our experiments using the
PI strategy that determines the best ASR to use at any given
time. After some preliminary tests to find the optimal hyper-
parameter setup for the MLP, we discovered that the setup
outlined in Table 5 exhibited the most favorable performance-
to-training time ratio. The trained classifier can then be used
to determine the SNR value of any audio, among our fixed
list: CLEAN, SNR30, SNR20, SNR10, and SNRS.

Figure 6 shows the results obtained by the PI on the test
dataset. The primary idea is to illustrate the specific instances
where the Profile Identifier (PI) tends to make more errors
when attempting to identify the SNR noise values utilized in
the training dataset. As we can see in this figure, the PI has
great overall results, an accuracy of 0.74, but its performance
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Figure 4. CER results for each trained ASR with noise variant audio
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Parameter Value
Neurons Number of MFCC Features
Iterations 30
Audio slices 10
Alpha Value 0.0001
Solver L-BFGS

Learning Rate 0.1
Table 5. Hyperparameter setup for the PI training process

decreases as the audio gets noisy. For instance, the CLEAN
class has a fl-score of 0.99, while SNR10 has a fl-score
of 0.43. Anyway, the most common mistakes are made in
adjacent classes (SNR10 as SNRO5 and SNR20 as SNR10),
which still helps by assigning a good ASR for transcription
recognition.

Using the proposed strategy, we can build an ASR which
is a two-step transcription system: first, we determine the
“best” ASR to use and then apply it to the input audio. Fig-
ure 7 shows the results of this PI-derived ASR in terms of
WER (bar plots) and CER (line plots), both with or without
the LM.

Figure 7 compares the result of this strategy to the ones that
use an individual ASR trained with only one kind of noisy

audio data (one SNR value). We also compare it to a theoret-
ical “perfect” PI that knows the answer of which SNR value
was used to generate the noisy data. We denote this theoret-
ical PI as the LowerBound for our strategy. Keep in mind
that the results shown in this figure are not the same as those
shown in Table 4, as that table shows results over the individ-
ual noisy datasets, while Figure 7 shows averages across all
noisy datasets.

As we can see, the provided strategy improves the results
on all individually trained ASRs, while presenting competi-
tive results over the theoretical LowerBound strategy. This
indicates that even making small mistakes in terms of the
SNR value of the audio file, the chosen ASR can provide
a good transcription. For example, the averages CER and
WER (with the LM) for the PI are, respectively, 0.3163 and
0.5067, while for the “SNR20”-trained ASR (best individu-
ally) are 0.3982 and 0.5886. On the other hand, the best the-
oretical results, which are, respectively, 0.3061 and 0.4848,
provide only a small improvement.

As a learning experience from the experiments carried out
with the proposed trained ASRs, we can initially notice that
training with noisy data is a good strategy, mainly, but not
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Figure 5. CER Results for the ASRs trained with the noisy augmented sets
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Figure 7. CER and WER results for the individuals ASRs, the Profile Iden-
tifier, and the LowerBound, across all noisy datasets

augmentation strategy to build the training dataset or a hy-
brid strategy where members of an ASR committee can be
selected individually. Also, the use of an LM is very im-
portant, as ASRs generated with such techniques can lead to
simple common errors that can be easily corrected, providing
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better results in terms of WER.

All experiments presented here were performed with the
same type of noise, originated from communication interfer-
ence, and specialized based on its SNR, the most important
attribute in this model. We may extrapolate that similar per-
formance and behavior can be obtained by generated ASRs
for other noise types or parameter variations in the modeling,
as long as it is provided a way to represent such noise within
the training dataset, either by collected examples, mathemat-
ical modeling, or dedicated systems for their generation. In
this way, the more reliable this representation, the better the
performance of the generated ASRs when applied to the same
conditions in which the audios used in the training were ob-
tained, while the ASRs generated with only noise-free audio,
generally, perform worse.

6 Conclusion

The development of ASRs has become increasingly impor-
tant due to their widespread use in several devices. Still,
their performance often suffers in noisy environments where
generic data augmentation techniques are ineffective, high-
lighting the need to integrate real noisy data into training for
improved performance. The main aim of this work was to
present a methodology for training ASRs in noise-specific
environments, using representations of target noise obtained
through mathematical modeling or noisy samples. Multiple
approaches were presented for constructing these ASRs, em-
ploying traditional DNN training via the Deep Speech tool,
along with techniques like data augmentation, hybrid models,
and ensemble methods. Experimental results showed that the
proposed training strategies improve ASR performance, with
the hybrid ASR, incorporating noise characteristics, improv-
ing WER by 18.70% compared to ASRs trained solely on
noise-free audio.

The contributions of the present work outpace the de-
velopment of an ASR for the Portuguese language robust
to telecommunications noise. In addition to the develop-
ment and experimentation of an ASR prototype that deals
with characteristic noises, our contribution lies in providing
substantiating evidence endorsing the inclusion of noisy au-
dio during the training phase, through traditional training of
DNNs, ensemble methods that select the best ASR to be used
for each audio input, and models trained using data augmen-
tation techniques targeting at the characteristics present in
the audio. Such experiments show that the training of ASRs
can highly benefit from these data, in addition to the use of
language models that allow the correction of transcription
errors. All evaluations showed better results than the consid-
ered baseline Duarte and Colcher [2021], which was specifi-
cally designed to showcase an experiment intended to evalu-
ate the feasibility of using the proposed dataset.

Despite the contributions made in this work, certain lim-
itations should be acknowledged. Firstly, the utilization of
a dataset in a single language restricts the scope of perfor-
mance comparison. Expanding to multiple languages could
provide a more comprehensive understanding of the pro-
posed methodology’s efficacy across linguistic variations.
Furthermore, the hardware infrastructure imposed limita-
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tions on conducting experiments with more powerful ASR
development frameworks, and the access to enhanced com-
putational resources would enable the use of more complex
ASR models, improving the performance of the proposed
methodology. Additionally, while the study predominantly
focuses on modern DL approaches for denoising, the incor-
poration of traditional techniques for denoising was not ex-
plored. Integrating classical denoising approaches could of-
fer valuable insights and contribute to a better evaluation of
the proposed methodology.

As future work, moving forward, we intend to experiment
with other noisy environments by changing the distortion pa-
rameters and creating even more specialized ASRs. Another
noisy environment of interest is the Industry, where equip-
ment and tools can create a hostile noisy environment for
ASRs, particularly when using helmets and communication
headsets. We also plan to improve the developed ASRs, in-
corporating more complex models into the training, as well
as better language models. For example, the training method-
ology proposed here can be incorporated into the work of
Quintanilha ef al. [2020] or Gris et al. 2021; 2022, who
also addressed the Portuguese language, generating ASRs
with even better performance than those reported here. Ad-
ditionally, recent models such as Whisper [Radford et al.,
2023] demonstrated significant robustness to noise, making
it worthwhile to compare their performance for the specific
noise context proposed here. Since employing an ensem-
ble of ASR models may be computationally intensive, future
research might focus on models that enhance audio quality
before feeding it into the ASR, thereby improving the per-
formance of any model used. Furthermore, the idea behind
the profile identifier can be expanded to address other audio
challenges, such as multiple speakers or different accents. Fi-
nally, we intend to test our methodology in another language,
more precisely English, as there are many datasets available,
to determine if the same kind of improvements are valid for
other languages.
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