
Journal on Interactive Systems, 2025, 16:1, doi: 10.5753/jis.2025.5428
 This work is licensed under a Creative Commons Attribution 4.0 International License.

A hereditary attentive question answering framework for
knowledge bases
Rômulo C. de Mello [Federal University of Juiz de Fora | romulo.mello@estudante.ufjf.br]
Jorão Gomes Jr. [Vienna University of Economics and Business | jorao.gomes.junior@wu.ac.at]
Jairo Francisco de Souza [Federal University of Juiz de Fora | jairo.souza@ufjf.br]
Victor Ströele [Federal University of Juiz de Fora| victor.stroele@ufjf.br]

 Campus Universitário, Rua José Lourenço Kelmer, s/n - São Pedro, Juiz de Fora - MG, 36036-900

Received: 15 January 2025 • Accepted: 01 August 2025 • Published: 22 August 2025

Abstract: Background. The rapid growth of online data has made retrieving relevant information a challenging
task, prompting the rise of Knowledge Base Question Answering (KBQA) systems that handle complex, multi-hop
queries. Purpose. This extended work refines our previous pipeline by introducing structured dummy templates, a
Hereditary Tree-LSTM (HTL) for classification, and more comprehensive analyses of entity recognition, property
extraction, and SPARQL assembly. Methods. We enhanced the LC-QUAD 2.1 dataset with standardized templates
and evaluated a flexible pipeline that integrates DeepPavlov, Falcon, SpaCy, qualifiers constraints, and reverse
lookups. Results. Our experiments reveal that multi-tool entity recognition outperforms single-tool methods, while
property extraction benefits from extended property sets and refined ranking strategies. Overall SPARQL correct-
ness reaches up to 70–80% in mid-complex queries but remains lower in domain-specific subsets. Conclusion. The
proposed synergy of NLP tools and refined dummy templates increases coverage for complex KBQA, though fur-
ther improvements in morphological handling and specialized embeddings may be needed to address challenging
multi-hop or niche queries comprehensively.

Keywords: KBQA, C-KBQA, Entity Recognition, Property Extraction, LC-QUAD

1 Introduction

The large volume of data available on the internet has made
the task of finding relevant information even more challeng-
ing [Jang et al., 2017]. In this context, new information re-
trieval methods have enabled more intelligent searches, tak-
ing into account the context of the search. Additionally,
advances in Natural Language Processing (NLP) research
have allowed a better understanding of the search context,
enabling Knowledge-based Question Answering (KBQA)
frameworks to emerge as an efficient solution to meet this
demand [Lan et al., 2021].
In particular, we focus on Complex Knowledge-Based

Question Answering (C-KBQA), a subclass of KBQA that
aims to answer questions involving multiple entities, prop-
erties, and reasoning steps such as comparisons, temporal
relations, or conditions. This distinction allows for a more
precise evaluation of systems capable of handling intricate
question structures.
However, the complexity of the questions users ask re-

mains a significant challenge for KBQA frameworks [Qin
et al., 2020]. Questions may involve multiple concepts, con-
ditional or comparative reasoning, and temporal aspects, re-
quiring the system to understand both the mentioned enti-
ties and the relationships among them. For instance, ques-
tions such as “Which films directed by Quentin Tarantino
were nominated for an Oscar?” or “Is the Eiffel Tower taller
than the Statue of Liberty?” demand a deep understanding
of entities, properties, and comparisons [Xie et al., 2016].
This complexity increases significantly when implicit con-
text needs to be inferred, as in questions like “What is the

country’s capital?” [Hu et al., 2022].
Large language models (LLMs), such as GPT, have shown

significant advances as Question-Answering (QA) systems,
providing impressive results when answering natural lan-
guage questions [Daull et al., 2023]. However, these mod-
els present limitations, especially in accessing information
not included in their training data [Tan et al., 2023]. On the
other hand, KBQA frameworks are designed to access struc-
tured knowledge bases, such as knowledge graphs, enabling
more efficient retrieval of updated and domain-specific in-
formation. Previous work has explored the use of semantic
knowledge graphs for integrating corporate data, demonstrat-
ing the potential of these approaches in precise information
retrieval [Rolim et al., 2021].
Additionally, frameworks that evaluate the connectivity of

entity pairs in knowledge bases have highlighted the impor-
tance of understanding relationships among entities to con-
struct accurate answers [Jiménez et al., 2021b] and [Jiménez
et al., 2021a]. Such approaches emphasize the relevance
of robust entity and property extraction systems, as used in
KBQA frameworks. Moreover, methods that evaluate en-
tity similarity in RDF knowledge bases have advanced the
semantic understanding of queries, improving the retrieval
of contextually relevant data [Jiménez et al., 2022].
In this study, we propose a KBQA framework featuring

a practical and flexible pipeline designed to handle com-
plex knowledge-based questions. The pipeline is modularly
structured, allowing for the replacement of entity recognition
and property extraction models, as well as refinements in
SPARQL queries using qualifier constraints. The flexibility
of the proposed approach is inspired by studies demonstrat-

https://doi.org/10.5753/jis.2025.5428
https://orcid.org/0000-0001-5023-6183
mailto:romulo.mello@estudante.ufjf.br
https://orcid.org/0000-0001-6712-3943
mailto:jorao.gomes.junior@wu.ac.at
https://orcid.org/0000-0002-0911-7980
mailto:jairo.souza@ufjf.br
https://orcid.org/0000-0001-6296-8605
mailto:victor.stroele@ice.ufjf.br

Hereditary KBQA Framework Mello et al. 2025

ing the effectiveness of customizable frameworks in differ-
ent domains [Gomes Jr et al., 2022]. The proposed frame-
work aims not only to improve the accuracy of responses but
also to facilitate future adaptations to other languages and
domains.
This paper is an extended and revised version of a pre-

viously published work [Mello et al., 2024]. We discuss
the flexibility of KBQA frameworks and present new experi-
ments to evaluate the application of the proposed techniques
in more complex scenarios. The study includes enhance-
ments in SPARQL query generation, with improved preci-
sion in entity and property recognition, as well as the integra-
tion of refinements in model adaptation. Our goal is to pro-
vide a practical and modular approach that can be tailored to
different contexts and requirements, broadening the applica-
bility of knowledge-based question-answering systems.
This paper is organized as follows: Section 2 presents re-

lated work, discussing existing approaches and their contri-
butions to the field. Section 3 describes the materials and
methods used in this study, including dataset preprocessing,
template grouping by semantic proximity, dummy template
creation, and the tools used for entity and property extraction.
Section 4 presents and discusses the obtained results, high-
lighting the tool combinations that achieved the best perfor-
mance. Section 5 concludes the work, discussing the implica-
tions of the results and suggesting future research directions.

2 Related Work
Research in Knowledge-Based Question Answering
(KBQA) has explored various approaches to enhance
the precision and efficiency of these systems, especially
when addressing complex questions. Complex questions
typically involve multiple entities, multi-hop reasoning,
numerical comparisons, temporal constraints, or label-based
textual queries. These questions are inherently challeng-
ing, as evidenced by performance metrics reported in the
literature—systems often struggle to achieve high accu-
racy consistently across diverse datasets. Consequently,
advancements in KBQA frameworks frequently focus on
incrementally improving the ability to handle complex
structures and nuanced semantic relationships.
This section reviews significant contributions in four main

areas: entity recognition, relation extraction, template match-
ing, and frameworks.

2.1 Entity Recognition
Entity recognition is a fundamental task in KBQA, involv-
ing identifying entities mentioned in the user’s query. One
notable system in this area is TagMe [Ferragina and Scaiella,
2010], which introduced a technique for annotating short text
fragments with relevant Wikipedia hyperlinks. Although de-
veloped in 2010, TagMe is still frequently referenced in the
literature due to its efficiency in processing short and noisy
texts.
The system uses a three-step process: spot identification,

sense disambiguation, and annotation. A spot refers to a text
fragment—such as a word or phrase—that may correspond

to a Wikipedia entity. First, candidate spots are identified
in the input text. Then, the system performs disambigua-
tion by selecting the most appropriate Wikipedia page for
each spot based on contextual and statistical information. Fi-
nally, the annotation step links each spot to its corresponding
Wikipedia article, providing users with enriched context and
facilitating access to background knowledge.
Another significant contribution in this field is Falcon

[Sakor et al., 2019], a rule-based approach for linking en-
tities and relationships in Wikidata. Falcon employs core
principles of English morphology, such as tokenization and
N-gram tessellation, to link entity and relation surface forms
in short sentences to Wikidata entries. This method includes
a local knowledge base composed of DBpedia entities to en-
hance the recognition and linking process. Falcon provides a
ranked list of entities and relations annotated with their Inter-
nationalized Resource Identifier (IRI) inWikidata, aiding the
NLP community in entity and relation recognition. The ap-
proach outperforms existing baselines in entity linking tasks,
demonstrating high F-score values and robustness across var-
ious datasets like QALD-9 [Ngomo, 2018] and LC-QuAD
2.0 [Dubey et al., 2019].

2.2 Relation Extraction

Relation extraction is another crucial component of KBQA
systems, focusing on identifying and linking relationships be-
tween entities within a query. SLING [Mihindukulasooriya
et al., 2020] is a semantic analysis framework designed to
link text relationships to knowledge bases accurately. The ap-
proach integrates multiple methods, including statistical Ab-
stract Meaning Representation (AMR) mapping, distant su-
pervision data generation, and various relation-linking mod-
ules. The statistical AMR mapping technique is pivotal
in identifying relationships by normalizing syntactic vari-
ations between sentences and providing strong predicates.
Distant supervision data generation creates training exam-
ples mapped to corresponding knowledge base relations, en-
hancing the system’s learning process. SLING leverages
transformer-based architectures to encode AMR graphs and
question text for relation linking, achieving state-of-the-art
performance across datasets such as QALD-7 [Usbeck et al.,
2017], QALD-9 [Ngomo, 2018], and LC-QuAD 1.0 [Trivedi
et al., 2017].
Another innovative approach in relation extraction is pre-

sented by [Rossiello et al., 2021], which proposes a sequence-
to-sequence model enhanced with structured data from the
target knowledge base. This model generates a sequence
of relations based on the input question text, enriched by
an entity-linking system that queries the knowledge base
to retrieve candidate relations. The model’s decoder then
uses the enriched input representation to generate a struc-
tured sequence of argument-relation pairs, considering the
contextual information and candidate relations. This ap-
proach significantly improves relation-linking performance
in question-answering systems, demonstrating notable en-
hancements over existing methods.

Hereditary KBQA Framework Mello et al. 2025

2.3 Template Matching
Templatematching involves identifying patterns in user ques-
tions and matching them to predefined templates, facilitating
the generation of structured and well-formatted responses.
In [Dileep et al., 2021], the authors explore machine learn-
ing models and preprocessing techniques to classify natu-
ral language questions into appropriate templates using the
LC-QUAD 2.0 dataset. They train classifiers such as XG-
Boost and Random Forest, utilizing Part-of-Speech (POS)
tagging and FastText for preprocessing. POS tagging assigns
grammatical tags to words, helping the system understand
the syntactic structure of questions, while FastText captures
the semantic meaning of words through embeddings. The
combination of XGBoost and POS+FastText preprocessing
achieves superior accuracy in classifying questions into rel-
evant templates, showcasing the effectiveness of template-
based question answering.
Another noteworthy study is presented by [Gomes et al.,

2022], which introduces a hereditary attention mechanism
combined with template matching to enhance semantic ex-
traction from questions. This approach categorizes com-
plex questions into answer templates, leveraging hierarchi-
cal structures within the questions. The hereditary attention
mechanism operates bottom-up, where each neural network
cell inherits attention from another cell, capturing and pri-
oritizing the most relevant information at different levels of
the question’s structure. This method improves the robust-
ness and accuracy of KBQA systems, providing a reliable
technique for answering complex questions from knowledge
bases.

2.4 Frameworks
Recent advancements in KBQA framework have highlighted
the effectiveness of integrating various methodologies to im-
prove performance in complex queries. Two works in this
area are the RnG-KBQA and ReTraCk framework, which
present approaches to enhance the accuracy and generaliza-
tion capabilities of KBQA framework.
The RnG-KBQA system, developed by [Ye et al., 2021],

addresses the limitations of traditional KBQA systems that
struggle with unseen knowledge base (KB) schema items.
RnG-KBQA combines a ranking-based approach with a gen-
eration model to enhance coverage and generalization. The
system first ranks candidate logical forms based on the ques-
tion. Then, it uses a generation model conditioned on the
question and top-ranked candidates to create the final logi-
cal form. This dual approach significantly improves perfor-
mance, achieving state-of-the-art results on the GRAILQA
[Dutt et al., 2023] and WEBQSP [Sorokin and Gurevych,
2018] datasets, with notable improvements in zero-shot gen-
eralization.
However, RnG-KBQA also presents some limitations.

The complexity of combining ranking and generation can
lead to longer processing times and increased computational
resource requirements. Additionally, the effectiveness of the
generation model may be limited by the quality of the train-
ing data, affecting the system’s ability to handle ambiguous
or poorly formulated queries.

The ReTraCk, developed by [Chen et al., 2021], intro-
duces a flexible framework that integrates multiple stages for
entity recognition, relation extraction, and ranking. ReTraCk
emphasizes the importance of a modular design, allowing for
easy integration of different models and techniques at each
stage. The system has shown remarkable performance in
various benchmarks, demonstrating its adaptability and ef-
ficiency in handling diverse KBQA tasks. The approach fo-
cuses on iterative refinement and ranking to enhance the ac-
curacy of the generated answers, contributing to the develop-
ment of a more robust KBQA framework.
Despite its advantages, ReTraCk also faces challenges. In-

tegrating and adjusting multiple models and techniques can
increase the system’s complexity, making maintenance and
updates more difficult. Additionally, since ReTraCk relies
onmultiple processing stages, any error in one of these stages
can compromise the accuracy of the final answer. The mod-
ular approach, while flexible, can result in inconsistencies
when different modules are not perfectly aligned. Moreover,
ReTraCk is a resource-intensive system requiring consider-
able computational resources, which can be a barrier to de-
ployment in production environments with limited resources.
These works underscore the importance of combining

ranking and generation techniques to overcome the limita-
tions of the traditional KBQA framework, paving the way for
more accurate and generalizable solutions. By integrating ad-
vancedNLP andmachine learningmodels, both RnG-KBQA
and ReTraCk contribute significantly to the field, offering
valuable insights and methodologies for future research in
KBQA. However, the identified limitations of these systems
highlight the ongoing need for refinement and innovation to
improve the efficiency and effectiveness of KBQA systems.
This work shares the same principles of these frame-

works, such as flexibility and their use for different datasets.
However, our approach stands out by focusing on com-
plex queries, which often require the integration of multiple
pieces of information, reasoning over data, and understand-
ing nuanced context. The solution allows new entity recog-
nition and property extraction models if needed. We imple-
mented methods to retrieve all properties related to an entity
and developed a system to dynamically fill placeholders in
templates with the correct values extracted from the knowl-
edge base. These methods ensure the pipeline can easily
adapt to new requirements and improvements. Finally, the
system’s structured design can decompose complex queries,
identify relevant entities and relationships, and construct pre-
cise SPARQL queries using entity recognition, relation ex-
traction, template matching, ranking, and slot-filling meth-
ods.

3 Materials and Methods
This section provides a more detailed view of the study’s
methodological underpinnings, describing the choice and
preparation of datasets, as well as the processes of template
grouping and the creation of dummy templates with place-
holders. In this expanded version, the objective is not only to
describewhatwas done but also to explainwhy each step was
essential for handling complex questions in a Knowledge-

Hereditary KBQA Framework Mello et al. 2025

Based Question Answering (KBQA) environment.

3.1 Methodological Introduction
The primary motivation for our C-KBQA framework is to
ensure that complex questions—those involving multiple en-
tities, temporal filtering, conditional counting, and chained
relationships—can be consistently converted into coherent
SPARQL queries. Such questions often require more than
simply identifying one entity; they frequently include ele-
ments such as “What is the birth date of the director of a cer-
tain film, as long as the film received an award after 2000?”
or “Which players were transferred to a different team be-
fore a specific year?” These examples reveal the variety of
multi-hop operations and precise filters that must be man-
aged. With this in mind, we looked for a dataset that both
captured these scenarios of high complexity and allowed for
fair performance assessment.
We focused on the Large-scale Complex Question Answer-

ing Dataset (LC-QUAD) 2.0, subsequently refined into LC-
QUAD 2.1. In the following sections, we outline the key
characteristics of each dataset, emphasizing the inconsisten-
cies that led to LC-QUAD 2.1 and explaining how we or-
ganize and structure SPARQL templates for such complex-
ity. Although the first subsection addresses why these data
were chosen, subsequent subsections explain the semantic
grouping of templates and the introduction of dummy tem-
plates—placeholders that simplify the mapping from ques-
tions to SPARQL queries.

3.2 LC-QUAD 2.0
LC-QUAD 2.0 [Dubey et al., 2019] was created to push
beyond the limitations of earlier QA datasets by signifi-
cantly expanding both the number of queries and the breadth
of question types. Unlike prior resources that often fea-
tured only a few thousand simple questions, LC-QUAD 2.0
contains over 30,000 English-language questions address-
ing complex, multi-hop structures and advanced SPARQL
features such as numeric and textual filters, COUNT opera-
tions, and temporal qualifiers. This magnitude of content
was crowdsourced via the Amazon Mechanical Turk plat-
form, ensuring broader linguistic variety and the inclusion
of paraphrased versions for many questions.
A central goal in developing LC-QUAD 2.0 was to pro-

mote more realistic testing of how QA systems handle multi-
faceted queries. Rather than restricting questions to a sin-
gle triple pattern or straightforward relationships, the authors
introduced scenarios requiring two or more interconnected
facts, time-based conditions (for instance, an event that must
occur before or after a given year), and textual constraints
(involving contains or STRSTARTS). These additions com-
pel systems to integrate multiple knowledge graph edges, in-
terpret qualifiers (such as an event’s date or location), and
cope with more diverse language variations. To facilitate this
diversity, the dataset was constructed around both Wikidata
and DBpedia 2018, allowing queries to tap into distinct but
overlapping knowledge graphs and highlight potential differ-
ences in how systems map question text to each resource’s
ontology.

Another distinctive contribution is the deliberate inclusion
of paraphrased questions. The dataset’s creators recognized
that QA systems trained exclusively on a single wording of a
query might overfit to specific linguistic cues. By askingMe-
chanical Turk workers to restate or paraphrase each question,
LC-QUAD 2.0 ensures that machine-learning approaches
cannot rely solely on narrow syntactic patterns. This require-
ment to handle varying formulations of the same intent is es-
pecially relevant for advanced queries where multi-hop rea-
soning or qualifiers are combined. Systems that succeed on
LC-QUAD 2.0, therefore, must prove robust against rephras-
ings and synonyms.
Although LC-QUAD 2.0 represented a major leap in

complexity and quantity over its predecessor LC-QUAD
1.0, certain practical issues emerged. The large-scale
crowdsourcing methodology led to occasional inconsisten-
cies between question text and the assigned SPARQL query,
along with instances of overlap or duplication in the data.
Some queries proved too short or vague to give the sys-
tem meaningful clues, while others veered toward extreme
length or unwieldy lexical constructions. These challenges
made it harder to ascertain whether errors arose from a
model’s limitations or from mismatched or duplicated en-
tries. Nonetheless, the essential complexity the dataset
introduced—covering two-intent questions, qualifier usage,
date-based restrictions, and textual substring operations—
marked a turning point in the field. No earlier dataset had
offered such an extensive set of natural language queries with
corresponding SPARQL templates across DBpedia andWiki-
data.
Researchers seeking to build or evaluate complex QA sys-

tems found multiple uses for LC-QUAD 2.0. One com-
mon application involved entity-linking or predicate-linking
tasks, where the dataset’s short, sometimes paraphrased ques-
tions forced algorithms to handle ambiguous references and
partial textual matches. Others employed LC-QUAD 2.0 for
training end-to-end question-answering pipelines that gener-
ate SPARQL queries. The variety of advanced operations
present in the dataset—a reflection of the depth of Wiki-
data’s and DBpedia’s schemas—stimulated the development
of machine-learning approaches that handle multi-hop pat-
terns and complicated string filters more gracefully.

3.3 LC-QUAD 2.1
LC-QUAD 2.1 [Gomes Jr. et al., 2021] emerged as a refined
and standardized update to the large-scale LC-QUAD 2.0
dataset. Building upon the original collection of more than
30,000 questions, its creators undertook a comprehensive re-
view to eliminate duplicate entries, remove malformed or ex-
cessively short items, and address inconsistencies between
question text and the associated SPARQL queries [Gomes
et al., 2022]. The resulting dataset preserves the core com-
plexity of multi-hop reasoning, numeric and textual filters,
and advanced operators, yet offers amore uniform set ofmap-
pings from natural language to formal query structures. By
mitigating issues like duplicated questions and mismatched
references, LC-QUAD 2.1 reduces the possibility of QA sys-
tems failing for reasons unrelated to genuine semantic or lex-
ical challenges.

Hereditary KBQA Framework Mello et al. 2025

A defining enhancement introduced in LC-QUAD 2.1 was
the concept of “dummy” elements within each SPARQL
query. Rather than embedding fixed QIDs or numeric val-
ues in the query, placeholders such as DUMMY_S (for sub-
jects), DUMMY_P (for properties), DUMMY_O (for objects), and
DUMMY_F (for numeric or string filters) replaced the original
references. This strategy separates the question’s broad logi-
cal shape—for example, the number of triple patterns or the
presence of filters—from its specific data-level details. Con-
sequently, the pipeline can be split into two distinct phases.
In the first phase, the system classifies a user query to deter-
mine which structural “template” it matches. In the second,
the recognized placeholders are filled with the relevant entity
IDs, property IDs, or numeric/string constraints discovered
by entity- and property-linking modules.
This two-phase design streamlines experimentation in sev-

eral ways. It explicitly distinguishes structural misinterpre-
tation (choosing the wrong SPARQL “shape”) from errors
in entity linking or property mapping (supplying the wrong
QIDs or thresholds). If the pipeline is already confident in
the structural template, any subsequent errors become easier
to localize and correct, often without having to retrain the
entire model. Moreover, dummy placeholders allow incre-
mental improvements in entity recognition or property detec-
tion to be introduced without disrupting the dataset’s underly-
ing template library. As a result, a flawed final SPARQL no
longer conflates poor structural analysis with simple linking
missteps, making system failures more traceable to specific
components. This modularity in query building has proven
particularly valuable when researchers experiment with new
entity-linking strategies or domain-specific expansions.
By isolating each question’s logical skeleton and its data-

level references, LC-QUAD 2.1 presents a cleaner testbed
for KBQA systems. Whether a query demands two or three
hops, textual substring checks, or date-qualifier logic, the
dummy format ensures the system’s classification step accu-
rately pins down which query form applies, while the linking
step concentrates on populating placeholders with the correct
QIDs or numeric constraints. In this sense, LC-QUAD2.1 re-
tains the multifaceted complexity of LC-QUAD 2.0 but pro-
vides a more stable platform for diagnosing the root cause of
system errors and advancing the field of complex KBQA.

3.3.1 Limitations and Threats to Validity

LC-QUAD 2.0 was created through large-scale crowd-
sourcing, a process that produced an impressively diverse
benchmark but also introduced substantial noise: near-
duplicate questions, ultra-short prompts that resemble key-
word searches, malformed characters, and mismatches be-
tween the question text and the corresponding SPARQL
query. LC-QUAD 2.1 addresses these issues through a clean-
ing phase, but the very act of filtering the data introduces its
own set of threats to validity.
The review relies on a few generic heuristics—length and

character checks, duplicate detection, and consistency tests
that check for the existence of referenced entities and prop-
erties. While these rules were chosen for their simplicity
and transparency, they inevitably reflect subjective design
choices. Different thresholds for what is considered “too

short” or alternative strategies for identifying duplicates may
result in a slightly different corpus. Similarly, edge cases
may go unnoticed or be inadvertently removed, leaving resid-
ual noise or eliminating legitimate linguistic variety.
A limitation arises from the evaluation protocol. Perfor-

mance is assessed by the exact string match between a pre-
dicted SPARQL query and the gold standard. A semantically
correct query that follows an alternative but valid property
path is marked as erroneous, while a syntactically perfect
query may still produce an erroneous answer if the knowl-
edge graph has evolved. Relying on this metric alone risks
under- or overestimating practical effectiveness; further eval-
uations based on answer sets or user-centric studies would
provide a more complete picture.
Finally, entity and property linking depends on specific

versions of external NLP libraries and a specific snapshot of
Wikidata. Updates to these tools or the underlying graphmay
change tokenization thresholds, embedding spaces, and fea-
ture frequencies, meaning that future replications may pro-
duce different results. Periodic reevaluation with updated
tools, alternative datasets, and broader metrics remains es-
sential to monitor genuine progress on KBQA.

3.4 Creating Dummy Templates
A central refinement introduced by LC-QUAD 2.1, in com-
parison to LC-QUAD 2.0, was the decision to separate the
fixed logical form of each SPARQL query from the spe-
cific QIDs, property labels, and numeric or textual filters
that appeared in it. In LC-QUAD 2.0, each query was fully
specified and directly referenced entities such as wd:Q3772
(Quentin Tarantino) and properties like wdt:P57 (directed
by). However, for handling complex queries in a more flex-
ible, generalizable fashion, LC-QUAD 2.1 introduced place-
holders in place of these explicit identifiers. This step is re-
ferred to as “dummy-fication.”
During dummy-fication, each original SPARQL query

was rewritten with placeholders (DUMMY_S for subjects,
DUMMY_P for predicates, DUMMY_O for objects, and DUMMY_F
for numeric or string filters). For example, a fully specified
query involving two properties and a numeric cutoff would
be converted to a structure that indicates the same number
of triple patterns and filters, but no longer binds them to a
specific QID or integer. Through this process, the dataset
preserves only the “shape” of each query (such as whether it
is ASK or SELECT, how many hops it contains, or how many
comparison filters are included) without tying those shapes
to fixed IDs or values.
Performing this dummy creation before any classification

or grouping steps has practical benefits. It clarifies that two
queries referencing different QIDs but using the same un-
derlying pattern (for instance, “Which films directed by X
were nominated for Y after year Z?”) share a single struc-
tural form. Consequently, the pipeline can focus on the logic
of the query—how many relationships or filters it contains—
rather than on the specific details of each entity or property.
Table 1 illustrates a few dummy templates, highlighting how
the “raw” references get replaced by placeholders while pre-
serving the SPARQL skeleton.
By ensuring every query adheres to this placeholder-based

Hereditary KBQA Framework Mello et al. 2025

 SELECT ?film WHERE {
 ?film wdt:P57 wd:Q3772 .

 ?film wdt:P1411 wd:Q19020.
 } LIMIT 10

 SELECT ?ent WHERE {
 ?ent DUMMY_P DUMMY_O .

 ?ent DUMMY_P DUMMY_O.
 } LIMIT 10

BEFORE

AFTER

Figure 1. Illustration of how raw SPARQL becomes a dummy template
with placeholders

format, the dataset becomes more amenable to subsequent
pipeline tasks such as grouping queries by complexity or
training a model that classifies questions according to their
structure.

3.5 Grouping Templates by Semantic Proxim-
ity

After converting all LC-QUAD 2.0 SPARQL queries into
dummy templates (i.e., replacing explicit entity IDs, property
IDs, and numeric/string values with placeholders), the next
essential step in LC-QUAD2.1was to cluster these templates
according to their structural and semantic features. This pro-
cess yielded a total of 13 groups (indexed 0 through 12), cov-
ering 29 distinct dummy templates. Each group comprises
one or more templates that share a common logic or level of
complexity, such as whether the query is ASK or SELECT, if
it requires multi-hop reasoning, or whether it applies numer-
ic/string filters. Table 1 summarizes the groups, noting the
number of templates in each, a brief description, and a single
Dummy SPARQL example from that group.

By grouping dummy templates that share common struc-
tures, LC-QUAD 2.1 provides a concise map of how query
complexity progresses. A single ASK plus numeric filter
might belong to Group 0, a two-hop SELECT might reside
in Group 4 or 5, and textual label checks fall under Groups
7, 9, or 11. This organization allows the pipeline to narrow
down the relevant set of template “shapes” when faced with
a user question that, for instance, demands multi-hop plus a
textual filter.
Although the table above highlights the 13 main groups,

each group can contain multiple related templates, reflect-
ing minor variations in operators, filters, or multi-hop steps.
For instance, Group 0 encloses 4 templates (IDs 0.1–0.4),
whereas Group 4 includes 5 (4.1–4.5). This arrangement en-
sures that if new SPARQL forms arise—e.g., a specialized
subquery or advanced date operator—one can extend or re-
fine an existing group or define a new one, keeping the clas-
sification consistent.
Clustering these dummy templates by semantic proxim-

ity underpins the entire pipeline’s ability to locate the cor-
rect SPARQL skeleton quickly. Once a user query is recog-
nized as, say, a multi-hop SELECT with date-based filtering,
the system knows exactly which group (and subsequently
which specific template) tomatch. This strategy significantly
reduces the complexity of forming valid SPARQL queries,
since the pipeline only needs to fill placeholders (DUMMY_S,
DUMMY_P, DUMMY_O, DUMMY_F) with the correct QIDs or nu-
meric thresholds after the structure is identified.
Moreover, the defined dummy templates explicitly sepa-

rate the structural logic of a query from the specific enti-
ties and properties involved. This structural abstraction fa-
cilitates the reuse or adaptation of templates across differ-
ent datasets, provided the questions share similar semantic
or logical patterns. For example, questions from alternative
datasets such as QALD [Perevalov et al., 2022] or KQA Pro
[Cao et al., 2022], which also involve multi-hop reasoning,
numeric filtering, temporal constraints, or label-based tex-
tual queries, can often be mapped onto existing structural
groups identified in this study.
To apply the templates to a new dataset, it may be neces-

sary to first verify whether the dataset’s query structures are
already represented in the existing Hereditary Tree-LSTM
(HTL) templates. If a new query structure emerges, it must
be incorporated into the HTL templates. Subsequently, a
fine-tuning process is essential, either by integrating the new
template within an existing semantic group or creating a new
group specifically tailored to accommodate this additional
structure.
The hierarchical organization into structural groups based

on complexity and semantic characteristics ensures scalabil-
ity and systematic growth. This allows the framework to
adapt effectively as new queries with minor structural vari-
ations appear, integrating these seamlessly as extensions or
refinements within existing groups.
Nonetheless, while structural templates form a solid ba-

sis for generalization, their successful application largely de-
pends on the adaptability of the entity and property recogni-
tion modules. Therefore, generalizing to new datasets neces-
sitates the incorporation of domain-specific embeddings, re-
fined property ranking strategies, and specializedmorpholog-
ical processing tailored to the terminology and characteristics
of the target knowledge base. These targeted enhancements
are critical to maintaining high pipeline accuracy, even when
processing novel or domain-specific query formulations.

3.6 Hereditary Tree-LSTM (HTL)
After defining the overall strategy for grouping SPARQL
templates and refining the dataset into dummy structures, a
crucial question arises: how can the system determine which
template best matches a user’s complex question, especially
when multiple relational hops or filters may be involved? A
purely rule-based or semantic-parsing approach might try to
construct logical forms from scratch, which can be compu-
tationally expensive and prone to errors if the user’s query
contains multiple constraints or unusual syntactic cues. To
address this challenge, we introduced the Hereditary Tree-
LSTM (HTL), drawing on the concepts put forth in [Gomes
et al., 2022], as an efficient and robust means of classifying

Hereditary KBQA Framework Mello et al. 2025

Table 1. All 13 groups (0–12) of dummy templates in LC-QUAD 2.1, with representative examples

Group ID #Templates Description Dummy SPARQL Example

0 4 Basic ASK queries with at most one
numeric filter (yes/no checks)

0.2: ASK WHERE { DUMMY_S DUMMY_P ?obj FILTER(?obj =
DUMMY_F) }

1 1 ASK queries referencing two rela-
tionships

1.0: ASK WHERE { DUMMY_S DUMMY_P DUMMY_O . DUMMY_S
DUMMY_P DUMMY_O }

2 2 Single-hop SELECT retrieval, typi-
cally one relationship

2.2: SELECT DISTINCT ?answer WHERE { DUMMY_S DUMMY_P
?answer }

3 2 “How many...” questions using
COUNT (single-hop)

3.1: SELECT (COUNT(?sub) AS ?value) { ?sub DUMMY_P
DUMMY_O }

4 5 Multi-hop SELECT, often 2 steps
with an intermediate variable

4.2: SELECT ?answer WHERE { DUMMY_S DUMMY_P ?answer .
?answer DUMMY_P DUMMY_O }

5 2 Multi-hop SELECT with extra refer-
ence to the same subject/object

5.1: SELECT ?obj WHERE { DUMMY_S DUMMY_P ?s . ?s DUMMY_P
?obj . ?s DUMMY_P DUMMY_O }

6 2 Multi-hop plus ORDER BY and
LIMIT

6.1: SELECT ?ent WHERE { ?ent DUMMY_P DUMMY_O . ?ent
DUMMY_P ?obj . ?ent DUMMY_P DUMMY_O } ORDER BY ASC(?obj)
LIMIT 10

7 4 SELECT queries with string/date-
based filters

7.2: SELECT ?value WHERE { DUMMY_S DUMMY_P ?s . ?s
DUMMY_P ?x FILTER(contains(?x,'DUMMY_F')) . ?s DUMMY_P
?value }

8 1 SELECT retrieving multiple answers
in one step

8.0: SELECT ?ans_1 ?ans_2 WHERE { DUMMY_S DUMMY_P ?ans_1
. DUMMY_S DUMMY_P ?ans_2 }

9 2 Label-based constraints, partial
string checks, lang(...)

9.2: SELECT DISTINCT ?sbj ?sbj_label WHERE {
?sbj DUMMY_P DUMMY_O . ?sbj DUMMY_P ?sbj_label .
FILTER(STRSTARTS(lcase(?sbj_label),'DUMMY_F')) .
FILTER(lang(?sbj_label)='DUMMY_F') } LIMIT 10

10 1 SELECT retrieving multiple
columns (?value1, ?obj) in
one hop

10.0: SELECT ?value1 ?obj WHERE { DUMMY_S DUMMY_P ?s .
?s DUMMY_P ?obj . ?s DUMMY_P ?value1 }

11 2 Repeated references plus textual fil-
ters for labels

11.2: SELECT DISTINCT ?sbj ?sbj_label
WHERE { ?sbj DUMMY_P DUMMY_O . ?sbj
DUMMY_P DUMMY_O . ?sbj DUMMY_P ?sbj_label .
FILTER(STRSTARTS(lcase(?sbj_label),'DUMMY_F')) .
FILTER(lang(?sbj_label)='DUMMY_F') } LIMIT 10

12 1 Multi-value SELECT retrieving two
results from the same intermediate
node

12.0: SELECT ?value1 ?value2 WHERE { DUMMY_S DUMMY_P ?s
. ?s DUMMY_P DUMMY_O . ?s DUMMY_P ?value1 . ?s DUMMY_P
?value2 }

complex natural language questions into their corresponding
dummy templates.

The selection of the HTL is grounded in prior work that
provides a direct comparative analysis against baseline mod-
els, effectively serving as an ablation study for this compo-
nent of our pipeline. The study by [Gomes et al., 2022],
which introduced the HTL, evaluated it on the LC-QUAD
2.1 dataset and demonstrated its advantages. Firstly, when
compared against traditional machine learning approaches
for the same task, such as the XGBoost classifier proposed
by [Dileep et al., 2021], the HTL achieved a higher accu-
racy of 73.3% versus 67.2%. Secondly, an internal abla-
tion within the study confirmed the specific contribution of
the “hereditary attention” mechanism; the full HTL model
outperformed a standard Tree-LSTM version without this
mechanism by achieving an accuracy of 73.3% compared to
72.9%. Based on this empirical evidence, the HTL was cho-

sen as the most suitable classifier for our framework.

A standard Tree-LSTM departs from the linear token-
processing found in traditional LSTM architectures by op-
erating directly on a syntactic tree, such as one produced
by a dependency parser. Each node in this tree represents
a token, while edges reflect syntactic or semantic relation-
ships between words, like subject-verb or adjective-noun
links. By summing the hidden states of child nodes, the Tree-
LSTM captures the hierarchical structure of language in a
way that a linear model may overlook. This structural ad-
vantage becomes critical in questions that reference multiple
entities, date thresholds, or chained comparisons, since rele-
vant words are not always linearly adjacent in the sentence.

HTL extends this by incorporating what is called a “hered-
itary attention” mechanism. Rather than having a single at-
tention layer that may overlook subtle interactions, each sub-
tree computes local attention signals that highlight tokens

Hereditary KBQA Framework Mello et al. 2025

or phrases deemed most significant. These attention sig-
nals then pass upward in a bottom-up fashion. By the time
the hidden representations accumulate at the root node of
the tree, the model has integrated key features from lower-
level phrases—references to comparative operators such as
“greater than” or date markers like “after 2000” or relational
patterns suggesting multi-hop logic. This richer, aggregated
representation at the root node is then passed to a classifi-
cation layer, typically a softmax, to decide which dummy
template is structurally most suitable for the user’s question.
The “hereditary” aspect of HTL is especially useful in

questions where relevant pieces of information are scattered
in different branches of the sentence. In a linear LSTM, it
might be difficult to keep track of these scattered clues with-
out heavily engineered gating or attention modules. By con-
trast, the Tree-LSTM natively deals with linguistic hierar-
chies, and the hereditary attention ensures that essential frag-
ments are not lost as intermediate child nodes pass their states
to the parent node. This approach proves especially powerful
for complex queries that combine numeric or temporal con-
ditions with multi-hop relationships, since each child node
can measure local significance and transmit that forward.
In practical terms, the decision process with HTL involves

twomajor phases. The first is the construction of the tree rep-
resentation. The question is parsed using a syntactic or de-
pendency parser, producing a tree whose nodes correspond
to tokens. Each node is associated with an embedding (for
instance, via pretrained word embeddings or contextual rep-
resentations) and a dependency relation to its parent. The
second phase is the bottom-up accumulation of hidden states
and attentional weights. Each node computes, for each child,
how relevant it is to the overarching meaning. These local
attentions are aggregated, culminating in a top-level vector.
A final classification stage maps this top-level vector to a
dummy template ID.
Several advantages emerge from this design. One advan-

tage is that HTL substantially reduces the need to enumer-
ate all possible logical forms or to rely on purely text-based
classification methods that might fail to appreciate the com-
positional nature of the sentence. Another advantage lies in
providing better interpretability: by inspecting the attention
distributions at each node, one can see which parts of the
question the Tree-LSTM deems most crucial. This can be
invaluable when explaining why a given template was cho-
sen over alternatives. A potential limitation is that it requires
reliable dependency parsing; errors in the parse tree can prop-
agate upward and cause misclassification. Nevertheless, for
well-formed sentences such as those curated in LC-QUAD
2.1, this risk is mitigated by the dataset’s improved consis-
tency.
Once the HTL selects the best matching template, the pro-

cess of constructing the final SPARQL query is greatly sim-
plified. The question no longer needs an entirely new logi-
cal form; it only requires filling the dummy slots (DUMMY_S,
DUMMY_P, DUMMY_O, DUMMY_F) with the right entities, proper-
ties, or filter values. This separation between structure classi-
fication and slot filling yields both computational efficiency
and clarity: the system pinpoints the structural skeleton first,
then calls upon entity-extraction modules to fill in details. In
the context of LC-QUAD 2.1, whose queries already come

in dummy form, HTL stands out as a stable and powerful
means of bridging the gap between the question’s linguistic
complexity and the final query’s logical architecture.
The accurate classification provided by HTL greatly

streamlines the KBQA pipeline by clearly defining the struc-
tural template to be used. However, the task remains incom-
plete without precisely identifying and linking the specific
entities and properties within the user’s query to the corre-
sponding Wikidata identifiers (QIDs). This necessity under-
scores the critical role of robust entity, property, and filter
extraction tools, which are introduced in detail in the follow-
ing subsections.

3.7 Tools for Entity Extraction
Once the HTL indicates which dummy template structure
should apply to a user’s question, the pipeline still needs to
identify the exact entities mentioned so it can fill placehold-
ers (e.g., DUMMY_S, DUMMY_O) with the right QIDs. Although
entity linking seems straightforward when questions refer-
ence well-known concepts such as “Quentin Tarantino” or
“Oscar,” it can be more difficult with ambiguous or lesser-
known items, domain-specific abbreviations, and nonstan-
dard phrasing. To address these diverse scenarios, we em-
ploy three tools in parallel: DeepPavlov [DeepPavlov Team,
2024], Falcon 2.0, and spaCy. Each tool focuses on detecting
named entities and linking them to potential Wikidata identi-
fiers, but they do so using different methodologies, thereby
reducing the chance that one tool’s blind spots will lead to
missed or incorrect matches.

DeepPavlov. It provides a wide range of pretrained NLP
models, including pipelines for both named entity recogni-
tion (NER) and entity linking. When a user query is pro-
cessed by DeepPavlov, the system first segments the text to
identify candidate entity boundaries. For instance, it can dis-
cern that “New York City” is a single entity mention, rather
than erroneously splitting “New York” and “City.” Once
the candidate mentions are extracted, DeepPavlov’s linking
model uses embedding-based similarity to map eachmention
to potential Wikidata entries. This stage can struggle with
short or rare mentions that do not exhibit strong embedding
matches to any known label or alias in the knowledge base.
However, DeepPavlov’s flexibility in customizing models or
training them on domain-specific text is advantageous if the
pipeline needs to adapt to specialized vocabularies (e.g., med-
ical or technical domains).

Falcon 2.0. Adopts a rule-driven approach to entity and re-
lation linking, emphasizing tokenization, morphology, and
N-Gram tiling. It is particularly adept at capturing short
compound forms, multiword expressions, or property-like
phrases that may not appear in standard NER outputs. For
example, it can detect “operating income’’ or “manager po-
sition’’ as meaningful references to possible relations or spe-
cialized entity phrases. Once Falcon identifies these candi-
date tokens, it queries a local index of Wikidata labels and
aliases and ranks the retrieved entities by textual similar-
ity. Although Falcon 2.0 can sometimes over-prioritize close

Hereditary KBQA Framework Mello et al. 2025

string matches in ambiguous cases (e.g., multiple items shar-
ing a term like “Ford”), its ability to identify less common or
domain-specific phrases complements the embedding-based
coverage gaps that DeepPavlov might leave.

spaCy. Offers a fast, comprehensive NLP pipeline that
performs tokenization, part-of-speech (POS) tagging, depen-
dency parsing, and built-in NER. We use spaCy not just for
its NER component but also to parse each query into a struc-
tured dependency tree, which supports the HTL-based clas-
sification and helps interpret multiword sequences. spaCy’s
default entity linker, while somewhat generic, often suc-
ceeds on widely used entity names or standard lexical items.
Its speed and practical approach to common named entities
make it a useful baseline for everyday queries, and its token
and syntactic boundaries allow the other two tools to coordi-
nate over consistent phrase segments. In many cases, spaCy
can rapidly resolve simpler queries or confirm well-known
entities so that the pipeline can focus more time on ambigu-
ous or domain-specific references.
In practice, all three tools run concurrently on each user

query, producing separate lists of entity mentions and their
top candidate Wikidata links. We then merge these lists us-
ing a set of heuristic rules that check for overlaps or dis-
agreements. If two or more tools converge on the same en-
tity mention, confidence in that match increases significantly.
Conversely, if DeepPavlov proposes a mention that Falcon
2.0 and spaCy do not see (or strongly disagree with), the
pipeline may attempt partial substring matching or check the
local neighborhood of tokens to see if the mention is plausi-
ble. In ambiguous cases, we also consider how frequently
a proposed entity ID appears in Wikidata and whether it
alignswith the query’s overall domain or syntactic clues from
spaCy’s dependency parse. This ensures that a single tool’s
shortcoming—like missing a name variant or failing to parse
compound terms—does not cause the pipeline to discard a
valid candidate.
A recurring challenge arises when user questions involve

abbreviations (e.g., “NYC” instead of “New York City”),
short acronyms, or domain-specific synonyms rarely seen
in ordinary embeddings. Such references often result in
low matching scores for embedding-based approaches like
DeepPavlov. Falcon 2.0’s rule-based expansions can par-
tially help, but only if the relevant aliases appear in its in-
dex. spaCy may detect the tokens but lack a strong domain
linker. In these cases, the pipeline checks morphological ex-
pansions, or potential substring matches across all candidate
sets.

Advantages of a Multi-Tool Strategy. By combining
spaCy, DeepPavlov, and Falcon 2.0, the pipeline loads
two local models (spaCy and DeepPavlov) and issues a
lightweight HTTP request to a Falcon service. The chief
overhead therefore lies in memory rather than in wall-clock
time. spaCy alone keeps a compact statistical model resi-
dent; incorporating DeepPavlov brings transformer weights
into memory and typically pushes the resident-set size into
the multi-gigabyte range on a standard workstation. Falcon,
by contrast, adds virtually no local memory cost because

its computation occurs on an external service and the client
stores only a small request buffer.
Once the additional models are loaded, per-question la-

tency rises only modestly. In informal timing on commodity
CPUs, total entity-linking time remains comfortably below
the sub-second threshold that is generally considered inter-
active for QA applications; the HTTP round-trip to Falcon
contributes just a small fraction of that delay. In other words,
the pipeline trades extra RAM for a noticeably higher hit rate
on tricky entity mentions without imposing a prohibitive run-
time penalty.
Practically speaking, the choice boils down to hardware

constraints. A machine with sufficient RAM can keep both
local models in memory and still respond promptly, whereas
a memory-constrained device might fall back to a lighter con-
figuration or load models on demand. For complex KBQA,
the reduced risk of missing critical entities usually justifies
the additional memory footprint. Furthermore, the architec-
ture remains modular: newer or domain-specific linkers can
be swapped in with minimal code changes, preserving the
same balance between robustness and latency.

3.8 Approach for Property Extraction

Whereas entity extraction resolves DUMMY_S (subject) and
DUMMY_O (object) placeholders, another key question is how
to find the properties—i.e., the DUMMY_P slots—that define
the relationships or attributes mentioned in the user’s query.
Sometimes the query text is explicit (e.g., “directed by”),
making detection relatively easy. More often, especially in
multi-hop questions, relational clues may be implicit (“star-
ring in a film” might map to “cast member” in Wikidata).
Disambiguation is equally vital here, since Wikidata hosts
thousands of properties with labels that may overlap or sound
similar.

Initial Property Hints fromExtraction Tools. Falcon 2.0
is often the most direct source for early property hints, since
it is designed to locate both entities and relations in short text.
When the user’s question includes a phrase like “nominated
for an Oscar”, Falcon 2.0 might produce “wdt:P1411” (nom-
inated for) as a candidate. DeepPavlov’s main emphasis is on
entity linking, though it can occasionally flag property-like
tokens. spaCy itself does not inherently propose property
IDs, but can help segment the question to seewhere relational
phrases appear.

Difficulties in Multi-Hop or Implicit Relations. Chal-
lenges multiply if the question calls for more than one
property (e.g., “Which politician’s spouse held office before
2000?”) or if the user’s wording does not align neatly with
Wikidata property labels. The HTL’s template classification
might reveal that the question structure involves two relation-
ships plus a temporal filter, but it does not specify which
properties to use. If the user’s text yields only partial lexical
clues, the pipeline may need to guess among multiple prop-
erty candidates. This is where we incorporate both textual
cues and knowledge-graph lookups to increase accuracy.

Hereditary KBQA Framework Mello et al. 2025

SPARQLReverse Lookup for Coverage. If a recognized
entity appears as a subject, we can query Wikidata for all
properties where is the subject of a statement. We do the
same if seems to be an object. This “reverse lookup” step is
crucial in capturing less obvious properties not explicitly sug-
gested by the user’s phrasing or by initial text-based extrac-
tion. However, for prominent entities with hundreds of state-
ments, retrieving so many property IDs can become over-
whelming. Thus, we filter and rank them based on seman-
tic similarity to the question text and any relevant contexts
extracted by spaCy’s dependency analysis.

Ranking Property Candidates. Because the reverse
lookup or textual hints may produce multiple possibilities,
we apply a final ranking step to each candidate property.
We compare the property’s label or description to key words
in the question, using word-embedding vectors (for instance,
from FastText). If the user’s query references “acted in
movie” a property whose label includes “cast member”might
score well. Conversely, a property about “producer” or “dis-
tributor” might rank lower. Only the top few property can-
didates (commonly the top 5) progress to the final pipeline
stage, preventing exponential growth in potential SPARQL
combinations.

Qualifiers and Constraints. Even when the correct prop-
erty is identified, Wikidata can embed qualifiers specifying
contextual constraints, such as date ranges or roles. If the
question implies these qualifiers (e.g., “during the 1990s”),
ignoring them can yield an incomplete or incorrect final
query. For relevant properties, the pipeline checks whether
qualifiers exist that match the question’s temporal or contex-
tual conditions. Such qualifiers might be introduced as addi-
tional statements or filter clauses in the final query, ensuring
alignment with the user’s multi-layered request.

3.9 Pipeline Integration and Remaining Steps
As depicted in Figure 2, by the time the pipeline has identi-
fied a suitable dummy template through the HTL and consoli-
dated a set of entity and property matches from the multi-tool
extraction and ranking modules, it can proceed to fill each
placeholder (DUMMY_S, DUMMY_P, DUMMY_O, and optionally
DUMMY_F) with the selected QIDs, property IDs, and any nu-
meric or string constraints. When qualifier constraints have
been detected, these too must be integrated into the final tem-
plate structure to capture time-sensitive or contextual details.
Instead of executing this fully populated SPARQL query

on a live endpoint, the system compares the filled template di-
rectly to the gold-standard SPARQL provided by LC-QUAD
2.1. This approach allows us to confirm whether the dis-
covered entities, properties, and constraints align precisely
with those in the question’s reference query—an indication
that the pipeline arrived at the correct combination of place-
holders and slot values for that template. We measure per-
formance at multiple stages (Correct Entities, Correct Prop-
erties, and Correct SPARQL) without relying on any actual
query execution. A misplaced entity disrupts DUMMY_S, a
property mismatch impacts DUMMY_P, and broader structural

Quentin Tarantino

Oscar

WD:Q3772

WD:Q19020

Instance of, sex or gender, place of

birth, spouse, occupation, ...

Nominated for: P1411

Director: P57

RankingRelation Extraction

Named Entity Recognition Entity Linking

Question

Which films directed by Quentin Tarantino

were nominated for an Oscar?

SELECT ?s WHERE { ?s DUMMY_P DUMMY_O .

?s DUMMY_P DUMMY_O }

{ ?s wdt:p57 wd:Q3772 .

?s wdt:P1411 wd:Q19020 }

Slot FillingTemplate matching

SELECT ?s WHERE { ?s wdt:p57 wd:Q3772 .

?s wdt:P1411 wd:Q19020 }

Query Execution

Pulp Fiction, Inglourious Bastards,

Django Unchained

Results

Figure 2. Fluxogram illustrating how the pipeline integrates template selec-
tion (HTL), entity recognition, property extraction, and final alignment with
LC-QUAD 2.1’s gold SPARQL.

errors may point to shortcomings in the HTL-based template
selection itself.

By leveraging the LC-QUAD 2.1 gold SPARQL queries,
we do not need to issue real-time queries against a knowledge
base to determine accuracy. Consistency with the reference
indicates that the pipeline successfully reproduced the ques-
tion’s logic—covering entities, properties, filters, and qual-
ifiers. Where mismatches arise, more targeted refinements
can be made: for instance, repeated minor property errors
may suggest improvements in the ranking module or reverse
lookups; systematic placeholder mismatches might point to
gaps in entity linking or qualifier integration.

This design not only streamlines our evaluation but
also preserves a modular structure. Each subsystem—
classification, entity extraction, property selection, or tem-
plate refinement—can be updated or replaced, while the gold
SPARQL references in LC-QUAD 2.1 remain a stable bench-
mark for correctness. As a result, we can continuously refine
or expand the pipeline (through new extraction models, ad-
vanced ranking heuristics, or expanded dummy templates)
while maintaining a consistent means of verifying overall
alignment with the intended SPARQL.

Hereditary KBQA Framework Mello et al. 2025

4 Results and Discussion
This section provides a more detailed analysis of how each
phase of our KBQA pipeline—entity recognition, property
extraction, and final SPARQL query alignment—performs
under multiple experimental setups. We tested configura-
tions ranging from single-tool approaches (e.g., DP: Deep-
Pavlov alone) to pairwise integrations (e.g., DP+F: Deep-
Pavlov + Falcon), and finally a three-tool combination
with additional refinements (qualifier constraints and reverse
property lookups). In the following tables, the columns indi-
cate the entity or property accuracy (percentage of queries
where all relevant entities or properties were correctly iden-
tified) and the final SPARQL completeness (the percentage
of queries that fully matched the gold-standard structure in
LC-QUAD 2.1).

4.1 Overall Results from Multiple Combina-
tions

We begin by noting that simpler pipelines using a single tool
(DP, Falcon, or SpaCy) often handle the more elementary
queries in LC-QUAD 2.1 (e.g., Groups 0, 1, or 2) reason-
ably well, as these queries typically reference only one or
two entities without complex filters or multi-hop reasoning.
However, once queries introduce multiple relationships or re-
quire unusual constraints (especially in Groups 4, 6, 9, and
11), single-tool approaches generally fall short. Pairwise in-
tegrations improve coverage, but the best results consistently
emerge from the full three-tool setup (DP+F+S+Q).
Groups are identified in LC-QUAD 2.1 to represent dif-

ferent structural SPARQL patterns (see Section 3.5 for de-
tails). For instance, Group 0 includes basic ASK queries,
while Group 4 covers two-hop SELECT queries, and Group
9 focuses on label-based textual constraints. When reading
the tables below, it helps to remember that:

• Lower group IDs (0–3) usually represent simpler
queries like ASK or single-hop SELECT with minimal fil-
ters.

• Mid-range group IDs (4–7) reflect multi-hop queries or
more intricate operations, such as date-based filters.

• Higher group IDs (8–12) handle either multi-value re-
trieval, label-based textual searches, or repeated ref-
erences, which can be trickier for standard extraction
tools.

4.2 Entity Recognition in Each Group

Table 2 reports the entity recognition accuracy across 13
groups, comparing six different tool configurations. Themet-
ric indicates the proportion of queries in which all entities
were correctly identified. If even one entity was missed or
mislabeled, the entire query is considered incorrect at the en-
tity level.

Key Observations. Groups 0, 1, 2, and 3 often reference
single-hop or simpler relations, so entity coverage easily

Table 2. Entity Recognition Accuracy (%) by Group and Configu-
ration
Grupo DP DP+F S DP+S F+S DP+F+S

0 28.50 46.97 62.53 65.96 80.74 82.32
1 49.72 64.25 68.16 76.54 83.24 84.92
2 36.97 54.51 66.27 69.68 76.66 76.66
3 34.18 44.30 75.32 79.11 94.30 94.30
4 25.96 39.37 52.93 57.31 63.44 65.01
5 50.52 71.28 62.47 70.44 79.04 81.76
6 7.10 13.66 36.07 37.70 42.08 42.62
7 75.22 87.61 87.61 92.92 94.69 96.76
8 46.25 68.75 75.00 83.75 96.25 97.50
9 0.00 2.26 46.79 46.79 53.96 53.96
10 80.25 88.89 79.01 92.59 93.83 95.06
11 17.72 24.68 48.73 50.63 54.43 55.06
12 53.38 70.27 66.22 76.35 81.76 84.46

exceeds 60–70% in most multi-tool setups. In particular,
Group 3 sees an especially large jump in accuracy when us-
ingmore than one tool (e.g., from 44.30% inDP+F to 94.30%
in F+S), which suggests that the counting queries often rely
on subtle cues for identifying the subject entity. By con-
trast, Groups 6 and 9 stand out as notably difficult, with
the triple configuration (DP+F+S+Q) only reaching about
42.62% (Group 6) and 53.96% (Group 9). These groups typ-
ically feature domain-specific synonyms (Group 6) or label-
based constraints (Group 9) that may not map cleanly onto
each tool’s internal dictionary or require morphological ex-
pansions not adequately covered by the default models.

Discussion. Entity recognition emerges as the pipeline’s
strongest step overall, but certain specialized or ambiguous
queries remain a challenge. The collaboration among Deep-
Pavlov (flexible entity recognition), Falcon (rule-based link-
ing for short tokens), and SpaCy (robust parsing) lifts the av-
erage entity accuracy considerably. However, Groups like 6
(often multi-hop with ordering) and 11 (repeated references
and textual filters) reveal persistent issues when the ques-
tion’s phrasing deviates from standard synonyms or tokens.

4.3 Property Extraction in Each Group

Table 3 presents the property extraction accuracy for each
group. Like entity recognition, the metric indicates the pro-
portion of queries in which all required properties were cor-
rectly detected and linked.

Key Observations. Whereas entity accuracy often climbs
above 70–80%, property extraction remains below 60% in
most groups. Groups 1 and 8 do exceed 80% property
correctness under the best setup, suggesting that straight-
forward “double-check” relationships (Group 1) or multi-
answer queries (Group 8) can be resolved if the lexical over-
lap is reasonably direct. Still, advanced queries in Groups 6,
9, and 11 again stand out as problematic. Partial coverage
improvements (e.g., from 0.75% to 7.17% in Group 9) under-
score that text-based property references remain an Achilles’
heel when synonyms or domain-specific phrases are not cap-
tured by default extraction modules.

Hereditary KBQA Framework Mello et al. 2025

Table 3. Property Extraction Accuracy (%) by Group and Configu-
ration
Grupo DP DP+F S DP+S F+S DP+F+S+Q

0 28.75 36.74 28.75 51.76 36.74 67.09
1 73.33 75.00 73.33 85.00 75.00 86.67
2 19.25 31.35 19.25 33.39 31.35 52.47
3 31.01 34.81 31.01 65.19 34.81 74.68
4 28.09 38.68 28.09 42.08 38.68 54.92
5 45.18 51.68 45.18 49.58 51.68 55.97
6 10.47 12.40 10.47 18.99 12.40 24.42
7 39.68 46.90 39.68 43.22 46.90 51.18
8 50.63 63.75 50.63 71.88 63.75 84.38
9 0.75 0.75 0.75 5.66 0.75 7.17
10 51.85 59.26 51.85 55.56 59.26 66.67
11 17.72 18.99 17.72 29.11 18.99 32.91
12 31.08 41.44 31.08 37.84 41.44 50.90

Reverse Lookups and Qualifiers. Leveraging reverse
SPARQL lookups helps broaden the candidate property set,
sometimes boosting coverage by 10–25% in multi-hop or
filter-laden queries (Groups 2, 4, 5, 12). Qualifier constraints
further refine the pipeline’s ability to handle temporal or con-
textual edges (Groups 3, 7), preventing incomplete place-
holders. Nonetheless, if a question’s phrasing diverges from
known synonyms—or the question includes nested multi-
hop logic—misalignments remain common.

4.4 Final SPARQL Completeness

Definition of Completeness. The final metric measures
how many queries matched the gold SPARQL exactly in
terms of entities, properties, filters, and structure. Table 4
showcases the best setup’s completeness values, which vary
widely depending on how many pieces must align. Missing
a single property or entity is enough to spoil the final match.

Table 4. Correct Entities, Properties, and SPARQL queries found
(DeepPavlov + Falcon + SpaCy + qualifiers + reverse lookups)

Group Entities (%) Properties (%) SPARQL (%)
0 82.32 67.09 62.94
1 84.92 86.67 51.67
2 76.66 52.47 37.14
3 94.30 74.68 73.42
4 65.01 54.92 14.29
5 81.76 55.97 14.32
6 42.62 24.42 0.00
7 96.76 51.18 10.03
8 97.50 84.38 76.25
9 53.96 7.17 2.26
10 95.06 66.67 30.86
11 55.06 32.91 0.00
12 84.46 50.90 14.86

Average 77.72 54.57 29.85
Average w/ filter 85.87 64.49 38.58

Group-Level Patterns. Groups 3 (counting) and 8 (multi-
answer) reach above 70% completeness in the best-case sce-
nario, reflecting that once the pipeline identifies the correct
subject or object references, it can fill placeholders consis-
tently. More challenging sets, like Groups 4, 5, 7, 9, 11, 12,
rarely exceed 20% completeness, indicating that partial suc-
cess in entity or property extraction does not yield a final
SPARQL alignment. In Group 6, no queries are fully correct

under any setup, reinforcing the complexity of queries with
ordering, multiple relationships, or ambiguous references.

4.5 Exemplifying Challenges in Complex
Queries

Despite the integration of multiple entity and property extrac-
tion tools, certain complex queries continue to pose signifi-
cant challenges. This limitation becomes particularly evident
when examining specific examples from challenging query
groups, such as Group 6. Consider the following query from
the LC-QUAD 2.1 dataset:
Question: ”Which Statkraft hydroelectric power station

has the greatest annual energy output?”
The Hereditary Tree-LSTM (HTL) successfully identified

the appropriate dummy SPARQL template structure:

SELECT ?ent WHERE {
?ent DUMMY_P DUMMY_O .
?ent DUMMY_P ?obj .
?ent DUMMY_P DUMMY_O

} ORDER BY DESC(?obj) LIMIT DUMMY_F

The best possible SPARQL query that accurately ad-
dresses this question is:

SELECT ?ent WHERE {
?ent wdt:P31 wd:Q15911738 . # instance of

hydroelectric power station
?ent wdt:P4141 ?obj . # annual energy

output
?ent wdt:P127 wd:Q1681145 # owned by

Statkraft
} ORDER BY DESC(?obj) LIMIT 1

However, the generated SPARQL query from the current
pipeline resulted in inaccuracies:

SELECT ?ent WHERE {
?ent wdt:P31 wd:Q15911738 . # Correctly

identified instance type
?ent wdt:P4131 ?obj . # Incorrect property

(should be P4141 - annual energy
output)

?ent wdt:P127 wd:Q1681145 # Correctly
identified ownership by Statkraft

} ORDER BY DESC(?obj) LIMIT 1

In this specific case, the error lies in the incorrect iden-
tification of the property: the system selected property
P4131, which refers to an unrelated attribute, whereas the
correct property should be P4141. These inaccuracies arise
mainly due to insufficient semantic alignment and ambi-
guities within the entity and property recognition modules,
which struggle particularly with numeric or specific do-
main properties. Addressing such issues requires improved
domain-specific embeddings, advanced morphological anal-
ysis, and refined ranking algorithms that can better capture
subtle semantic distinctions inherent in complex queries.

Filtering Outliers. If we remove subsets of queries with
extremely low coverage (e.g., Group 6 or Group 9), the final
completeness among remaining groups rises significantly.
This highlights how certain domain-specific or morphologi-
cal details hamper the pipeline’s property recognition enough

Hereditary KBQA Framework Mello et al. 2025

to break the entire SPARQL chain. Integrating more ad-
vanced morphological expansions and property disambigua-
tion heuristics might improve these outlier groups in the fu-
ture.

4.6 Discussion and Future Directions

Overall, these experiments confirm that combining multiple
extraction tools (DP+F+S+Q) markedly improves entity and
property coverage across most LC-QUAD 2.1 groups, com-
pared to single-tool or pairwise settings. Nevertheless, ad-
vanced queries in Groups 6, 9, and 11, among others, expose
how lexical variations, rarely used properties, and nested fil-
ters can still confound the pipeline. Specific directions for
improvement include:

• Domain-Specific Embeddings. Incorporating custom
embeddings or fine-tuning on domain text could capture
synonyms or acronyms that default models miss, espe-
cially in Groups with specialized phrasing (e.g., 6 or 9).

• Enhanced Ranking. Dedicating more robust property-
ranking heuristics or neural rankingmethods might help
handle borderline property matches, which hamper the
final SPARQL alignment.

• Morphological/Tokenization Improvements. Groups
that embed entities in multiword expressions (e.g., 11)
might benefit from specialized tokenization logic and
morphological checks.

• Handling Nested or Rare Properties. Introducing an
expanded knowledge base of synonyms or advanced
“reverse” lookups beyond standard properties could re-
duce the gap in multi-hop or heavily constrained ques-
tions.

Despite lingering gaps, the pipeline’s success in many
medium-complexity queries (like Groups 3 and 8) under-
scores the effectiveness of dummy templates, synergy among
multiple extraction modules, reverse lookups, and qualifier
constraints. By systematically identifying each group’s struc-
tural logic, the pipeline reliably matches user questions to the
correct SPARQL form, as long as the underlying entity and
property references can be recognized.

5 Conclusion
This paper introduced a comprehensive andmodular pipeline
for Knowledge Base Question Answering (KBQA) that
addresses significant shortcomings in existing entity- and
property-extraction tools. Our framework employs multi-
ple strategies, such as reverse SPARQL lookups and qual-
ifier constraints, to broaden the set of potential predicates
beyond what standard modules (DeepPavlov, Falcon, and
SpaCy) typically capture. Although these off-the-shelf tools
handle many straightforward cases, they often overlook es-
sential properties in multi-hop or context-laden queries, lead-
ing to incomplete SPARQL alignments. By merging refined
extraction processes with structured dummy templates and
dynamic slot filling, we demonstrated a notable improve-
ment in covering complex relationships, even when ques-
tions impose constraints or reference specialized knowledge.

These enhancements highlight the importance of effectively
retrieving not just entities but also less prominent predicates,
a task crucial for assembling accurate and thorough SPARQL
queries.
Despite these advances, there remain questions that in-

volve rare or domain-specific properties, subtle morpholog-
ical variations, or multiple layers of filtering and temporal
qualifiers. Our results indicate that while the pipeline sub-
stantially raises recall in many scenarios, certain special-
ized or niche aspects still pose difficulties. Future research
could focus on embedding-based expansions to better han-
dle domain-specific synonyms, more refined morphological
handling for short or compound tokens, and improved rank-
ing models that weigh contextual information more robustly.
The pipeline’s modular design, anchored by interchangeable
extraction and ranking components, should facilitate itera-
tive improvements in these directions. Ultimately, this work
underscores the need to look beyond entity identification and
toward a richer, more adaptable strategy for retrieving prop-
erties, which is key for ensuring that KBQA systems can
accurately address the intricacies and breadth of real-world
queries.

Declarations

Authors’ Contributions
Rômulo Chrispim de Mello: Conceptualization, Methodology,
Software, Writing–original draft. Jorão Gomes Jr.: Writing–
review & editing, Supervision. Victor Ströele: Writing–review &
editing, Supervision. Jairo Francisco de Souza: Writing–review
& editing, Supervision.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The original LC-QUAD 2.0 dataset, containing over
30,000 natural language questions paired with SPARQL
queries for DBpedia 2018 and Wikidata, is hosted at
https://github.com/AskNowQA/LC-QuAD2.0. This ver-
sion may contain duplicated entries and some misalignments. An
updated and cleaned release, referred to as LC-QUAD 2.1, can be
accessed on Zenodo at https://zenodo.org/record/5508297,
which removes duplications, corrects mismatches, and normalizes
question lengths. Last access to the research materials: 16 August
2025.

References
Cao, S., Shi, J., Pan, L., Nie, L., Xiang, Y., Hou, L., Li, J.,
He, B., and Zhang, H. (2022). KQA pro: A dataset with
explicit compositional programs for complex question an-
swering over knowledge base. In Muresan, S., Nakov,
P., and Villavicencio, A., editors, Proceedings of the
60th AnnualMeeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 6101–6119,

https://github.com/AskNowQA/LC-QuAD2.0
https://zenodo.org/record/5508297

Hereditary KBQA Framework Mello et al. 2025

Dublin, Ireland. Association for Computational Linguis-
tics. DOI: https://doi.org/10.18653/v1/2022.acl-long.422.

Chen, S., Liu, Q., Yu, Z., Lin, C.-Y., Lou, J.-G., and Jiang,
F. (2021). Retrack: A flexible and efficient framework
for knowledge base question answering. In Proceedings
of the 59th annual meeting of the association for compu-
tational linguistics and the 11th international joint confer-
ence on natural language processing: system demonstra-
tions, pages 325–336.

Daull, X., Bellot, P., Bruno, E., Martin, V., and Murisasco,
E. (2023). Complex qa and language models hybrid archi-
tectures, survey. arXiv preprint arXiv:2302.09051.

DeepPavlov Team (2018�2024). Entity linking
— deeppavlov 0.14.1 documentation. https:
//docs.deeppavlov.ai/en/0.14.1/features/
models/entity_linking.html. Access on 16 August
2025.

Dileep, A. K., Mishra, A., Mehta, R., Uppal, S.,
Chakraborty, J., and Bansal, S. K. (2021). Template-
based question answering analysis on the lc-quad2.0
dataset. In 2021 IEEE 15th International Conference
on Semantic Computing (ICSC), pages 443–448. DOI:
https://doi.org/10.1109/ICSC50631.2021.00079.

Dubey, M., Banerjee, D., Abdelkawi, A., and Lehmann, J.
(2019). Lc-quad 2.0: A large dataset for complex question
answering over wikidata and dbpedia. In International Se-
mantic Web Conference, pages 69–78. Springer.

Dutt, R., Khosla, S., Bannihatti Kumar, V., and Gangad-
haraiah, R. (2023). GrailQA++: A challenging zero-shot
benchmark for knowledge base question answering. In
Park, J. C., Arase, Y., Hu, B., Lu, W., Wijaya, D., Purwari-
anti, A., and Krisnadhi, A. A., editors, Proceedings of the
13th International Joint Conference on Natural Language
Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 897–909, Nusa Dua,
Bali. Association for Computational Linguistics. DOI:
https://doi.org/10.18653/v1/2023.ijcnlp-main.58.

Ferragina, P. and Scaiella, U. (2010). Tagme: On-the-
fly annotation of short text fragments (by wikipedia
entities). In Proceedings of the 19th ACM Inter-
national Conference on Information and Knowledge
Management, CIKM ’10, page 1625–1628, New York,
NY, USA. Association for Computing Machinery. DOI:
https://doi.org/10.1145/1871437.1871689.

Gomes, J., de Mello, R. C., Ströele, V., and de Souza,
J. F. (2022). A hereditary attentive template-based ap-
proach for complex knowledge base question answering
systems. Expert Systems with Applications, 205:117725.
DOI: https://doi.org/10.1016/j.eswa.2022.117725.

Gomes Jr, J., de Mello, R. C., Ströele, V., and de Souza, J. F.
(2022). A study of approaches to answering complex ques-
tions over knowledge bases. Knowledge and Information
Systems, 64(11):2849–2881.

Gomes Jr., J., de Mello, R. C., Ströele, V., and de Souza, J. F.
(2021). Lc-quad 2.1.

Hu, X., Wu, X., Shu, Y., and Qu, Y. (2022). Logical form
generation via multi-task learning for complex question
answering over knowledge bases. In Proceedings of the

29th International Conference on Computational Linguis-
tics, pages 1687–1696, Gyeongju, Republic of Korea. In-
ternational Committee on Computational Linguistics.

Jang, H., Oh, Y., Jin, S., Jung, H., Kong, H., Lee, D.,
Jeon, D., and Kim, W. (2017). Kbqa: Constructing
structured query graph from keyword query for seman-
tic search. In Proceedings of the International Con-
ference on Electronic Commerce, ICEC ’17, New York,
NY, USA. Association for Computing Machinery. DOI:
https://doi.org/10.1145/3154943.3154955.

Jiménez, G., Leme, P. P., and Casanova, T. I. N.
(2022). A framework to compute entity related-
ness in large rdf knowledge bases. Journal of
Information and Data Management, 13(2). DOI:
https://doi.org/10.5753/jidm.2022.2435.

Jiménez, J., Leme, L., and Casanova, M. (2021a). Co-
epinkb: A framework to understand the connectivity
of entity pairs in knowledge bases. In Anais do
XLVIII Seminário Integrado de Software e Hardware,
pages 97–105, Porto Alegre, RS, Brasil. SBC. DOI:
https://doi.org/10.5753/semish.2021.15811.

Jiménez, J. G., Leme, L. P. P., Izquierdo, Y. T.,
Neves, A. B., and Casanova, M. (2021b). A dis-
tributed framework to investigate the entity relatedness
problem in large rdf knowledge bases. In Anais
do XXXVI Simpósio Brasileiro de Bancos de Dados,
pages 121–132, Porto Alegre, RS, Brasil. SBC. DOI:
https://doi.org/10.5753/sbbd.2021.17871.

Lan, Y., He, G., Jiang, J., Jiang, J., Zhao, W. X., and Wen,
J. (2021). A survey on complex knowledge base ques-
tion answering: Methods, challenges and solutions. CoRR,
abs/2105.11644.

Mello, R., Jr., J. G., Souza, J., and Ströele, V.
(2024). Constructing a kbqa framework: Design
and implementation. In Proceedings of the 30th
Brazilian Symposium on Multimedia and the Web,
pages 89–97, Porto Alegre, RS, Brasil. SBC. DOI:
https://doi.org/10.5753/webmedia.2024.243150.

Mihindukulasooriya, N., Rossiello, G., Kapanipathi, P., Ab-
delaziz, I., Ravishankar, S., Yu, M., Gliozzo, A., Roukos,
S., and Gray, A. G. (2020). Leveraging semantic pars-
ing for relation linking over knowledge bases. CoRR,
abs/2009.07726.

Ngomo, N. (2018). 9th challenge on question answering over
linked data (qald-9). language, 7(1):58–64.

Perevalov, A., Diefenbach, D., Usbeck, R., and Both, A.
(2022). Qald-9-plus: A multilingual dataset for question
answering over dbpedia and wikidata translated by native
speakers. CoRR, abs/2202.00120.

Qin, K., Wang, Y., Li, C., Gunaratna, K., Jin, H., Pavlu, V.,
and Aslam, J. A. (2020). A complex KBQA system using
multiple reasoning paths. CoRR, abs/2005.10970.

Rolim, T., Avila, C. V., Junior, N. A., Costa, F., Mari-
ano, R., Calixto, T., and Vidal, V. M. (2021). Kg-e:
Um grafo de conhecimento semântico baseado na inte-
gração de dados de empresas e sancionados. In Anais
do IX Workshop de Computação Aplicada em Governo
Eletrônico, pages 155–166, Porto Alegre, RS, Brasil. SBC.
DOI: https://doi.org/10.5753/wcge.2021.15985.

https://docs.deeppavlov.ai/en/0.14.1/features/models/entity_linking.html
https://docs.deeppavlov.ai/en/0.14.1/features/models/entity_linking.html
https://docs.deeppavlov.ai/en/0.14.1/features/models/entity_linking.html

Hereditary KBQA Framework Mello et al. 2025

Rossiello, G., Mihindukulasooriya, N., Abdelaziz, I.,
Bornea, M., Gliozzo, A., Naseem, T., and Kapanipathi, P.
(2021). Generative relation linking for question answer-
ing over knowledge bases. In Hotho, A., Blomqvist, E.,
Dietze, S., Fokoue, A., Ding, Y., Barnaghi, P., Haller, A.,
Dragoni, M., and Alani, H., editors, The Semantic Web –
ISWC 2021, pages 321–337, Cham. Springer International
Publishing.

Sakor, A., Singh, K., Patel, A., and Vidal, M. (2019). FAL-
CON2.0: An entity and relation linking tool over wikidata.
CoRR, abs/1912.11270.

Sorokin, D. and Gurevych, I. (2018). Modeling seman-
tics with gated graph neural networks for knowledge base
question answering. In Bender, E. M., Derczynski, L.,
and Isabelle, P., editors, Proceedings of the 27th Inter-
national Conference on Computational Linguistics, pages
3306–3317, Santa Fe, NewMexico, USA. Association for
Computational Linguistics.

Tan, Y., Min, D., Li, Y., Li, W., Hu, N., Chen, Y., and Qi,
G. (2023). Evaluation of chatgpt as a question answering
system for answering complex questions. arXiv preprint
arXiv:2303.07992.

Trivedi, P., Maheshwari, G., Dubey, M., and Lehmann, J.

(2017). Lc-quad: A corpus for complex question an-
swering over knowledge graphs. In International Se-
mantic Web Conference, pages 210–218, Cham. Springer,
Springer International Publishing.

Usbeck, R., Ngomo, A.-C. N., Haarmann, B., Krithara, A.,
Röder, M., and Napolitano, G. (2017). 7th open challenge
on question answering over linked data (qald-7). In Seman-
tic Web Challenges: 4th SemWebEval Challenge at ESWC
2017, Portoroz, Slovenia, May 28-June 1, 2017, Revised
Selected Papers, pages 59–69. Springer.

Xie, Z., Zeng, Z., Zhou, G., and He, T. (2016). Knowl-
edge base question answering based on deep learningmod-
els. In Natural Language Understanding and Intelligent
Applications: 5th CCF Conference on Natural Language
Processing and Chinese Computing, NLPCC 2016, and
24th International Conference on Computer Processing
of Oriental Languages, ICCPOL 2016, Kunming, China,
December 2–6, 2016, Proceedings 24, pages 300–311.
Springer.

Ye, X., Yavuz, S., Hashimoto, K., Zhou, Y., and Xiong,
C. (2021). Rng-kbqa: Generation augmented iterative
ranking for knowledge base question answering. arXiv
preprint arXiv:2109.08678.

	Introduction
	Related Work
	Entity Recognition
	Relation Extraction
	Template Matching
	Frameworks

	Materials and Methods
	Methodological Introduction
	LC-QUAD 2.0
	LC-QUAD 2.1
	Limitations and Threats to Validity

	Creating Dummy Templates
	Grouping Templates by Semantic Proximity
	Hereditary Tree-LSTM (HTL)
	Tools for Entity Extraction
	Approach for Property Extraction
	Pipeline Integration and Remaining Steps

	Results and Discussion
	Overall Results from Multiple Combinations
	Entity Recognition in Each Group
	Property Extraction in Each Group
	Final SPARQL Completeness
	Exemplifying Challenges in Complex Queries
	Discussion and Future Directions

	Conclusion

