
Journal on Interactive Systems, 2025, 16:1, doi: 10.5753/jis.2025.5432
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Practices, Process Stages and Examples of an Extreme
Programming Proposal in a Playable Mode
Victor Travassos Sarinho [State University of Feira de Santana | vsarinho@uefs.br]

 Digital Applied Entertainment Lab. (LEnDA), State University of Feira de Santana, Av. Transnordestina, s/n, Novo
Horizonte - BA, 44036-900, Brazil.

Received: 16 January 2025 • Accepted: 13 September 2025 • Published: 21 September 2025

Abstract: Background: There are several studies focused on identifying and defining gamification strategies in
software development processes. These strategies are also applied by agile methods, which can create a context
of recognition and reward for the completion of activities in a software project. Purpose: This paper presents a
reinterpretation of the Extreme Programming (XP) practices and process stages in order to provide a “playable
mode” for the XP development. Methods: XP practices and process stages are linked to terms and activities applied
in digital games, enabling a reinterpretation from a playable and gamified perspective. Results: Gamified XP
practices and process stages are explained and exemplified, demonstrating the feasibility of the proposed gamified
reinterpretation for the XP software development. Conclusion: A software development methodology based on
agile gameplays obtained by the XP reinterpretation was proposed, becoming a possible solution to improve the
flow state in XP developers.

Keywords: Agile Methods, eXtreme Programming, Practices and Process Stages, Software Development, Playable
Mode, Flow State

1 Introduction

When considering the term “game”, associations with leisure,
entertainment, or time-wasting often arise. However, this
perception of waste is an example of how time tends to re-
shape old ideas and thoughts. This becomes especially evi-
dent with the gamification idea, which seeks to apply success-
ful game mechanics and dynamics in real-world situations
[Costa and Marchiori, 2015].
Gamification concepts and their applications can be seen

as a consequence of a growing trend aimed at engaging em-
ployees and collaborators, seeking to help them achieve a
“state of flow” [Csikszentmihalyi et al., 2005] in their tasks.
The flow state refers to a mental state of complete absorp-
tion in an activity, marked by intense immersion, loss of time
and space awareness, and sustained focus on task execution
[Csikszentmihalyi et al., 2005].
Regarding software development approaches, there are in-

teresting works focused on the identification and definition
of gamification strategies in Software Engineering (SE) pro-
cesses [García et al., 2017]. These works proposed the in-
clusion of ranks, badges, missions, and other gamification
components to create reward systems. As a result, they en-
hance engagement and participation in system development
[Pedreira et al., 2015], an activity where the human factor is
still of great relevance in the productive process.
Considering the human factor, agile methodologies have

emerged in recent years as an attempt to improve the quality
of delivered software, through the recognition of the impor-
tance and limitations that human beings have in the produc-
tion of desired systems [Al-Saqqa et al., 2020]. In this sense,
many agile practices have been proposed [Krancher, 2020],
highlighting both the importance of distributing the knowl-
edge of system production among its collaborators, as well

as the need to produce small system releases directly inte-
grated with the client at different development moments.

Drawing a parallel between gamification and the agile
world, it is possible to perceive that gamification practices
can also be applied on agile methods, as both create a con-
text of recognition and reward for the completion of activities
allocated in the process. However, there is a world of possi-
bilities in the universe of games that can be directly applied
or serve as a guide to stimulate the flow of people involved
in the production of software systems.

In this sense, and making a direct allusion to eXtreme
Programming (XP) [Anwer and Aftab, 2017], this work
presents a reinterpretation of the execution of XP practices
and process stages in a “playable mode” [Sarinho, 2024], to-
gether with examples and suggestions about the application
of playable production practices and process as an extended
approach. As a result, with the definition of an agile playable
mode, it is expected to take the gamification use to another
level, providing a software development methodology based
on agile gameplays for software production steps. Thus, by
incorporating other existing game elements, this approach
seeks to establish a coherent and engaging software process
to support the development of desired projects in a playable
manner.

For organizational purposes, Section 2 presents the theo-
retical foundation of this work, covering key aspects of ag-
ile development, the flow state, and gamification concepts.
Section 3 describes the potential reinterpretation of XP pro-
duction and process practices in a playable mode. Section 4
provides a practical example demonstrating how playableXP
practices and processes could be implemented in a software
project following a unified game theme. Finally, Section 5
presents the conclusions and future work of this project.

https://doi.org/10.5753/jis.2025.5432
https://orcid.org/0000-0002-5653-8390
mailto:vsarinho@uefs.br

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

2 Theoretical Foundation

Among the various methodologies encompassed by agile
software development, eXtreme Programming (XP) [Anwer
and Aftab, 2017] stands out for its focus on enhancing soft-
ware quality and responsiveness to evolving customer re-
quirements through frequent releases in short development
cycles. XP promotes a collaborative environment where
developers, clients, and managers work closely and contin-
uously, creating an interesting environment for integrating
gamified elements and promoting engagement and flow dur-
ing software development. To support this perspective, the
following subsections present the conceptual foundations of
agile software development, gamification, the flow state, and
their intersections, offering the necessary theoretical basis
for understanding how these elements can be integrated in
a playable XP context.

2.1 Agile Software Development

Software development methodologies aim to increase the
productivity of development teams, accelerating the time to
market for solutions, reducing development costs, and im-
proving customer satisfaction [Lee and Chen, 2023]. To
achieve these objectives, agile software development has
gradually generated public discussions since the 1990s,
which can be defined as a collective term for collaborative
work based on a set of values and principles that has become
a standard approach for the software industry [Naik and Jenk-
ins, 2019].
Agile software development emerged as a solution for the

software crisis, where most software development projects
failed to meet user requirements [Bera et al., 2023]. It
promotes adaptive planning and evolutionary development,
sharing the same values of the software process and en-
couraging rapid and flexible responses to changes through
early delivery and continuous improvement of the pro-
duced systems [Sutherland and Sutherland, 2014]. Fur-
thermore, agile development emphasizes moderate planning,
people-oriented cooperation, face-to-face communication,
self-organization, self-management, and rapid development
of the desired systems [Williams, 2010].

2.2 Gamification

Gamification broadly encompasses technological, economic,
cultural, and social developments in which reality becomes
increasingly game-like, whether by deliberate design or as an
emergent transformation [Koivisto and Hamari, 2019]. It in-
volves the application of game-based mechanics and dynam-
ics to various processes, aiming to establish reward systems
that capture the attention and engagement of the individuals
involved.
Digital games, on the other hand, make use of the concept

of entertainment in highly empathetic interfaces to conquer
the attention and interaction of the target audience. For that,
they explore the application of important aesthetic elements,
such as narrative, challenge, socialization, among others [Hu-
nicke et al., 2004], with the aim of engaging and emotionally

connecting with their players, so that they remain continu-
ously in a magic circle [Juul, 2008] of gameplay.
By incorporating well-balanced and contextualized game

elements through empathetic interface design, gamification
enables the creation of meaningful user experiences that pro-
mote engagement and immersion for their players. In this
sense, gamification acts as a catalyst within agile software de-
velopment teams, stimulating motivation and focused atten-
tion, as well as promoting the necessary conditions to reach
the flow state that increases both personal satisfaction and
productivity at work [Coutinho et al., 2021].

2.3 The Flow State
The flow state presents a combination of four elements: in-
trinsic motivation, maximum concentration, a very positive
emotional state, and a high performance rate [Kamei, 2014].
The flow state can be described as a mental state that oc-
curs when a person performs an activity and feels completely
absorbed in a sense of energy, pleasure, and total focus on
what they are doing [Csikszentmihalyi et al., 2005]. In other
words, it is a state where, in its essence, it is characterized by
complete immersion in what is being done, and by a conse-
quent loss of the sense of space and time. Thus, with max-
imum focus and concentration, all action, all involvement,
and all thought flow in sequence to the action, until the end
of the activity itself [Csikszentmihalyi et al., 2005].
Despite being desirable, a constant flow state tends to be

utopian and practically impossible to be achieved one hun-
dred percent of the time [Rossetti and Ramos, 2022]. In this
sense, a closer relationship to reality is presented with the
flow state at the intersection between enjoyment and chal-
lenge, having the balancing of games on different aspects as
a fundamental factor for increasing the chances of achieving
the flow state [Rossetti and Ramos, 2022]. In other words,
through well-designed game interfaces for their respective
users, it is understood that they can help achieve the appro-
priate balance in order to provide the necessary conditions to
promote the flow state [Souza Teixeira and Fonseca Ramos,
2014].

2.4 Games and Agile Development
Initiatives such as the Planning Game [Parsons, 2014],
source code Dojo [Luz and Neto, 2012], and Game-of-
Games (GoG) [Spil and Bruinsma, 2016], [Sarinho, 2020]
demonstrate the potential of incorporating different types of
digital game elements into the development of software sys-
tems. These approaches go beyond the common inclusion of
traditional gamification components (e.g., points, rankings,
rewards), introducing new mechanics and dynamics that can
be effectively leveraged by software developers.
Developed projects, such as Planning Poker [Grenning,

2002], Extreme Hour, XP Lego Game [Parsons, 2014], and
Red-Green-Go! [Embury et al., 2019] illustrated how ag-
ile practices can be enriched through gamification concepts.
They enable a more engaging and enjoyable development
experience, while demonstrating the feasibility and poten-
tial benefits of incorporating game-based dynamics into agile
workflows.

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

In this context, and considering the previously explained
convergence of gamification, flow theory, and agile method-
ologies, these developed initiatives highlight the evolution
of game-based strategies in both traditional and agile soft-
ware engineering processes. Furthermore, by promoting a
playful, collaborative, and intrinsically motivating environ-
ment, such approaches create the ideal conditions for the
emergence of the flow state during software development
activities. As a result, these projects provide the necessary
inspiration for the creation of new agile development pro-
cesses based on different types of game elements, such as
the playable XP approach presented in this work.

3 Defining a Playable XP
Recent state-of-the-art trends adopting agile development
have been explored in the literature, especially in cloud com-
puting, big data, and team coordination [Al-Saqqa et al.,
2020]. These are studies that reveal new methods and prac-
tices capable of increasing the efficiency and quality of
software development processes in their respective contexts.
Further research also demonstrates how the design and test-
ing of learning games related to agile methodology can serve
as a tool for improving the comprehension of agile meth-
ods, in addition to giving them the opportunity to develop
their creative, organizational, and analytical skills [Parsons,
2014].
In order to define a new agile approach within the perspec-

tive of games and gamification, this work seeks to define
playable goals able to be applied at the next level of agility for
existing software processes. To this end, the aim is to incor-
porate actions such as “programming by playing”, “design
challenges”, or “programming competitions” into “collabo-
rative multiplayer” development sessions in the agile produc-
tion of systems based on existing game approaches.

3.1 Playable Production Practices
Taking the XP methodology as a starting point, agile produc-
tion practices have been listed and successfully accepted by
the SE community, such as pair programming, code refactor-
ing, simple design, among others. Based on these practices, a
reinterpretation of them was proposed within situations and
experiences provided by games in general (Figure 1), such
as:

• Game-Driven Development: Activities to be carried
out in the development process stages should be per-
formed through appropriately defined game mechanics,
dynamics, and aesthetics. In this way, the act of play-
ing - with a defined beginning, middle, and end, rep-
resented in a fictional experience distant from any ex-
istential problem or risk, capable of providing anxiety
and hope both in the possibility of losing and also in the
expectation of winning, in a voluntary way that gener-
ates a feeling of reward - becomes the guiding princi-
ple for solving problems in the target domain, aiming
to provide a differentiated level of immersion for the
collaborators in the development process itself.

• Simple Challenges: Developers should play matches
divided into phases with small challenges, where the
actions performed by the players generate effects that
can be identified in the project. Considering that game
actions will be used for the production of desired sys-
tems, it is important that the definition and achievement
of these small game challenges be oriented towards the
production of small artifacts capable of being used in
the assembly of the final target software.

• Multiplayer Programming: The work carried out by
people in production processes can be performed indi-
vidually or collectively depending on the project’s char-
acteristics. In the case of games, single or multiplayer
matches can be played in both collaborative and compet-
itive modes, as well as in small groups or in a frenetic
battle royale [Choi andKim, 2018]. With the addition of
Head-Up Displays (HUDs) that show the performance
of each player and their group, there are interesting al-
ternative ways to perform project activities in a playable
and gamified way, tailored to each active competitor.

• Code Replay: Each match is unique and generates
unique solutions. In this sense, nothing prevents play-
ers from replaying as many times as necessary, seeking
each time to execute better “correct” actions for the re-
spective project. As a result, multiple artifacts and re-
leases with partial and complete solutions can be gener-
ated by the collaborators, within the continuous rhythm
of effort that players employ when they are immersed
in their chosen game matches.

• Rule Standards: Just as code patterns can be adopted
in software projects, gameplay and action-response pat-
terns can be defined for each game match to be carried
out in each process activity. In this way, it becomes
necessary to define a set of rules in order to impose on
players a respect for the project’s quality within the ac-
tions and responses defined and expected in the game.

• Addiction Control: Players, when they enjoy a game,
when they enter the flow state provided by games, they
tend to play it at a frenetic pace. In this sense, it is neces-
sary to avoid “overwork” in a specific game, tomaintain
a sustainable rhythm for the project as a whole.

• Continuous Victory: Each phase or completed game-
play within a project is already a victory in itself. The
laurels of victory may go to the winners, but the project
itself is themain winner since new victorious releases of
the project are obtained as a consequence of each com-
pleted gameplay.

• Storytelling: Each client has a story to be told about
a problem. Each story has a beginning, a middle, and
an end. Each story can be told in different ways, in or-
der to create a plot capable of immersing players in the
system of rules and patterns proposed by the production
process for the game in question. It is up to each project
manager to define at what point in the story and inwhich
system of rules theywill place their collaborators to start
their matches.

• Magic Circle: A game truly begins when players enter
the magic circle, requiring a shared understanding of
the game’s context. This shared understanding empow-
ers players to take ownership of the rules, actions, and

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

Figure 1. Suggested practices for a playable XP, where the smaller inner circle (blue) represents the core technical practices to be applied, the middle circle
(green) represents the support practices that ensure effective team functioning, and the larger outer circle (red) aligns development with customer needs,
creating a continuous cycle of feedback and improvement. Source: Author’s Own.

patterns, allowing them to master the game over time.
• Guilds: Groups formed by players, each specializing
in a particular role, strategically plan their actions to
achieve the game’s objectives. Successful guilds under-
stand the value of every team member, with each mem-
ber knowing when and how to contribute to ensure the
group’s success in completing assigned tasks.

• Game Tournaments: There are moments in project
production where it is necessary to define which
matches and in which phases will be played by the de-
velopers, which will bring the best results that will ad-
vance to the next stage until the final delivery of the
project. In this sense, it is up to the managers, in agree-
ment with the players and the project goals, to decide
when the tournaments will be defined and held, gener-
ating trophies and recognition from the entire team for
the best players who followed the rules defined in the
game, as well as generated good results for the project.

• Client Stream: People like to watch and give opinions
about gamematches, and this would be no different with
customers. In this sense, it is important to create differ-
ent forms of customer participation in real time with the
matches held, whether through live viewing and inter-
action during the matches, or by issuing relevant com-
ments and suggestions that should be analyzed by the
game teams.

• Game Missions: Every game has objectives, has mis-
sions to be fulfilled, whether they are primary or sec-

ondary. It is up to the project team to choose which and
when certain challenges should be fulfilled in order to
complete the great mission that is to complete the game
as a whole and finalize the project planned by the team.

3.2 Playable Production Process
Using the previously indicated practices, some activities
were identified, according to the XP production process.
They can be performed based on these principles, in order
to define a possible execution cycle of steps for an agile de-
velopment process with “playable” milestones (Figure 2):

1. Presentation and adaptation of the Storytelling to be
used in games (Game plan): At this moment, a plan-
ning is carried out to define which game style will
be used in the developed project, modeling how they
will appropriate the client’s Storytelling to generate re-
sults in future Continuous Victories. It is also decided
how the players will become aware of the client’s prob-
lems and the gameplay results for the project, in a way
adapted for each applied game approach in question.

2. Definition of Simple Challenges according to the Rule
Standards that will be used in the chosen games for the
project (Gameplay plan): Depending on the mission,
the game context, and the players in the match, some
challenges and rules may or may not be applied to each
game, such as: number of possible word matches for
the creation of dynamic user stories [Sarinho, 2019]; re-

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

Figure 2. Suggested process steps for a playable XP, showing a continuous
and gamified flow among proposed technical practices, team support activ-
ities, and customer-aligned strategies. Source: Author’s Own.

sponse time to choose a mutation rule to be applied in
software tests presented at a “frenetic” pace; or choice
of actions that the player can perform for the simplifi-
cation or composition of interfaces according to User
eXperience (UX) in an atomic interface design [Frost,
2016], [Odushegun, 2023]. It is worth mentioning that
possible tutorial missions may also be defined at this
stage, thus improving the performance and initial im-
mersion of players in the first matches of each game.

3. Transmission and continuous monitoring of comments
in the Client Stream (Client test): This is a stage contin-
uously carried out by the clients in the project, through
the monitoring of HUDs and the status of each game. It
is also a decision-making stage performed together with
the development team, looking for possible changes in
the game mode as a whole, since the clients essentially
act as the game master of each match played in the de-
velopment process.

4. Storytelling and GameMission updates (Players meet):
Through repeated playtesting of the selected games, per-
forming their Simple Challenges according to the de-
finedRule Standards, new game states are regularly cap-
tured. Based on these states, new rules and challenges
can be defined and released to players, along with up-
dates to the game’s Storytelling, in order to guarantee
variability and surprise for the players involved. It’s im-
portant to note that sincemultiple distinct gamesmay be
incorporated in the final system, the state of each game
after playtesting can influence other applied games with
the available playtesting data.

5. Guild and GameMission selection (Gameplay negotia-
tion): The development of a system has several parallel
missions that can be carried out in each available game,
such as screen production, architecture definition, code
programming, test writing, etc. It is up to the players
to choose their partners and which initial missions they
will venture into.

6. Continuous Code Replay with Addiction Control mon-
itoring (Gameplay test): With the definition of Sim-
ple Challenges according to the defined Rule Standards,
multiple matches are repeatedly played by the players,
in order to generate multiple artifacts capable of being
used in the system project. In this sense, it is necessary
to define and carry out the monitoring of the game pace
of each player, in order to prevent potential “burnout”
or “overwork” by the continuous and addictive act that
the games can provide to them.

7. Search for the Magic Circle for the players involved ac-
cording to the chosen Multiplayer Programming mode
(Let’s play): Whether collaborative or competitive,
whether individual or in groups, it is up to the manager
and the teams to decide how they want to play each pro-
posed game, in order to guarantee fun and pleasant mo-
ments of system production with them.

8. Tracking Continuous Victory and organizing Game
Tournaments (Game on): For each match played, ar-
tifacts generated from the system in production need to
be documented and organized in prototypes and releases
of the system. Internal tournaments may also be held at
this stage of the project, depending on project urgency
and the team’s current development velocity for upcom-
ing client releases.

9. Repetition from the initial steps to the completion of
the Game Missions (Game loops): Based on the per-
formance of the players in the matches, the comments
of the clients and the progress of the project develop-
ment, it is up to the development team to decide which
readaptations will be necessary for the purpose of ob-
taining the desired final project successfully.

4 Applying a Playable XP
Considering the 9 proposed steps for the XP-inspired pro-
cess from a gamified perspective, some possible examples
and suggestions can be provided for each process stage to
develop a desired system.

4.1 Game Plan
Regarding the presentation and adaptation of the Storytelling
in the Game Plan stage, it involves defining the project’s
overall narrative, as well as its possible outcomes, which can
be considered Continuous Victories. Thus, within the gen-
eral context of an Automated Teller Machine (ATM) control
system to be produced, a control system for Gringotts Wiz-
arding Bank’s Magic Teller Machines (MTMs) will be de-
veloped, according to the context of the Harry Potter1 saga.
This system will be developed by “witches” and “wizards”
distributed in Guilds linked to the Hogwarts Houses.
To structure the proposed narrative in a way that the sys-

tem functionalities are represented as tasks, different strate-
gies can be adopted. Two viable alternatives are: (A) the
use of Problem-Based Learning (PBL) layout [Hung et al.,
2008], or (B) the adoption of Behavior Driven-Development
(BDD) story formats [Farooq et al., 2023].

1https://www.harrypotter.com

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

PBL emphasizes the presentation of real-world problems
as the starting point for learning and task execution [Wood,
2003]. This approach supports immersion, critical thinking,
and active problem-solving—key aspects for maintaining
player engagement throughout the gamified process. On the
other hand, BDD is a software development technique that
expresses system behavior in a structured, human-readable
format, typically using the Gherkin syntax (Given-When-
Then syntax) [Farooq et al., 2023]. This format enables clear
communication between developers and stakeholders while
providing testable and verifiable acceptance criteria.
In the context of Playable XP, PBL can be framed as

challenges that require collaborative analysis, iterative explo-
ration, and solution development, aligning naturally with the
storytelling and mission-based elements. For the BDD for-
mat, scenarios can be reinterpreted as “magical challenges”
to be solved through spells (i.e., code), enhancing the the-
matic integration between narrative and technical specifica-
tion. As a result, both strategies enable the representation
of functional requirements through concrete tasks and pro-
vide a basis for defining evaluation criteria. They can de-
fine functional elements to be implemented, along with cor-
responding preconditions and postconditions for evaluation.
Thus, through these conditions, it is possible to demonstrate
and verify the success or failure of the outcomes achieved
through the Continuous Victories performed during each
gameplay.

4.1.1 (A) Storytelling for the Gringotts Magic Teller
Machines (MTMs) following PBL

Storytelling: Imagine that the world has been hit by a wave
of intermittent “digital blackouts”. The communication in-
frastructure and banking systems are unstable. Traditional
banks are having difficulty keeping their services online,
causing panic and confusion among the population. A small
local bank, “Gringotts Bank”, known for its innovative ap-
proach and use of advanced technology, decides to hire a
team of “digital magicians” to develop a new MTM system
resilient to these failures and that offers a more interactive
and secure experience for its customers.
The Problem: Gringotts Bank needs a new ATM system

that continues to operate during digital blackouts and pro-
vides the following functionalities:

1. Withdrawal: The customer inserts the “Magic Wand”
(card) and pronounces the “Vault Password” (PIN). Due
to the blackouts, the system must have an offline mode
that allows limited withdrawals based on an “Energy
Crystal” (offline balance) that will be managed by
Gringotts’ magical network.

2. Deposit: The customer can deposit “Gold Coins”
(money) into the MTM. In offline mode, the deposit
is registered locally and synchronized with Gringotts’
magical network as soon as the connection is re-
established.

3. Balance Inquiry: The customer can check the balance
online and offline (Energy Crystal). The interface dis-
plays the balance with a “Mana” (magical energy) visu-
alizer, representing the available funds.

4. Inter-Account Transfer: The customer can transfer
“Gold Coins” to other customers, when both accounts
are online. The transfer is represented as a “Transfer
Spell”.

5. Leveling Up: The user can complete small tasks at the
MTM, such as “checking the balance 3 times a week”,
to gain “experience” and “rewards” from the bank.

6. Security Level: As the customer levels up in the bank,
the associated account can unlock additional features,
for example, increasing the offline withdrawal limit.

7. Extra Items: Depending on the customer’s level, the
MTM can offer extra virtual “magic items” to its cus-
tomers, such as “Balance Boost Potion” (temporary
bonus) or “Security Amulet” (extra protection against
fraud).

4.1.2 (B) Storytelling for theGringottsMagic TellerMa-
chines (MTMs) following BDD

General Context: Gringotts Bank is implementing more
modern and secureMTMs, as witches andwizards need to ac-
cess their galleons, sickles, and knuts easily and efficiently.
Story 1: GalleonWithdrawal - Retrieving Vault Funds
Narrative: As a wizard needing galleons to buy potion in-

gredients in Diagon Alley, I want to withdraw money from
my vault at Gringotts using an MTM.

Scenario 1.1: Successful Withdrawal - Transaction Ap-
proved by the Goblin;
Given that my Magic Wand is registered and authorized

with Gringotts Bank and my vault contains 50 Galleons,
And the MTM is connected to Gringotts’ magical network,
When I insert my Magic Wand and pronounce the Vault
Password (PIN) correctly, And I cast the withdrawal spell
for 20 Galleons (withdrawal command), Then 20 Galleons
should be magically withdrawn from my vault, And the
MTM should display a message with glowing runes confirm-
ing the transaction: “Transaction Approved - 20 Galleons
withdrawn from Vault [Vault Number]”, And my new vault
balance should be 30 Galleons.

Scenario 1.2: Insufficient Funds - Withdrawal Spell
Failed - Empty Vault;
Given that my Magic Wand is registered and authorized

with Gringotts Bank and my vault contains only 10 Galleons,
And the MTM is connected to Gringotts’ magical network,
When I insert my Magic Wand and pronounce the Vault
Password correctly, And I cast the withdrawal spell for 20
Galleons, Then an error message, accompanied by black
ravens flying around, should be displayed on the MTM:
“Withdrawal Spell Failed - Insufficient Funds for the Spell”,
And my vault balance should remain at 10 Galleons.

Scenario 1.3: Incorrect Vault Password (Unauthorized Ac-
cess Attempt) - Vault Protection Alert - Goblins on Alert;
Given that my Magic Wand is registered, And the MTM

is connected to Gringotts’ magical network, When I insert
my Magic Wand and pronounce an incorrect Vault Password
three times, Then my Magic Wand should be temporarily
disabled for use in MTMs (like a temporary “Confundus”
Charm), And an audible alert with the sound of moving
iron chains should be heard, and the message “Vault Protec-
tion Alert - Goblins on Alert - Unauthorized Access Attempt

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

Recorded” should be sent to Gringotts security.
Story 2: Balance Inquiry - Viewing the Gold in the

Vault
Narrative: As a wizard, I want to check my vault balance

at Gringotts using an MTM.
Scenario 2.1: Successful Inquiry - Treasure View;
Given that my Magic Wand is registered and authorized

with Gringotts Bank and my vault contains 75 Galleons,
12 Sickles, and 5 Knuts, And the MTM is connected to
Gringotts’ magical network,When I insert my Magic Wand
and pronounce the Vault Password correctly, And I cast the
balance inquiry spell (inquiry command), Then the MTM
should display a holographic image of my vault with the ex-
act amount of Galleons, Sickles, and Knuts, with the mes-
sage: “Your Gringotts Treasure: 75 Galleons, 12 Sickles, 5
Knuts”.

4.2 Gameplay Plan
For this stage, it is necessary to define Simple Challenges ac-
cording to the Rule Standards that will be used in the games
chosen for the project. Thus, based on the PBL and BDD ex-
amples previously described, some Scrum sprints containing
Simple Challenges for the development of the MTM system
will be presented, focusing on contracts representing evalu-
ation Rule Standards defined by constraints (pre- and post-
conditions) and Gherkin descriptions (Given-When-Then).

4.2.1 Sprint 1: Authentication and Basic Withdrawal

Sprint Goal: Implement authentication with theMagicWand
and basic Galleon withdrawal.

Stories: As a wizard, I want to withdraw Galleons from
my vault using my Magic Wand and Vault Password.

Indicated Tasks:

1. Develop the Magic Wand reading module.
2. Implement the Vault Password verification.
3. Create the vault debit logic.
4. Develop the basic MTM interface for withdrawals.

Contracts (Constraints):

1. Pre-conditions (Withdrawal): TheMagicWandmust be
registered and authorized, and the vault must exist.

2. Post-conditions (SuccessfulWithdrawal): The vault bal-
ance must be reduced by the withdrawn amount, and a
transaction record must be created.

3. Post-conditions (Insufficient Funds): An “Insufficient
Funds” error message must be displayed, and the vault
balance must not be changed.

4. Gherkin Rules: Scenarios 1.1 and 1.2 (Successful With-
drawal and Insufficient Funds).

Acceptance Criteria:

1. The MTM must correctly authenticate the Magic Wand
and the Vault Password.

2. The withdrawal must be performed successfully if there
are sufficient funds.

3. An appropriate error message must be displayed if the
balance is insufficient.

4. Unit and integration tests must cover the Gherkin sce-
narios and must pass successfully upon execution.

4.2.2 Sprint 2: Security and Error Handling

Sprint Goal: Implement security measures and error han-
dling, including temporary Wand blocking in case of incor-
rect passwords.

Stories: As a wizard, I want my vault to be protected
against unauthorized access.

Indicated Tasks:

1. Implement temporary Wand blocking after multiple in-
correct password attempts.

2. Create the alert system for Gringotts in case of unautho-
rized access attempts.

3. Handle other potential errors, such as communication
failures with the vault database.

Contracts (Constraints):

1. Pre-conditions (Withdrawal): TheMagicWandmust be
registered and authorized, and the vault must exist

2. Post-conditions (Incorrect Password): The Wand must
be temporarily blocked, and an alert must be sent to
Gringotts.

3. Gherkin Rules: Scenario 1.3 (Incorrect Vault Pass-
word).

Acceptance Criteria:

1. The Wand must be blocked after three consecutive in-
correct password attempts.

2. An alert must be generated and logged at Gringotts.
3. The systemmust handle other exceptions robustly, with-

out presenting unexpected errors.

4.2.3 Sprint 3: Balance Inquiry and Interface Refine-
ments

Sprint Goal: Implement balance inquiry and improve the
MTM interface.

Stories: As a wizard, I want to check my vault balance
quickly and easily.

Indicated Tasks:

1. Develop the balance inquiry logic.
2. Create a gamified interface to display the balance.
3. Refine the overall MTM interface, improving usability.

Contracts (Constraints):

1. Pre-conditions (Withdrawal): TheMagicWandmust be
registered and authorized, and the vault must exist.

2. Post-conditions (Balance Inquiry): The current vault
balance, including Galleons, Sickles, and Knuts, must
be displayed.

3. Gherkin Rules: Scenario 2.1 (Successful Inquiry).

Acceptance Criteria:

1. The balance must be displayed correctly in the Galleons,
Sickles, and Knuts format.

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

2. The interface must be intuitive and visually appealing.

More detailed contract options using a formal notation can
also be specified, as exemplified by the following reinterpre-
tation of some contracts from Sprint 1:

1. Pre-conditions (Galleon Withdrawal): wand.registered
== true and wand.authorized == true and
vault.exists(vaultNumber) == true and
vault.balance(vaultNumber) >= withdrawalAmount

2. Post-conditions (Successful With-
drawal): vault.balance(vaultNumber) ==
vault.balance(vaultNumber)@pre - withdrawalAmount
and transaction.recorded(vaultNumber, withdrawalAm-
ount, dateTime)

3. Post-conditions (Insufficient Funds): mes-
sage.displayed == “Insufficient Funds”
and vault.balance(vaultNumber) ==
vault.balance(vaultNumber)@pre

4.3 Client Test

Considering the continuous transmission and monitoring of
client comments in a Client Stream, and focusing on the
Gringotts MTM project and their exemplified sprints, three
approaches can be adopted: generic video streaming plat-
forms, such as private YouTube channels and closed Face-
book groups; self-built platforms, for tracking the evolution
and results of the game sessions; or assigning responsible
professionalswithin the project, able to share the session data
and perform desired tests with clients.
Regarding generic video streaming platforms, private

channels can be created where sprint reviews are live-
streamed and remain recorded for later consultation. To do
this, it is necessary to create a closed group on these plat-
forms where updates, demonstrations, and discussions are
shared. Thus, sprint reviews can be live-streamed within the
group, and clients can interact via chat during the broadcast
and leave comments on the recorded videos. Among the ad-
vantages obtained, it is possible to identify: the good client-
developer social interaction; the availability of file sharing
and discussion features; and the familiarity of using these
platforms for many different users. As disadvantages, this is
a less formal method than a dedicated video channel, and the
organization of the project information can become a chal-
lenge as the project evolves.
Self-built platforms, which are more customized, can also

be applied, such as a tracking panel with game elements. For
this, the development of an interactive web panel that shows
the project’s progress in a gamified way can be implemented.
Therefore, considering the Gringotts MTM, a panel that in-
cludes the following elements can be developed (Figure 3):
Diagon Alley Map, representing sprints and developed tasks,
together with mission status (Stories) represented by themed
icons and descriptions; Gamified Test Reports, presenting
scrolls or other visual elements for the test results; Comments
Area, integrated into the panel for clients to leave feedback
directly; and Integrated Live Streams, incorporating a video
player for live broadcasts within the panel. Integration with

Figure 3. Conceptual illustration of a gamified Client Stream Panel for
tracking project progress in Playable XP. Source: Generated by ChatGPT
and edited by the author on July 31, 2025.

project management tools (e.g., Jira2, Trello3, among others)
can also be applied at this stage, facilitating the collection of
final artifacts from each game session according to the per-
formed Code Replay.
Considering the option of assigning responsible profes-

sionals within the project for this activity, a teammember can
be designated as the “Master of the MTMs” or “Guardian of
Gringotts” for communicating progress to clients. This team
member is responsible for sending periodic reports, conduct
personalized video calls, perform desired tests with or with-
out clients, and answer questions directly. This approach al-
lows for closer and more personalized communication, pre-
senting greater flexibility to address the specific needs of
each client. However, in addition to the greater time demand
for the person responsible for communication, it may not be
scalable for a large number of clients and developers.
It is worth noting that it is not enough to just transmit

project information itself. It is essential to create mecha-
nisms to collect client feedback, such as polls, forms, ques-
tion and answer sessions, and comment areas, as well as
maintaining a record of decisions made based on client feed-
back, thus demonstrating transparency and acknowledging
their participation.
It is also important to acknowledge that not all clients

may engage with gamified environments in the same way.
While game elements can enhance engagement for some, oth-
ers may prefer more formal, minimalist, or task-oriented in-
teractions. Therefore, the proposed gamification strategies
should be positioned as optional layers that enrich commu-
nication without becoming mandatory entry points. The
core functionalities—such as progress visualization, feed-
back submission, and sprint validation—must remain acces-
sible through standard interfaces or direct communication
with the development team, thus ensuring inclusivity across
different client profiles and preferences.

2https://www.atlassian.com/software/jira
3https://trello.com

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

4.4 Players Meet
Considering the updates to the Storytelling and the status of
the Game Missions (stories) based on the execution of pro-
cess stages, new mechanics and dynamics can be proposed
for conducting the project’s process. In this sense, and con-
sidering the Gringotts MTM project, there are some exam-
ples of results presentations, playable mechanics, and gami-
fied dynamics that can be applied to it, such as:

1. Daily Prophecy: An inspiring phrase or a tip related to
the current mission is presented, like a “prophecy” guid-
ing the day’s work. For example: “Precision in the ac-
count details will ensure the safety of the vaults”.

2. Wand Pass: Teammembers must have possession of the
“Wand of Attention” (physical or virtual) during Daily
Meetings so that they can “pass” it to other members of
each team to report their development status. This cre-
ates a gamified flow and prevents anyone from failing
to present their contributions about the project.

3. Daily Prophet Report: Each member reports their
progress as if they were giving news to the Daily
Prophet. Phrases like “The authentication potions are
brewing and should be ready tomorrow!” or “A digital
troll attacked the withdrawal code, but we have already
subdued it!” add a touch of immersion in the project’s
theme.

4. Status with Magical Creature Cards: Each member can
choose a magical creature card to represent their status
on assigned tasks. As possible examples: the “Hip-
pogriff” can represent a Task in progress, with good
progress; the “Messenger Owl” can represent a Task
with minor problems that needs help; and the “Troll”
can represent a Task with major difficulties, requiring
urgent intervention.

5. Distribution of Merit/Improvement Cards: Themed
cards can be used to recognize team members’ con-
tributions (e.g., “Spell Champion Card”, “Master
Builder Card”) or to identify areas for improvement
(e.g., “Curse of Confusion Card”, “Unpredictable Troll
Card”).

6. Wizard Performance Scroll: Each team member can
have a personalized “control panel”, showing their
tasks, experience points, and obtained items. The inter-
face can allow interaction with map elements, such as
clicking on representative task icons to see sprint details
or on a scroll to view test reports.

7. Quick Status Spell: After a Daily Meeting, a brief vi-
sual “status spell” is activated on the Client Stream or
on a virtual board (e.g., Notice Board or Hall of Fame).
This spell can be a simple graph showing the progress
of tasks in each “shop” of Diagon Alley.

8. Magical Progress Board: Instead of a traditional Kan-
ban board, a stylized map of Diagon Alley is used,
where each shop or iconic location can represent a
project phase or a sprint (Figure 4). Tasks can be rep-
resented by cards with themed illustrations, such as: a
wand casting a spell for “Implement the Wand Reading
Module”, or a bag of galleons for “Create the vault debit
logic”. The cards can be moved between the “shops”
(phases/sprints) as development progresses: “In Prepa-

Figure 4. Illustration of the “Magical Progress Board”, a stylized task-
tracking board based on a Diagon Alley map. Source: Generated by Chat-
GPT and edited by the author on July 31, 2025.

ration” at the “Leaky Cauldron’s Ingredients Cauldron”
(Backlog), “In Progress” at “Ollivanders Wand Shop”
(Sprint Backlog), “In Testing” performing “Sweetness
Testing at Honeydukes” (In Review), and “Completed”
on the “Weasleys’ Wizard Wheezes Success Shelf”
(Done).

9. Hall of Fame: A virtual hall of fame is updated at the
end of each Sprint, showing the ranking of the Guilds
and Houses based on criteria such as: Number of com-
pleted tasks; Code quality assessed by reviews and tests;
Participation in events and challenges; and Client feed-
back.

10. Daily Lightning Challenge: A small programming or
design challenge, related to the current mission, can be
proposed immediately after the Daily Meeting. This
challenge should be quick (5-10 minutes) and offer a
small reward. Example: “Write a small spell (function)
to validate a specific date format”.

11. Guessing Mini-Game: A brief mini-game can be held
on the Client Stream, involving both clients and the
team. This mini-game can be about the code, the in-
terface, or the narrative. For example: “Guess which
Guild implemented this functionality based on a code
snippet”.

12. Spell Fitting: Guilds are invited to include snippets of
small code pieces (spells) provided by a code generation
tool. Extra points are awarded to those who manage to
make insertions accepted by the other guilds.

13. Scoring and Leveling System: With each successfully
completed task, the team earns points that contribute
to their progression. As they accumulate points, they
advance in levels (e.g., from “Wizard Apprentice” to
“Master Sorcerer”), unlocking new “spells” (tools or
functionalities) or “magic items” (guild attack or protec-
tion resources). Small virtual or physical rewards can
also be offered for achieved goals, such as prize give-

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

Figure 5. Visual representation of the “Laws of Magic and Magical Chal-
lenges” in the Playable XP context. Source: Generated by ChatGPT and
edited by the author on July 31, 2025.

aways based on “guild progress”.
14. Laws of Magic and Magical Challenges: Pre- and post-

conditions defined by contracts can be presented as
“Laws of Magic” that must be followed for the spells
to work correctly (Figure 5). The Gherkin rules (Given-
When-Then) can be seen as a “magical challenge” or a
“puzzle” that needs to be solved through spells (code)
based on Laws of Magic that can be used in different
situations. In this approach, similar to those practiced
in programming marathons, when a Law of Magic is
evaluated from the execution of a spell to solve a pro-
posed magical challenge, the interface can display a
themed animation or visual effect indicating: Test Pass-
ing (glowing runes appear on the screen); or Test Fail-
ing (a mountain troll attack with visual effects appears
on the screen). Test reports can be presented as magic
scrolls with the results of the “challenges”, showing
which spells passed and which failed in solving the mag-
ical challenges.

15. Wizard Council Evaluation: Clients can be represented
as a jury of wizards from the Ministry of Magic, evalu-
ating the team’s “magical work”. They can give grades
and feedback using thematic criteria, such as “Spell
Precision”, “Potion Potency”, or “Effectiveness against
Dark Creatures”. Clients provide feedback and evalu-
ate the product increment using a thematic voting sys-
tem (e.g., “Approved by the Wizengamot”, “Requires
Adjustments from the Department of Mysteries”).

16. Progress Report as a Spell Book: A document or presen-
tation can be formatted as an ancient spell book, with il-
lustrations, runes, and magical descriptions of what was
developed. The encountered problems can be described
as “curses” that were broken.

17. Awards Ceremony: At the end of the Sprint, “trophies”
(virtual or physical, such as small themed objects) can
be awarded to team members who excelled in different
areas, such as “Best Authentication Spell”, “Most Ef-
fective Anti-Error Potion”, or “Digital Troll Tamer”.

18. Next Mission Preview: At the end of the Sprint Review,
a brief “teaser” of the next mission is presented, increas-

ing anticipation and engagement for the next cycle. This
teaser can be a short video, an enigmatic image, or a
brief description of the new threat to theGringottsMTM
project.

4.5 Gameplay Negotiation
Considering the context of the Gringotts MTM project, the
choice of a Guild and the Game Missions (Sprint/Story)
should be aligned with the interests of the players, who are
represented by both the development team and the stake-
holder/client teams, to maximize engagement and motiva-
tion. However, in the Harry Potter universe, the choice of
a Guild is directly related to a Hogwarts House, represent-
ing different values and characteristics of their members. In
this sense, the houses can be used as metaphors for different
areas of expertise or work styles within the team, such as:

1. Gryffindor (Courage, Bravery, Chivalry): Represents
the team focused on innovation, rapid resolution of com-
plex problems, and implementation of challenging func-
tionalities. They can focus on missions that involve cal-
culated risks and creative solutions.

2. Hufflepuff (Loyalty, Hard Work, Fairness): Represents
the team focused on stability, reliability, rigorous test-
ing, and attention to detail. They can focus on missions
that require precision, organization, and quality assur-
ance.

3. Ravenclaw (Intelligence, Creativity, Wisdom): Repre-
sents the team focused on design, architecture, elegant
solutions, and code optimization. They can focus on
missions that involve strategic planning, analysis, and
resolution of complex problems.

4. Slytherin (Ambition, Cunning, Leadership): Represents
the team focused on performance, efficiency, automa-
tion, and process optimization. They can focus on mis-
sions that involve performance improvements, test au-
tomation, and rapid value delivery.

Each team member should carry out a self-assessment to
identify their strengths and preferences. A team discussion
can help align perceptions and define which houses best rep-
resent the different groups or individuals. The choice of a
house can also be made by voting or direct allocation, de-
pending on the team dynamics. Finally, it is important to
allow flexibility in assigning a Guild to a particular house,
allowing members to change Guilds if their interests or roles
change throughout the project.
Regarding the choice of the Game Mission that the Guild

will participate in, it is important to consider some factors,
such as: the team’s interests, client priorities, the complex-
ity and duration of the missions, and the players’ connection
to the mission’s Storytelling. To facilitate this process, the
missions can be categorized or tagged according to the Hog-
warts Houses, so that teams can choose missions that fit their
values and specialties. Another possibility is to gamify the
mission selection, through the use of “magic coins” to pur-
chase the missions that the team considers most important.
The choice of Guild and GameMission can also be shared

with clients in the Client Stream. This increases transparency

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

and allows clients to better understand the team’s decisions.
Furthermore, clients can provide feedback on the chosenmis-
sions and even suggest new missions. In this way, there is
a collaborative process and alignment with client priorities
for the choice of Guild and Game Mission, thus contributing
to the success of the project and the satisfaction of all stake-
holders.

4.6 Gameplay Test
To ensure continuous Code Replay with Addiction Control
monitoring, an interface that offers high playability and sup-
ports a fast-paced action-response rhythm for its players is
necessary. In this sense, creating interfaces that allow rapid
gameplay with visual programming elements, or interaction
with tools that generate partial source code, can be helpful at
this stage.
The idea is to provide visual and interactive elements

capable of representing and manipulating the project’s de-
velopment progress based on playable mechanics and dy-
namics, in order to provide interesting Rule Standards for
guiding the project’s progression through gameplay. In this
sense, and following interesting initiatives such as Prim-
itive4, VRIDE5, BlocklyVR [Hedlund et al., 2023] and
Cubely [Vincur et al., 2017], as potential inspirations for
this work, the creation of playable interfaces that follow
the Scratch6 or Minecraft7 style, which allows programming
source code in the drag’n’drop style, are suggested. The def-
inition of visual components able to be programmed, such
as Unit+Bolt Visual Scripting [Knutsen, 2021], in a low-
code/no-code perspective [Rokis and Kirikova, 2022], as
well as the use of LLMs [Kumar, 2024] generating small
“spells” (code) to be fitted into the main project according
to the defined gameplay, can also be applied in this perspec-
tive.
For a development interface in the Scratch/Minecraft style,

the source code would be represented by interlocking blocks
in a 2D/3D environment. Each type of block would repre-
sent a different code element, such as: blocks of different
colors for variables, functions, operators, etc.; blocks with
specific textures and formats for control structures (if, for,
while); blocks with symbols or icons to represent specific
commands, such as “WithdrawGalleons” or “CheckBalance”
for the MTM system, among other elements. Players would
build the code by stacking, connecting, and organizing the
blocks in the 2D/3D space, where the order and connection
of the blockswould define the program’s logic. When execut-
ing the code, the blocks could animate or emit visual effects
to show the execution flow, where a variable block could
change color upon receiving a value, or a function block
could glow when called. Following a generative program-
ming approach [Sarinho and Apolinário, 2009], the visual
code built with blocks would eventually be converted to a
real programming language (e.g., Java8, Python9, etc.) and

4https://primitive.io/
5https://github.com/Vito217/VRIDE
6https://scratch.mit.edu/
7https://www.minecraft.net/
8https://www.java.com/
9https://www.python.org/

could finally be integrated into the main MTM system.
Regarding the code generated by LLMs, these could be

integrated into the playable programming interface through
chat commands, by requesting the LLM to generate small
snippets of representative code blocks (e.g., “/createBlock
WithdrawGalleons amount:10”). If the playable program-
ming environment is not being used, dynamics that seek to
fit partial code into the project itself with a limit of attempts
or time between players could be applied.
It is worth noting that, due to the pursuit of continuous

Code Replay, all player actions in the playable programming
approaches must be recorded in a reproducible format, such
as the actions of building, editing, and executing the code
in the suggested playable programming interface. With the
visual reproduction of the code construction itself, the se-
quence of players’ programming actions is presented, thus
allowing for a better analysis of the development process,
as well as the identification of errors and learning from the
strategies applied by other players.
Finally, regarding Addiction Control, usage metrics need

to be collected, providing data on interface usage time, fre-
quency of game sessions, and other relevant metrics. The
idea is to define usage time limits and display alerts when
these limits are reached. As a result, it is expected to reward
players for maintaining healthy usage time, providing per-
sonalized feedback to players about their usage patterns and
offering tips for a more balanced use. Situations where the
player needs a stimulus to increase their playtime can also
be identified, opening opportunities to offer “focus potions”
(various incentives) designed to temporarily boost player pro-
ductivity, but requiring a rest period after use.

4.7 Let’s Play
To achieve the Magic Circle for players in the chosen Multi-
player Programming mode, it is essential to promote player
engagement at this stage. Thus, external strategies beyond
the matches can be used, such as organized cheering sections
and awarding prizes to the victors, can help create an envi-
ronment that encourages collaboration, healthy competition,
and a sense of belonging.
For this project example, the Magic Circle represents the

state in which the players (programmers) are fully immersed
in the task of building the MTM system, engaged with the
playable programming interfaces, collaborating with other
players, and competing in a friendly manner, so that they feel
challenged, rewarded, and part of a larger whole. However,
for this state to be achieved by the players, several strategies
to create and sustain the Magic Circle can be applied, such
as:

1. Contextualized Missions: Each sprint/story should be
presented as a mission within the Harry Potter universe,
with a clear objective and a narrative that motivates the
players. For example, instead of “Implement authenti-
cation”, the mission could be “Protect Gringotts Vaults
from a Death Eater attack”.

2. Characters and NPCs: Introduce non-playable charac-
ters (NPCs) with relevant roles within the narrative. A
Gringotts goblin could give instructions about the mis-

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

sions, or a famous wizard could request a new function-
ality for the MTM.

3. Themed Events: Create themed events within the game,
such as an event where players need to solve logical
puzzles and programming challenges to “open” virtual
vaults or decipher encrypted messages. This could in-
volve data manipulation, search algorithms, or Boolean
logic problem solving, all using the playable interface.

4. Team Guilds: Encourage the Guild teamwork by select-
ing missions that require the collaboration of multiple
players. Reward systems for collaboration should be ap-
plied, in order to reward players for helping other team
members, sharing knowledge, and contributing to the
project’s success.

5. Rankings and Leaderboards: Create rankings and
leaderboards to display players’ progress within the
Guilds and Houses. The rankings can be based on dif-
ferent criteria, such as programming speed, code qual-
ity, number of completed missions, or contributions to
the community.

6. Competitions, Tournaments, and Rewards: Organize
regular competitions and tournaments with program-
ming and construction challenges in the playable pro-
gramming interface. It is important to offer rewards
both to competition winners and to players who excel in
the rankings. The rewards can be virtual (e.g., in-game
items, experience points, titles, public recognition) or
real (e.g., prizes, giveaways, etc.).

7. Public Recognition: The winners of the competi-
tions and the players who excel in the rankings can
be publicly awarded during broadcasts on the Client
Stream, thus increasing player recognition and moti-
vation. Interviewing outstanding players, showcasing
their projects, and sharing their tips and strategies on
the Client Stream can further enhance motivation.

8. Feedback Collection, Adjustments, and Iterations: It
is necessary to collect player feedback about the game,
the missions, the group dynamics, and the gamification
strategies, and use the feedback to refine and iterate on
the strategies, always seeking to improve the experience
and maintain the Magic Circle within the project.

4.8 Game On
To record the Continuous Victories of each match played, as
well as to organize Game Tournaments, it is necessary to use
supporting tools to record victories and configure the desired
tournaments.
Thus, focusing on the concept of Continuous Victory, a

“match” in theMTM project can be defined as either the com-
pletion of a GameMission (Sprint/Story) or the resolution of
a specific challenge within the playable programming inter-
face. With each successfully completed mission/challenge, a
victory counter should be incremented, and in case of failure,
it may either decrease or remain unchanged. Thus, a system
for controlling match results should be designed to record the
wins and losses of each player or Guild..
Victories can be displayed on an individual player panel,

showing their level, experience points, Guild and House
performance, and the player’s longest winning streak. A

global or house-specific leaderboard can also display the
longest winning streaks, thus encouraging friendly compe-
tition among players. The longest winning streaks can be
highlighted during broadcasts on the Client Stream, thus in-
creasing public recognition of the players and winning teams.
Remember that, regardless of whether a win or loss is

recorded, each match generates code that must be saved, con-
tributing to the production of programmed artifacts for the fi-
nal project. The visualization of the generated code depends
on the programming tools used in the matches, which can
be integrated with available configuration and maintenance
systems.
Regarding the holding of Game Tournaments, these can

add a more structured layer of competition and offer more
significant prizes to project participants. As a tournament
example, programming challenges can be held where players
must solve specific problems using a playable programming
interface, aiming to meet specific programming and delivery
deadlines defined in the challenges. Competitions between
the Guilds and the Houses can also be held, where teams
must complete a series of challenges, accumulating points to
win the tournament. For this, tournament formats with sin-
gle elimination (after one loss), double elimination (second
chance after one loss), or group stages followed by playoffs
can be applied.
Available tournament management platforms can offer re-

sources to create, manage, and track tournaments, including:
bracket creation, match scheduling, results recording, regis-
tration management, and integration with existing streaming
platforms. It is important that one or more “referees” can su-
pervise the tournaments to ensure compliance with the rules
and resolve any disputes. Depending on the playable pro-
gramming environment used, it may be necessary to develop
customized tools to record victories, configure tournaments,
show player rankings, and display matches and their results
on the Client Stream.

4.9 Game Loop
As the final step of the gamified process, it is necessary to
evaluate whether the project tasks have been completed or
whether it is necessary to repeat all the other steps from the
initial stage until the completion of the listedGameMissions.
The idea is that the process repeats itself in a continuous cy-
cle, similar to a sprint cycle in agile methodologies, but with
thematic and gamified elements to maintain engagement, as
previously demonstrated.
At this stage of the process, the collection of match results

(Game Missions/Sprints) is crucial for project monitoring
and decision-making. It is up to the client and other project
stakeholders to decide whether the project tasks are finished,
which should be based on objective and transparent criteria.
In this sense, clear and specific acceptance criteria need to

be defined for each task before the mission begins. A task is
only considered complete when it meets all the acceptance
criteria. A final review is also carried out with the clients
to ensure that all functionalities have been implemented as
expected and that they meet business needs. After client ap-
proval, the final product is delivered, and the project is con-
sidered complete. A closing ceremony within the project’s

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

Figure 6. Visual summary of the playable XP process, illustrating the nine
sequential proposed stages. Source: Author’s Own.

gamified theme can also be held to celebrate its completion
and recognize the team’s work in a fun and motivating way.

4.10 Visual Summary

Different types of events, artifacts, cycles, participation alter-
natives, and dynamic elements were presented in this section
to illustrate a practical example of how the proposed Playable
XP approach can be implemented. To support reader compre-
hension and reduce the cognitive load associated with pro-
cessing the detailed textual description, Figure 6 provides a
visual summary of the nine steps of the gamified Playable
XP process, as exemplified in this section. This diagram il-
lustrates the dynamic flow among activities, artifacts, and
participant roles throughout the development cycle, offering
a cohesive and accessible overview of how the methodology
unfolds in practice.

5 Discussing the Playable XP
The traditional XP methodology offers several advantages
[Al-Saqqa et al., 2020], [Abrahamsson et al., 2017], such as:

• Incremental development: Supported through small and
frequent system releases.

• Improved productivity: Achieved through rapid feed-
back for multiple versions that can be built daily and
are only accepted if they pass the tests.

• Simplicity: Maintained through constant code refactor-
ing.

• Enhanced quality: Ensured through the development of
automated tests before integrating a feature into the sys-
tem.

On the other hand, XP also suffers from the following lim-
itations [Al-Saqqa et al., 2020], [Abrahamsson et al., 2017]:

• Lack of support for distributed teams, as it focuses on
community and co-location.

• Test-driven development requires additional technical
training for the involved team members.

• Informal documentation makes it difficult to maintain
important project details.

• Actual client involvement is effective, but it is stressful
and time-consuming.

Based on the practices and lifecycle indicated for execut-
ing a playable XP, it is possible to perceive that the advan-
tages of traditional XP can be maintained, while some iden-
tified disadvantages can be addressed. Regarding the ad-
vantages, development in playable XP remains incremental,
with the adaptation of client Storytelling into Simple Chal-
lenges and Game Missions. Gains in productivity, simplic-
ity, and quality are also achievable through Code Replay in a
Continuous Victory that generates results based on Rule Stan-
dards, with its Addiction Control applied.
Regarding the disadvantages of XP, the problem of lack

of support for distributed teams can be addressed by imple-
menting Game Tournaments featuring Game Missions to be
solved by Guilds formed in their Multiplayer Programming
work. Tutorial missions can be defined in theGameplay Plan
stage to ensure additional training in a fast, engaging way.
Maintaining formal documentation can be achieved through
the results and feedback from the played matches, which can
be defined in the Gameplay Plan phase. Finally, client in-
volvement can become dynamic and engaging, conducted
through the transmission and continuous monitoring of com-
ments via the Client Stream in the project’s Client Test phase.
However, despite these improvements, the practical appli-

cation of a playable XP approach still presents significant
challenges when deployed in real-world software develop-
ment scenarios. Key issues include the risk of narrative
overload due to the integration of complex storytelling ele-
ments, technical feasibility constraints related to implement-
ing game mechanics, resistance from clients unfamiliar with
gamification-based approaches, and legal concerns surround-
ing the use of fictional intellectual property.
When considering the thematic choices used in the gami-

fication strategy, such as references to the Harry Potter uni-
verse, while engaging for some users, these themes may not

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

resonate universally and could lead to issues of cultural impo-
sition or exclusivity. In addition, considering ethical aspects
related to inclusivity, developers with neurodivergent pro-
files might find metaphor-rich environments difficult to nav-
igate, highlighting the importance of offering neutral or cus-
tomizable narrative alternatives that accommodate diverse
modes of interaction and comprehension.
In addition to inclusivity, there are also concerns about

clarity and terminology that must be considered. The use of
fictional terms (e.g., magic wands or houses) to describe soft-
ware artifacts may increase cognitive load and hinder com-
munication, especially in heterogeneous or interdisciplinary
teams. These concerns are amplified when such terminology
intersects with AI-assisted tools, which may misinterpret or
misclassify non-standard labels.
Furthermore, the long-term sustainability of narrative-

driven development should be critically considered. Main-
taining a coherent and engaging storyline over extended
project lifecycles may shift focus away from core develop-
ment objectives and introduce unnecessary complexity. A
more practical alternative would be to apply narrative ele-
ments in bounded contexts such as hackathons, onboarding
processes, or short development sprints, where their motiva-
tional impact is maximized without compromising team fo-
cus, project clarity, or direction. Another possibility would
be to gamify only the roles and personal goals of the develop-
ers within the process, working as a sort of Justice League10
solving real-world client problems through the special pow-
ers each developer possesses.

6 Conclusions and Future Work
Human factors involved in the production of diverse systems
currently represent a challenge in existing agile methodolo-
gies. Process gamification implements playable abstractions
in different phases of a system’s production, allowing real-
time monitoring of a project’s current state and its collabora-
tors. With the application of a playable mode in software de-
velopment methodologies, there is the possibility of extend-
ing the use of this gamification to another level, through the
inclusion of other existing game elements in order to ensure
a playable approach for the development of desired projects.
This work has therefore presented both the concern for and

the proposal of a more comprehensive integration of game el-
ements into software processes, aiming to create immersive
and balanced contexts capable of spontaneously motivating
team members to engage in free play within a playable pro-
cess, while avoiding the creation of harmful and overly com-
petitive environments for developers. As a result, the appli-
cation of a playable mode in the XP methodology suggests
that stages of a SE process can also be fully realized through
games, expanding the possibilities for entertainment and im-
mersion during development. The challenge, in this case,
lies in conceiving SE activities that are performed through
embedded game mechanics, dynamics, and aesthetics, such
as incorporating a Game-of-Games (GoG) approach in the
production of digital games.

10https://www.dc.com/characters/justice-league

In other words, it is crucial to strike a balance between
creative engagement and essential aspects such as clarity,
inclusivity, accessibility, and legal responsibility to ensure
relevance and applicability across diverse software develop-
ment teams. In this context, adapting the design principles of
playable XP becomes a necessary step toward enabling the
sustainable and responsible integration of game-based strate-
gies in professional environments.
Another aspect that must be considered is the empirical

validation of the playable XP proposal, which remains an
open challenge. Although its exploratory nature is justified
in this work, future investigations should prioritize structured
evaluation through case studies and experimental designs —
such as the MTM prototype — capable of assessing both the
effectiveness and the limitations of the approach in varied
organizational settings. Embracing open-data policies and
transparent methodologies could further enhance the repro-
ducibility and generalizability of results, thereby contribut-
ing to the academic and practical consolidation of this gami-
fied model.
Finally, future work should also explore extending the

playable mode beyond the XP framework, applying it to
other software development processes to assess their feasibil-
ity through spontaneous and voluntary play. Particular em-
phasis should be placed on evaluating productivity gains as-
sociated with increased playability during system construc-
tion, as well as investigating the integration of empathic,
gamified, and direct-manipulation interfaces into different
stages of software production. These efforts will improve
the understanding of how playful abstractions can enrich en-
gineering workflows without compromising their rigor or ef-
fectiveness.

Declarations

Competing interests
The author declares that there are no conflicts of interest regarding
the publication of this work.

Availability of data and materials
No additional materials or datasets are available or required for this
work.

References
Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J.
(2017). Agile software development methods: Review
and analysis. arXiv preprint arXiv:1709.08439. DOI:
https://doi.org/10.48550/arXiv.1709.08439.

Al-Saqqa, S., Sawalha, S., and AbdelNabi, H. (2020). Ag-
ile software development: Methodologies and trends. In-
ternational Journal of Interactive Mobile Technologies,
14(11). DOI: https://doi.org/10.3991/ijim.v14i11.13269.

Anwer, F. and Aftab, S. (2017). Latest customizations of xp:
A systematic literature review. International Journal of
Modern Education and Computer Science, 9(12):26. DOI:
http://dx.doi.org/10.5815/ijmecs.2017.12.04.

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

Bera, P., Wautelet, Y., and Poels, G. (2023). On the use of
chatgpt to support agile software development. In The Sec-
ond International Workshop on Agile Methods for Infor-
mation Systems Engineering (Agil-ISE 2023) co-located
with the 35th International Conference on Advanced Infor-
mation Systems Engineering (CAiSE 2023), volume 3414,
pages 1–9. CEUR.

Choi, G. and Kim, M. (2018). Battle royale game: In search
of a new game genre. International Journal of Culture
Technology (IJCT), 2(2):5.

Costa, A. C. S. andMarchiori, P. Z. (2015). Gamificação, ele-
mentos de jogos e estratégia: uma matriz de referência. In-
CID: Revista de Ciência da Informação e Documentação,
6(2):44–65. DOI: https://doi.org/10.11606/issn.2178-
2075.v6i2p44-65.

Coutinho, L. L., Vieira, I. D. P., and de Souza, J.
C. P. (2021). O estado de flow na alta perfor-
mance de líderes organizacionais the flow state in
high performance of organizational leaders. Brazil-
ian Journal of Development, 7(8):83333–83348. DOI:
https://doi.org/10.34117/bjdv7n8-508.

Csikszentmihalyi, M., Abuhamdeh, S., and Nakamura, J.
(2005). Flow. Handbook of competence and motivation,
pages 598–608.

Embury, S. M., Borizanov, M., and Jay, C. (2019).
Red-green-go! a self-organising game for teaching
test-driven development. Agile and Lean Concepts
for Teaching and Learning: Bringing Methodologies
from Industry to the Classroom, pages 415–441. DOI:
https://dx.doi.org/10.1007/978-981-13-2751-3_19.

Farooq, M. S., Omer, U., Ramzan, A., Rasheed, M. A.,
and Atal, Z. (2023). Behavior driven development:
A systematic literature review. IEEE Access. DOI:
http://dx.doi.org/10.1109/ACCESS.2023.3302356.

Frost, B. (2016). Atomic design. Brad Frost Pittsburgh.
García, F., Pedreira, O., Piattini, M., Cerdeira-Pena,
A., and Penabad, M. (2017). A framework
for gamification in software engineering. Jour-
nal of Systems and Software, 132:21–40. DOI:
https://doi.org/10.1016/j.jss.2017.06.021.

Grenning, J. (2002). Planning poker or how to avoid anal-
ysis paralysis while release planning. Hawthorn Woods:
Renaissance Software Consulting, 3:22–23. https:
//sewiki.iai.uni-bonn.de/_media/teaching/
labs/xp/2005a/doc.planningpoker-v1.pdf, Ac-
cessed: 20 September 2025.

Hedlund, M., Jonsson, A., Bogdan, C., Meixner, G., Ek-
blom Bak, E., and Matviienko, A. (2023). Blocklyvr: Ex-
ploring block-based programming in virtual reality. In
Proceedings of the 22nd International Conference on Mo-
bile and Ubiquitous Multimedia, pages 257–269. DOI:
https://dx.doi.org/10.1145/3626705.3627779.

Hung, W., Jonassen, D. H., and Liu, R. (2008). Problem-
based learning. In Handbook of research on educational
communications and technology, pages 485–506. Rout-
ledge. DOI: http://dx.doi.org/10.1007/978-1-4419-1428-
6210.

Hunicke, R., LeBlanc, M., Zubek, R., et al. (2004). Mda: A
formal approach to game design and game research. In Pro-

ceedings of the AAAI Workshop on Challenges in Game AI,
volume 4, page 1722. San Jose, CA.

Juul, J. (2008). The magic circle and the puzzle piece. https:
//jesperjuul.net/text/magiccirclepuzzlepiece.
pdf, Accessed: 17 September 2025.

Kamei, H. (2014). Flow e psicologia positiva: estado de fluxo,
motivação e alto desempenho. Goiânia: IBC.

Knutsen, K. Í. (2021). Visual scripting in game devel-
opment. https://www.theseus.fi/bitstream/
handle/10024/500439/Knutsen_Krist%F3fer.pdf;
jsessionid=F26845C87AAAE320973CCF7AF31024BD?
sequence=2, Accessed: 17 September 2025.

Koivisto, J. and Hamari, J. (2019). The rise of motivational
information systems: A review of gamification research. In-
ternational journal of informationmanagement, 45:191–210.
DOI: https://doi.org/10.1016/j.ijinfomgt.2018.10.013.

Krancher, O. (2020). Agile software development practices and
success in outsourced projects: The moderating role of re-
quirements risk. In Agile Processes in Software Engineer-
ing and Extreme Programming: 21st International Confer-
ence on Agile Software Development, XP 2020, Copenhagen,
Denmark, June 8–12, 2020, Proceedings 21, pages 56–72.
Springer. DOI: http://dx.doi.org/10.1007/978-3-030-49392-
94.

Kumar, P. (2024). Large language models (llms): sur-
vey, technical frameworks, and future challenges.
Artificial Intelligence Review, 57(10):260. DOI:
http://dx.doi.org/10.1007/s10462-024-10888-y.

Lee, W.-T. and Chen, C.-H. (2023). Agile software de-
velopment and reuse approach with scrum and software
product line engineering. Electronics, 12(15):3291. DOI:
https://doi.org/10.3390/electronics12153291.

Luz, R. B. and Neto, A. (2012). Usando dojos de programação
para o ensino de desenvolvimento dirigido por testes. Anais
do Simpósio Brasileiro de Informática na Educação, 23(1).
DOI: https://doi.org/10.5753/cbie.sbie.2012.

Naik, N. and Jenkins, P. (2019). Relax, it’s a game: Utilising
gamification in learning agile scrum software development.
In 2019 IEEEConference onGames (CoG), pages 1–4. IEEE.
DOI: https://dx.doi.org/10.1109/CIG.2019.8848104.

Odushegun, L. (2023). Aesthetic semantics: Affect
rating of atomic visual web aesthetics for use in af-
fective user experience design. International Jour-
nal of Human-Computer Studies, 171:102978. DOI:
https://doi.org/10.1016/j.ijhcs.2022.102978.

Parsons, D. (2014). Creating game-like activities in agile
software engineering education. In Proceedings of the
Australasian Software Engineering Conference, Education
Track, Sydney, Australia.

Pedreira, O., García, F., Brisaboa, N., and Piattini, M. (2015).
Gamification in software engineering–a systematic mapping.
Information and software technology, 57:157–168. DOI:
https://doi.org/10.1016/j.infsof.2014.08.007.

Rokis, K. and Kirikova, M. (2022). Challenges of low-code/no-
code software development: A literature review. In Inter-
national conference on business informatics research, pages
3–17. Springer. DOI: https://dx.doi.org/10.1007/978-3-031-
16947-21.

Rossetti, R. D. and Ramos, R. A. O. (2022). A influência

https://sewiki.iai.uni-bonn.de/_media/teaching/labs/xp/2005a/doc.planningpoker-v1.pdf
https://sewiki.iai.uni-bonn.de/_media/teaching/labs/xp/2005a/doc.planningpoker-v1.pdf
https://sewiki.iai.uni-bonn.de/_media/teaching/labs/xp/2005a/doc.planningpoker-v1.pdf
https://jesperjuul.net/text/magiccirclepuzzlepiece.pdf
https://jesperjuul.net/text/magiccirclepuzzlepiece.pdf
https://jesperjuul.net/text/magiccirclepuzzlepiece.pdf
https://www.theseus.fi/bitstream/handle/10024/500439/Knutsen_Krist%F3fer.pdf;jsessionid=F26845C87AAAE320973CCF7AF31024BD?sequence=2
https://www.theseus.fi/bitstream/handle/10024/500439/Knutsen_Krist%F3fer.pdf;jsessionid=F26845C87AAAE320973CCF7AF31024BD?sequence=2
https://www.theseus.fi/bitstream/handle/10024/500439/Knutsen_Krist%F3fer.pdf;jsessionid=F26845C87AAAE320973CCF7AF31024BD?sequence=2
https://www.theseus.fi/bitstream/handle/10024/500439/Knutsen_Krist%F3fer.pdf;jsessionid=F26845C87AAAE320973CCF7AF31024BD?sequence=2

Practices, Process Stages and Examples of an Extreme Programming Proposal in a Playable Mode Sarinho 2025

do medo no flow. https://tede.pucsp.br/handle/
handle/29602, Accessed: 17 September 2025.

Sarinho, V. (2024). Práticas e processos para uma proposta
de programação extrema em um modo jogável. In Anais do
XXIII Simpósio Brasileiro de Jogos e Entretenimento Dig-
ital, pages 106–117, Porto Alegre, RS, Brasil. SBC. DOI:
https://doi.org/10.5753/sbgames.2024.240818.

Sarinho, V. T. (2019). “bdd assemble!”: A paper-based game
proposal for behavior driven development design learning.
In Entertainment Computing and Serious Games: First IFIP
TC 14 Joint International Conference, ICEC-JCSG 2019,
Arequipa, Peru, November 11–15, 2019, Proceedings 1,
pages 431–435. Springer. DOI: https://doi.org/10.1007/978-
3-030-34644-741.

Sarinho, V. T. (2020). Applying user stories as game el-
ements and interactions in a game of games design pro-
posal. In Proceedings of the XIX SBGames, pages 40–46.
SBC. https://www.sbgames.org/proceedings2020/
ArtesDesignFull/209314.pdf, Accessed: 17 September
2025.

Sarinho, V. T. and Apolinário, A. L. (2009). A gen-
erative programming approach for game develop-
ment. In 2009 VIII Brazilian Symposium on Games

and Digital Entertainment, pages 83–92. IEEE. DOI:
https://dx.doi.org/10.1109/SBGAMES.2009.18.

Souza Teixeira, E. A. and Fonseca Ramos, F. (2014). Interações
e literacias: notas sobre o design de interfaces e a experiência
de uso. Ciência da Informação, 43(3).

Spil, T. A. and Bruinsma, G. (2016). Designing serious games
with the game of games. In Proceedings of the European
Conference on Games-based Learning, pages 634–643.

Sutherland, J. and Sutherland, J. (2014). Scrum: the art of do-
ing twice the work in half the time. Crown Currency.

Vincur, J., Konopka, M., Tvarozek, J., Hoang, M., and Navrat,
P. (2017). Cubely: virtual reality block-based programming
environment. In Proceedings of the 23rd ACM symposium
on virtual reality software and technology, pages 1–2. DOI:
http://dx.doi.org/10.1145/3139131.3141785.

Williams, L. (2010). Agile software development methodolo-
gies and practices. In Advances in computers, volume 80,
pages 1–44. Elsevier. DOI: https://doi.org/10.1016/S0065-
2458(10)80001-4.

Wood, D. F. (2003). Problem based learn-
ing. Bmj, 326(7384):328–330. DOI:
https://dx.doi.org/10.1136/bmj.39546.716053.80.

https://tede.pucsp.br/handle/handle/29602
https://tede.pucsp.br/handle/handle/29602
https://www.sbgames.org/proceedings2020/ArtesDesignFull/209314.pdf
https://www.sbgames.org/proceedings2020/ArtesDesignFull/209314.pdf

	Introduction
	Theoretical Foundation
	Agile Software Development
	Gamification
	The Flow State
	Games and Agile Development

	Defining a Playable XP
	Playable Production Practices
	Playable Production Process

	Applying a Playable XP
	Game Plan
	(A) Storytelling for the Gringotts Magic Teller Machines (MTMs) following PBL
	(B) Storytelling for the Gringotts Magic Teller Machines (MTMs) following BDD

	Gameplay Plan
	Sprint 1: Authentication and Basic Withdrawal
	Sprint 2: Security and Error Handling
	Sprint 3: Balance Inquiry and Interface Refinements

	Client Test
	Players Meet
	Gameplay Negotiation
	Gameplay Test
	Let's Play
	Game On
	Game Loop
	Visual Summary

	Discussing the Playable XP
	Conclusions and Future Work

