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Abstract: Enabling Foveated Rendering for VR devices displays is fundamental when dealing with real-time ray
tracing. Combining traditional methods with Neural based strategies, such as NeRFs and 3D Gaussian Splatting,
may impact on leveraging performance even more. In this work we enhance and validate how well our traditional
Instant-NeRF reconstructs common ray-traced effects through user metrics and quality metrics. We also show that
3D Gaussian Splatting used in the periphery vision area presents better results than the perceptual quality achieved
through NeRFs. We present a deep human perception experiment through different global illumination light effects.
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1 Introduction

Recent technological advancements have allowed consumers
to experience real-time ray tracing in interactive environ-
ments like video games. This is made possible by the lat-
est generation of graphics processing units (GPUs), which
are specifically designed to handle ray tracing and AI-driven
graphics enhancements, including denoising and DLSS [Kil-
gariff et al., 2018], [Einhorn and Mawdsley, 2023]. Even so,
these effects may be unfeasible in certain conditions, such
as unthetered Head Mounted Displays, with lower hardware
resources and high resolution screens [Ubrani et al., 2024].
AIn this sense, different optimizations are required in order
to guarantee stable and acceptable frame rate [Swafford et al.,
2016; Albert et al., 2017], given that high latencies in VR are
one of the reasons for cybersickness [Porcino et al., 2020].
The need for optimizing rendering also increases with the
advent of untethered HMDs, which handles with constraints
related to energy consumtion [Ujjainkar et al., 2024]. One
such optimization is Foveated Rendering (FR), a set of tech-
niques that take advantage of the limitations of the human vi-
sual system to improve performance without sacrificing the
user’s visual experience [Mohanto et al., 2022].
AI has fostered the development of a new field in com-

puter graphics called neural rendering, with radiance fields
being one of its key practical approaches [Yan et al., 2024].
In its first developments, radiance fields were achieved
solely by training neural networks over images and coordi-
nates through a technique named NeRF, as an alternative
for voxel grids. NeRFs learn to infer the scene’s volume,
whether it’s simple objects or vast landscapes [Mildenhall
et al., 2021].More recently, 3D Gaussian Splatting (3DGS)
achieved comparable results to NeRF, as this solution repre-

sents volumes as a collection of Gaussian surfaces that can be
rastered by a regular rendering pipeline [Kerbl et al., 2023].
Regarding real-time rendering, 3DGS is a necessary al-

ternative to NeRFs due to its rastering pipeline, allowing
for better high-resolution performance. Compared to other
NeRF-like methods that precompute their reconstruction for
rendering without relying directly on a neural network, such
as Plenoxels, 3DGSmodels achieve faster frame rates and su-
perior visual quality. They do not require the tradeoffs that
real-time NeRF solutions have, such as operating in lower
qualities for a fraction of the performance or compromising
reconstruction quality.
This paper aims to expand the findings of our previ-

ous work [Henriques et al., 2024b], which presented which
NeRFs light effects can accurately represent the real global
illumination effects achieved by real-time ray tracing as a
surrogate for peripheral vision in VR. For so, we conducted
a more detailed user study to assess user perception of the
reconstruction of specific ray-traced effects in the peripheral
vision. The study also examines how effectively these recon-
structions can simulate such effects and the significance of an
artificial reticle in keeping the screen’s foveal region aligned
with the user’s fovea on an HMD without eye-tracking capa-
bilities.
Our previous work showed that NeRF is capable of re-

constructing some ray tracing effects in a near imperceptible
manner, such as Subsurface Scattering and translucent ob-
jects with colored shadows. We also confirmed that the retic-
ule in a testing setup without eye tracking is useful, given
that users who were exposed to the experiment without the
reticule, in general, perceived the effects as worse when com-
pared to users who experimented with the reticule.
This work is hereby expanded by conducting a quality
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analysis of the foveated rendering through various quality
metrics, such as Peak Signal-to-Noise Ratio (PSNR) [Hore
and Ziou, 2010], Structural Similarity IndexMeasure (SSIM)
[Wang et al., 2004], Learned Perceptual Image Patch Simi-
larity (LPIPS) [Zhang et al., 2018] and FovVideoVDP [Man-
tiuk et al., 2021]. We correlate these scores to the perceived
quality of each effect, trying to figure out a link between the
user feedback and these metrics. We then conduct the same
quality analysis with 3DGaussian Splatting enhanced frames
of the same 3D scenes, as a way to approximate the possi-
ble user feedback under these circumstances. This is rele-
vant since that, as previously stated, 3D Gaussian Splatting
is more efficient for real-time renders.
This work is organized as follows: The Related Subjects

section discusses important subjects to the comprehension
of this work. Following, in the Hybrid rendering with NeRF
and Ray tracing section we provide a more detailed expla-
nation of the technique employed; then, the Perception Ex-
periment section describes our user experiment and profile,
followed by a Results Assessment, where we analyze and
discuss the results of our user study; lastly, a Final Remarks
section summarizes on what can be improved and expanded
upon our results and recapitulate our hypothesis, our experi-
ment, our results and further contributions.

1.1 Ethical issues
Before experimenting on users, we obtained approval from
an ethics committee (CAAE 75192823.2.0000.5243) to run
the procedure on 60 (sixty) consenting adults from Univer-
sidade Federal Fluminense. The users had the right to stop
the experiment at any time for any reason and request that
their data be deleted from the sample. They were given con-
stant check-ups throughout the experiment to see if anyone
exhibited cybersickness symptoms. In case of any cyber-
sickess symptoms, the procedure would be stopped, the data
generated up to that point would be erased and the experi-
ment would continue with another user only after the sick
user recovered. Researchers were also obligated to pay com-
pensation if user participation in the experiment caused any
expenses. No user requested compensation or reported any
cybersickness symptoms during or after the experiment.
Every single user was informed of the rights stated above,

signed an informed consent form and voluntarily gave non-
identifying data pertinent to our experiment, such as age, bi-
ological sex, any vision impairments and prior experience
with VR, which was given on a scale of:

• never had any prior experience with VR;
• had very few prior experiences with VR;
• had some experiences with VR;
• was an expert on VR.

2 Related Subjects
In this section we will present related topics required for un-
derstanding our proposal. First, we present basic concepts
and challenges of real time Ray Tracing methods. Following,
we discuss Foveated Rendering and how it became relevant

in recent years. Lastly we discuss Radiance Fields, its most
popular implementations and why it deserves our attention.

2.1 Real-time Ray Tracing
Ray tracing is an illumination model used to accurately simu-
late light transfer on scene, launching rays from light sources
over to geometry [Whitted, 1979]. This model was modified
in later works in order to launch one ray per ray bounce per
pixel, not wasting resources by tracing rays that may never
reach the user’s camera [Kajiya, 1986]. This latter approach
is named path tracing.
For years, path tracing was limited to offline rendering.

This limitation was overcome in 2019 with the advent of spe-
cialized hardware that enables the real-time display of path
tracing effects, such as reflections, refraction and shadows
[Caulfield, 2022]. Nevertheless, the usage of path tracing in
real time is contingent upon the availability of an effective
denoising solution. This is because path tracing, which is a
light effect, can result in a noisy outcome due to the statis-
tical nature of the approximation [Koskela et al., 2019]. To
this end, AI tools have been developed to enable real-time
denoising, thereby reducing the effort required to create con-
vincing graphics [Einhorn and Mawdsley, 2023].
Despite the construction of new graphic processing units

designed with the specific goal of displaying ray tracing in
real-time, and the utilization of IA to denoise the scene, these
effects are still expensive to render on conventional displays.
That cost rises up significantly when discussing their proba-
ble application in VR, given the higher refresh rates, higher
resolutions and the need for keeping those high standards
consistently in HMDs [Weier et al., 2016; Albert et al., 2017].
In our approach we intend to bake Ray tracing through neu-
ral rendering approaches and spend Ray tracing efforts only
at small fovea regions.

2.2 Foveated Rendereing
One solution for outputting realistic graphics in VR comes
from foveated rendering, which is a technique that leverages
the human visual system’s limitations in order to save compu-
tational resources and maintain latency without compromis-
ing immersion. This technique was first introduced in 1990
[Levoy and Whitaker, 1990], but the popularization of VR
devices has reignited interest in this field of study.
The main idea underlying Foveated Rendering is the un-

derstanding that the human eye does not uniformly pro-
cess visual information. The retina captures images mainly
through two distinct types of photoreceptor cells: the rods,
which are located in the periphery of the retina, and the cones,
which are primarily concentrated in a narrow area at the cen-
ter of the retina. Cones are more adept at capturing fine de-
tails due to their activation by color stimuli, while rods cap-
ture less information due to their activation by motion [Kim
et al., 2024]. Studies have indicated that although cones are
concentrated in a 5-degree region surrounding the center of
the retina, humans experience relatively high optical quality
up until 30 degrees of the fovea [Ogboso and Bedell, 1987;
Banks et al., 1991]. The photoreceptor distribution on the
retina is illustrated in Figure 1.
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Figure 1. Photoreceptor distribution on the retina according to the distance
from the fovea, as shown in Wandell [1995].
Photoreceptor distribution on the retina according to the
distance from the fovea, as shown in Wandell [1995].

In HMDs, in which the screens are positioned in close
proximity to the human eye, this effect is particularly sig-
nificant due to the limited area of the screen that falls within
the center of the retina, named the foveal region. That means
that a huge portion of the screen is captured by photorecep-
tors that are not capable of capturing fine detail, whichmeans
that rendering those regions at full capacity is a waste of com-
putational power [Guenter et al., 2012].
Given that the fundamental concept is straightforward,

there are numerous approaches to achieving this foveation
effect [Mohanto et al., 2022; Wang et al., 2023]. The most
common approach is to vary the screen resolution according
to the distance to the foveal region of the screen, which is
determined by eye tracking or some other parameter, dis-
playing the foveal portion of the screen in full resolution
and decaying the further it goes [Levoy and Whitaker, 1990;
Koskela, 2020]. Other techniques revolve around varying
the refresh rate of the screen according to the distance to the
fovea [Yee et al., 2001; Patney et al., 2016], manipulating
the displayed colors or the shading complexity of a scene
[Duchowski et al., 2009; Tursun et al., 2019], or using ad-
justable data to display cheaper information in the periphery
of the screen [Schütz et al., 2019].
Foveated rendering can be applied to a variety of different

rendering pipelines. From simple rasterization techniques to
advanced path tracing in real-time, the more expensive the
render process is, the more important it is to use an appropri-
ate technique. For instance, in the context of real-time path
tracing, Koskela et al. [2019] employs a sampling strategy
on the screen according to human acuity to achieve real-time
path tracing even without dedicated hardware [Koskela et al.,
2019].
To the best of our knowledge, there is a lack of works that

explore the usage of radiance fields on Foveated Rendering.
Although there is at least one highly interesting solution that
trains NeRFs in such away that optimizes rendering due to in-
ferring a lighter model on the periphery of the screen [Deng
et al., 2022], we did not found works that attempt to com-
bine rendering pipelines. We believe that as radiance fields
become more powerful and efficient to render, there will be
more proposals on how to mix radiance field solutions with
more expensive rendering methods.

2.3 Radiance Fields
Computer graphics has been looking into rendering novel
views given a set of observable images ever since the nineties

[Avidan and Shashua, 1997], and since then, many relevant
works have been proposed, such as light field sample interpo-
lation [Gortler et al., 1996; Davis et al., 2012], mesh-based
representation of scenes optimized by differentiable render-
ers [Buehler et al., 2001; Debevec et al., 2023; Genova et al.,
2018; Li et al., 2018] and voxel grids. Machine Learning has
been especially present in works that optimize voxel grids
based on input images.
Neural Radiance Fields, or NeRFs, introduced by Milden-

hall et al. [2021], are a novel approach to View Synthesis.
The main idea involves training a multilayer perceptron net-
work with images and coordinates to generate novel views
from a given scene. The network receives as an input a
three-dimensional vector denoting space position and a two-
dimensional vector denoting gaze direction, and from that
the network infers color and volume information [Mildenhall
et al., 2021].
This foundational work has served as the base for hundreds

of subsequent works in the field, with researchers adapting
NeRFs, either to achieve specific objectives such as large-
scale reconstructions [Turki et al., 2022; Lu et al., 2023], real-
time rendering of NeRF reconstructions Müller et al. [2022];
Yu et al. [2021]; Chen et al. [2023b] and even foveated ren-
dering [Deng et al., 2022] or to enhance the original work
[Reiser et al., 2021; Barron et al., 2022, 2023].
NeRF has also inspired other works that aim to reconstruct

scenes and allow for novel views without the neural render.
There are works, such as Yu et al. [2021], that aims at distill-
ing NeRF into easily navigable data structures to allow for
faster rendering. Other works, however, aim at optimizing
alternative data structures [Liu et al., 2020; Fridovich-Keil
et al., 2022; Yang et al., 2024].
In 2023, Kerbl et al. proposed optimizing three-

dimensional Gaussian surfaces (referred to as “splats”) to
achieve novel views by utilizing the same input data as
NeRFs. This technique, designated 3D Gaussian Splatting,
also inspired hundreds of other works, which expanded upon
the original contribution or optimized its offerings. The orig-
inal work, however, describes the process of optimizing a
scene according to the number of colors on surfaces and
sorting those same splats according to their prominence on
screen [Kerbl et al., 2023]. This allows for 3DGS to be ef-
ficiently rendered by regular rasterization methods. This im-
plies that 3DGS can function on less powerful computers, a
capability most NeRF-based solutions struggle with.

3 Hybrid rendering with NeRF and
Ray tracing in Foveated Rendering

We propose the idea of substituting Ray tracing rendering at
the peripheral regions of the HMD display using alternative
neural rendering methods. While there are solutions for hy-
brid rendering [Henriques et al., 2024a], there is a lack in the
literature related to the perception of illumination features
when combining both. This is especially relevant when con-
spiring that the Neural rendering approaches are related to
pre-processed scenes.
This proposal stems from the notion that neural radiance

fields are more capable of representing light-based effects
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Figure 2. Composition of NeRF andRay traced images as described byHen-
riques et al. [2024a]. The peripheral region is painted in blue, the parafoveal
region that covers about 35% of the screen is painted green and the foveal
region that covers about 20% of the screen is painted red.

than other light baking methods. Since color information is
dependent on world position and gaze direction [Mildenhall
et al., 2021], one could bake reflective properties into those
radiance fields given a single reflective surface is stationary
on a scene.
The output radiance formula for each pixel is shown in the

equation below [Mildenhall et al., 2021]. The expected color
of a single camera ray, where each ray r, constrained between
Tn and Tf , outputs a color C(r) given by integrating the ac-
cumulated transmittance T (t), the volume density σ(t) and
the albedo color c(r(t), d). If a single scene is trained upon
reflective images, it will learn to reconstruct this reflection
upon the training viewpoints.

C(r) =
∫ T f

T n

T (t)σ(r(t))c(r(t), d) dt (1)

This approach to image generation has the potential to gen-
erate more realistic effects without resorting to expensive ray
tracing techniques or more traditional environment mapping
techniques. This is true, however, when the training data
used by NeRF is of high quality.
Given a virtual scene, each scenewould have two represen-

tations: a polygonal mesh, rendered in real time with path
tracing, and an equivalent reconstruction achieved by any
NeRF-like method. The final image would be composed by
rendering the path traced representation only in the foveal
region of the screen, while rendering the periphery solely
by the radiance field. The parafoveal region, which encom-
passes the middle region between fovea and periphery, has

an alpha blending of both regions, transitioning from fovea
to periphery [Henriques et al., 2024a]. The technique is il-
lustrated in Figure 2.
The surrogate scene used in the periphery of the screen is

trained based on images captured from the polygonal scene
rendered in the foveal region of the screen. We recommend
to setup cameras in a spherical disposition around the center
of the scene, increasing the density of captures to account
for scene details, such as low visibility regions. The pairs of
images used in the experiment are represented on Figure 3.
In this experiment, we used Instant-NeRF as the NeRF so-

lution for the peripheral image [Müller et al., 2022] due to
its training time and rendering performance. However, there
are other NeRF solutions focused on displaying ray tracing
effects, focused on delivering better reflections than some of
the best known NeRFs in the literature [Verbin et al., 2022;
Chen et al., 2023a].

4 Human Perception Experiment
The experimental study has two main goals: to understand
the impact of replacing the peripheral vision of specific ray
tracing effects with neural rendered reconstructions, and to
understand the impact of an artificial reticule while conduct-
ing such an experiment on devices without eye tracking ca-
pabilities. Our hypothesis is that neural rendering will recon-
struct some effects better than others, and that the reticule is
important to assure good results in this scenario.
In this section, we describe the user profile and the exper-

iment protocol we conducted with users.

4.1 User Profiling

To validate our hypothesis, we conducted the test with forty-
two users. From those forty-two, twenty-one conducted the
test without the reticule on the screen to fixate their gaze,
while the other twenty-one conducted the test with the retic-
ule. In the end, we had 630 (six hundred and thirty) user
inputs, half of them being without the reticule and the other
half being with the reticule.
Most of the users (90,5%) were male, 83,4% of them had

little or no previous experiences with VR, and 61,3% had no
diagnosed vision impairments. Among the 38,7% users with
some kind of vision impairment, all of them had their vision
corrected by the usage of glasses, which they wore during the
experiment. Most of them reported having nearsightedness
and astigmatism. The users’ age ranged from 18 to 44 years
old, with average age being 22,02 and a standard deviation
of 5,02.

4.2 Experiment Protocol

Although the reliability for reconstructing global illumina-
tion in closed sceneswas assessed inHenriques et al. [2024a],
we have yet to assess a larger number of users while testing
other ray tracing based effects during the interactive applica-
tions. The aim of this user study is to assess how convinc-
ingly can these reconstructions be to the human eye. Our
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Figure 3. Pairs of images used for the user experiment. Each pair of im-
ages represents a different ray tracing effect: Subsurface Scattering (the rose
coloring on the rabbit’s body), Emission (the rabbit at the center emitting
light), Colored Shadows (the three translucent rabbits), Refraction (the float-
ing teapots refracting the rabbits) and Reflection (the mirrors reflecting the
rabbit and teapot.). The left image contains the foveated image, composed
using the technique; the right image contains the fully raytraced image.

primary hypothesis is that NeRF will be sufficient to approx-
imate ray tracing effects convincingly enough for peripheral
view, with some effects being less perceived than others.
To achieve this goal, we identified five main effects of-

ten achieved through ray tracing pipeline: Subsurface Scat-
tering (SS), Light Emission (E), Colored Shadows (CS), Re-
flections (RL) and Refraction (RR), and conducted a Double-
Stimulus Impairment Scale (DSIS) test in order to assess how
well executed were such effects.
The DSIS test [Series, 2012] is a traditional testing rou-

tine used to measure the degradation of screens according to
user feedback given on a DCR (Degradation Category Rat-
ing) scale from 1 (very damaging) to 5 (not perceptible). On
DSIS, a round consists of the user being first exposed to a
reference, non-modified image for a small amount of time.
Following, the user is exposed to a rest period, without vi-
sual stimuli, for a significantly smaller amount of time, and
then to a modified image for the same amount of time they
had seen the reference image. The round ends with the user
giving their input through the DCR scale. The method is il-
lustrated by Figure 4 [Series, 2012]. In our experiment, we
conducted a script of questions that allowed the user to give
an assessment that fits the DCR without taking off the HMD,
reducing the length of the test and minimizing exhaustion.

Figure 4. A single round in a DSIS experiment, adapting the length of each
part to our needs [Series, 2012]: T1 = 5s (reference image), T2 = 2s (resting
black screen), T3 = 5s (foveated image), T4 = from 5s to 11s (resting black
screen).

The aforementioned script consists of three simple ques-
tions:

1. “Have you noticed any difference between the im-
ages?”, to which the user could answer “yes” or “no”. If
the answer is “yes”, then we move to the second ques-
tion. Otherwise, if the user answers with a “no”, it is
equivalent to a score of 5; there are no perceptible dif-
ferences between images.

2. “Would you say you noticed the image getting
worse?”, to which the user also can answer with “yes”
or “no”. If the answer is “yes”, then we jump to the third
question. Otherwise, we assume that the score of the an-
swer is 4 on the DCR scale, which means that there is a
perceptible but non-damaing change to the screen.

3. “How would you say the worsening damaged your
perception of the scene?”, to which the user can an-
swer with “a little”, “mildly” or “a lot”. Each one
of these answers has different scores on the DCR; re-
spectively, scores of 3 (perceived little damage), 2 (per-
ceived some damage) or 1 (perceived a lot of damage).
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Each user underwent fifteen rounds of DSIS: three repeti-
tions of each one of the five effects being tested. This repe-
tition is a strategy to ensure better feedback from the user,
accounting for any change of perception that repeated ex-
posures to the same effect may have [Sorokin and Forsyth,
2008]. The effects were picked at random every single time
to mitigate any bias perception one effect may have over an-
other effect.
To better control the focus of the users, we baked exam-

ples into pairs of static images. We intend to guarantee that
the user would see each scene in the most interesting way
possible to test their perception of the effects, in such a way
that both the fovea and periphery would have at least an ex-
ample of an effect on display. This setup is solely for test-
ing user perception, negating any problem that might arise
from rendering the images in real-time (misalignment of both
reconstructions, stuttering caused by an unpredictable per-
formance dip) and diminishing the risk of breaking user’s
immersion. We conducted the experiment using two Meta
Quest 2 HMDs plugged in different computers with non-
relevant specifications.
Since we were testing with pairs of static images, a ques-

tion arose during the pilot tests: does the user need a spe-
cific reticule to fixate the gaze on the appropriate region and
avoid looking at the peripheral area with the fovea, since the
hardware used does not have an eye-tracking system? To ex-
plore this possibility, we divided the users into two separate
groups: one group performed the test with a green reticule
in the center of the screen and received explicit instructions
to fixate on it. The other group experimented without such
a crosshair and was only instructed to look forward. Both
groups were periodically reminded during the test to keep
looking forward, or in the case of the reticule group, to keep
looking at the reticule. Figure 5 features a comparison be-
tween an image with reticule and the same image without it.

Figure 5. The foveated refraction testing view. On the left, the refraction
testing view has a reticule upon which the users could fix their gaze during
experiment. On the right, the image features no reticule.

5 Human Results Assessments

In this section, we assess the results collected from the ex-
periments listed in the previous section. In order, we first
describe the statistical approach to the collected data, then
analyze the perceived quality reported by users and discuss
the role that the reticule played on the data we gathered.

5.1 Statistical Analysis
Research in human-computer interaction (HCI) frequently
employs quantitative methods and parametric analysis to
evaluate human performance metrics, such as task comple-
tion metrics [Dix et al., 2003]. However, the Shapiro-Wilk
normality test indicated that the dependent variable dScore
does not follow a normal distribution, rendering parametric
methods unsuitable for this analysis. Consequently, we ap-
plied the aligned rank transform (ART) method [Wobbrock
et al., 2011; Bates et al., 2015] and aligned rank transform
contrasts (ART-C) [Elkin et al., 2021] to examine the im-
pact of the independent variables iReticule and iEffect
(Table 1) on the dependent variable dScore.

Table 1. Values of the independent variables within the experimen-
tal context.

Variables & Levels
iReticule No, Y es
iEffect CS, E, RL, RR, SS

Following the analysis of variance and the identification
of a significant overall difference between groups, it is nec-
essary to perform post-hoc tests to determine which spe-
cific groups differ from each other. The use of Holm’s
Method (Holm-Bonferroni) [Holm, 1979] is justified to con-
trol the risk of Type I errors (false positives) in multiple
comparisons. The choice of Holm’s Method is appropriate
for this study due to the large number of post-hoc compar-
isons required. Withmultiple combinations of iReticule and
iEffect, Holm’s more balanced approach allows for more
effective detection of true differences between groups with-
out sacrificing control over false positives.
We performed the statistical analysis using R (4.4.0)1 and

RStudio (2024.4.1.748)2. As statistical significance parame-
ters, we explored using three p-values: p < .0001, p < .001,
and p < .05.

5.2 Perceived Effect Quality

Table 2. Mean user scores per tested lighting effect
Effect & Reticule & Mean Score
Colored Shadows No 3.89

Y es 4.17
Emission No 2.51

Y es 3.13
Reflections No 3.62

Y es 4.24
Refraction No 2.65

Y es 3.33
Subsurface Scattering No 4.48

Y es 4.65

The values in Figure 6 reveal that the peripheral vision
was better received by users when displaying certain effects.
From the five effects we tested (Colored Shadows, Emission,
Reflection, Refraction and Subsurface Scattering), Colored

1https://cran.r-project.org/
2https://posit.co/
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Figure 6. Boxplot featuring scores of each effect according to user assess-
ments. To better assess users’ scores, we divided these scores by whether
the user participated in the experiment with reticule on screen (in orange)
or not (in green). In order, the featured effects are: Colored Shadows (CS),
Emission (E), Reflections (RF), Refraction (RR) and Subsurface Scattering
(SS).

Figure 7. View on the refraction pair of images. The refracted image
through the teapots suffers from the lack of detail present on the ray-traced
images, which hinders NeRF’s capacity to properly reconstruct such an ef-
fect. The refractive teapot’s specularity also hinders its reconstruction.

Shadows and Subsurface Scattering performed better than
their peers. The mean scores given by users are featured in
Table 2.
Users perceived Subsurface Scattering as the better recon-

structed effect on the peripheral vision, given its higher score.
This is so due to NeRF’s capability of reconstructing well-lit
scenes in convincing ways. Users also perceived Colored
Shadows as the second better reconstructed effect. Reflec-
tion reconstrucions were also largely well received by users,
even though more users would perceive them as worse qual-
ity than their full ray traced counterpart, with the presence
of reticule playing a part in this perception. This feature re-
inforces our original hypothesis that NeRF could be a good
surrogate for peripheral vision while being insufficient for
foveal vision.
Users perceived the other effects as damaged in some way.

Refraction and Emission were worse received due to NeRF’s
limitation on displaying refracted coloring and reconstruct-
ing emissive scenes. This is a known limitation of NeRF
to some extent, with literature around possible solutions for
more convincing reconstruction of these scenarios [Cui et al.,
2024; Deng et al., 2024]. Examples of these limitations can
be seen in more detail on Figures 7 and 8.

Figure 8. View on the emissive pair of images. We remark that the emissive
effect shows artifacts from the volume accumulation, which leaves a smoke-
like visual artifact in the reconstruction. The low light in the scene also
represents another challenge for the reconstruction, since the lack of light
represents fewer features to reconstruct the scene.

5.3 Reticule’s Influence

As previously stated, we conducted the experiment without
access to eye tracking, which means that we were unable to
adjust the foveal region onto the images in real-time. That
limitation led us to question if users could conduct such an
experiment without a visual aid to fixate their gaze at the
center of the foveal region.

Figure 9. Difference between user scores that participated in the experi-
ment with the reticule, in orange, and user scores that participated in the
experiment without the reticule, in green. In order, the featured effects are:
Colored Shadows (CS), Emission (E), Reflections (RF), Refraction (RR)
and Subsurface Scattering (SS).

Given the values presented in Figure 6, we can perceive
the reticule playing a role in improving the experiment re-
sults. With a reticule to focus their attention, users would
end up fixating their gaze on the best quality, minimizing
the risk of drifting their foveal vision over regions that were
suitable only for their peripheral vision.

We observed in Figure 9 that the group of participants
who used the Reticule (iReticule = Yes) during the exper-
iment exhibited higher mean scores across all effects com-
pared to the group of participants who did not use the Retic-
ule (iReticule = No). A significant interaction was noted be-
tween Reticule × iEffect (F4,580 = 2.6860, p < .05) on
dScore. However, posthoc tests revealed that only the RL
and RR effects showed significant p-values, as illustrated in
Figure 6.
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6 Image Quality Assessment
In this section, we will compare the user feedback provided
in Section 5 with well-established quality metrics present in
the literature. We want to observe the relation between the
perceived quality and the aforementioned metrics to predict
if the usage of 3DGS could be considered appropriate for
substituting the Instant-NeRF rendering in the periphery of
the vision.
Even if we conduct this analysis to try to figure out a rela-

tionship between quality measurements and user perception,
it is important to point out that no testing image scored poorly
in either scenario. Even the worst perceived effects had de-
cent quality scores, with Emission being the worst offender,
as the next subsections will expand upon.
The subsection 6.1 introduces the quality metrics chosen

for this comparison and their limitations. The subsection
6.2 will compare the user feedback with the Learned Per-
ceptual Image Patch Similarity (LPIPS), Structural Similar-
ity Index Measure (SSIM) and Peak Signal-to-Noise Ratio
(PSNR) quality metrics. The subsection 6.3 will compare the
scores from the 3DGS-generated frames to the NeRF ones.

6.1 Quality Metrics
This work uses four different quality metrics to assess the
quality of our NeRF reconstructions for peripheral vision and
compare them to user feedback. These quality metrics also
compare equivalent compositions using a Gaussian Splatting
reconstruction instead of the NeRF for peripheral view.
This replacement is interesting due to performance rea-

sons. Since 3DGS renders its reconstructions through ras-
tering the splats over the screen, they can easily render high-
resolution reconstructions at low latencies. As stated in Sec-
tion 3, achieving low latencies without disturbing user expe-
rience is the point of this study.
This work will compare the images under the follow-

ing metrics: PSNR, SSIM, LPIPS and FovVideoVDP. The
choice behind those metrics is motivated by the literature
surrounding them: PSNR and SSIM are classic metrics that
are featured in several other works that explore image qual-
ity, but more importantly, imperceptibility [Setiadi, 2021].
PSNR works by measuring the logarithm of the mean square
error of an image, as SSIM measures the difference between
two images by comparing luminance, contrast and structure
between one image as a reference and the other image as a
test case.
But PSNR is known not to be conforming with human vi-

sual perception, and SSIM is also known not to be perfectly
representative of human visual perception as stated by Nils-
son and Akenine-Möller [2020]. These metrics are better
suited to objective image quality assessments, which may
not be entirely compliant to visual quality assessment, but
still are important in themselves as quality metrics of these
images specially when comparing the reconstruction quality
of the scenes.
These limitations pushed us to pursue alternative quality

metrics better alignedwith human perception for amore com-
plete and valuable quality assessment. For that kind of assess-
ment, we chose LPIPS and FovVideoVDP due to their goal

of approximating human perception and previous works at-
testing to the success of these techniques.
LPIPS is a quality metric based upon human perception

learned by a deep neural network, which has proven itself
more capable of approximating human perception instead of
more traditional metrics. This is due to its training dataset,
composed of images distorted in many ways and human as-
sessments of said images [Zhang et al., 2018]. While exe-
cuting this work, we used the three networks available for
LPIPS testing: AlexNet, VGG and SqueezeNet, trained with
the entire LPIPS dataset.
FovVideoVDP, on the other hand, is a qualitymetric aimed

at measuring quality of foveated videos. It works based on a
decomposition of spatial and temporal factors over foveated
videos pooled over spatial frequency bands, temporal chan-
nels, and all the frames. Ultimately, this entire process com-
poses just-objectionable-difference (JOD) units that repre-
sent differences that may present themselves objectionable
in foveated scenarios since it considers foveal eccentricity to
evaluate the damage. This metric has been validated by psy-
chometric studies and comparisons with other quality met-
rics, and we tend to believe that FovVideoVDP is the most
relevant in this scenario due to its specific usage on assessing
quality on Foveated Rendering images, an explicit use case
of this metric [Mantiuk et al., 2021].

6.2 NeRF Scores

In this section, we pay attention to the images used during the
user tests. Those were submitted over the four quality met-
rics, with their default parameters. We ran FovVideoVDP af-
ter setting the parameter “Display Name” as “standard_hmd”
for running the test considering the resolution of 1440 by
1600 with a diagonal FOV of 110. We ran LPIPS tests three
times, each with a different network mentioned at Zhang
et al. [2018].
Figures 10, 11, 12 and 13 display the comparison between

the user assessment to each image and the aforementioned
quality metrics. The user assessment is represented in a scale
from 1 to 5 shown in subsection 5.2 that measures how dam-
aging the effect of NeRF was on the user perception.
Figure 10 points to a more fragile relation between the

quality and user scores. This is obvious when the worst per-
ceived effect of the bunch, Emission, is the effect with the
greater PSNR score from the testing group. Another curious
result is the Reflection score, which performed fairly well
with users and had the second-lower PSNR score.
Figure 11 shows a similar trend, under which Emission

is practically tied for the second-best-looking effect of the
bunch with Refraction, surpassed only by Colored Shadows.
SSIM values also point to Subsurface Scattering as the worst
reconstruction, and its composition the most damaged. How-
ever, this does not match the user assessment, which gave it

Figure 10. Difference between user scores that participated in the experi-
ment with reticule (in green), user scores that participated in the experiment
without the reticule (in orange) and the PSNR value for each effect (on the
bottom of the horizontal axis). In order, the featured effects are: Colored
Shadows (CS) with PSNR of 30.24, Emission (E) with PSNR of 32.29, Re-
flections (RL) with PSNR of 29.003, Refraction (RR) with PSNR of 28.85
and Subsurface Scattering (SS) with PSNR of 30.24.
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Figure 11. Difference between user scores that participated in the experi-
ment with reticule (in green), user scores that participated in the experiment
without the reticule (in orange) and the SSIM value for each effect (on the
bottom of the horizontal axis). In order, the featured effects are: Colored
Shadows (CS) with SSIM of 0.971, Emission (E) with SSIM of 0.965, Re-
flections (RL) with SSIM of 0.9598, Refraction (RR) with SSIM of 0.9651
and Subsurface Scattering (SS) with SSIM of 0.9367.
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Figure 12. Difference between user scores that participated on the experi-
ment with reticule (in green), user scores that participated on the experiment
without the reticule (in orange) and the FovVideoVDP value for each effect
(on the bottom of the horizontal axis). In order, the featured effects are:
Colored Shadows (CS) with FovVideoVDP of 8.7336, Emission (E) with
FovVideoVDP of 7.6488, Reflections (RL) with FovVideoVDP of 8.2456,
Refraction (RR) with FovVideoVDP of 8.3069 and Subsurface Scattering
(SS) with FovVideoVDP of 7.72.

the higher score during testing.
The FovVideoVDPmetric, shown in Figure 12, is closer to

the user assessment than the aforementioned metrics. As can
be seen, the lowest FovVideoVDP value matches the lowest-
rated effect by users. These results don’t match when we
look at Refraction’s quality, which is scored as the second-
best reconstruction according to FovVideoVDP, and yet is
the second-worst NeRF reconstruction according to users.
Another perplexing result is the Subsurface Scattering one,
rated by users as the best effect but with the second-lowest
FovVideoVDP value.
Figure 13 brings different information, and more closely

matches user assessment. In this metric, the closer the score
is to zero, the best is the image, since it measures difference
from a reference value.
Even though LPIPS’ default model is the AlexNet, the

SqueezeNet-based one scored closer to the user assessments
by ranking Emission as the worst effect (a common trend
between the three LPIPS tests) and Refraction as the second-
worst (such as the VGG-net graph). SqueezeNet also per-
formed better ranking the three best effects than its counter-
parts, besides practically tying up Subsurface Scattering and
Colored Shadows for first place (Subsurface Scattering was
lower than Colored Shadows for a difference of 0.001) and
keeping Reflection in the third place. VGG also kept the
same order but scored Subsurface Scattering closer to Re-
flection. AlexNet also performed well, but not as well as
its counterparts. Refraction was the second-best-rated effect,
tailing Colored Shadows, while Subsurface Scattering and
Reflections scored close to one another.
Inspection of these metrics shows a closer correspon-

dence between user feedback and the LPIPS, especially with
SqueezeNet, even though it does not perfectly match user

feedback. PSNR and SSIM showed similar patterns in their
distributions, which points to the fact that they are both
unsuitable to match the user’s perception and is to be ex-
pected [Nilsson and Akenine-Möller, 2020]. FovVideoVDP,
created to approximate user perception, does not perfectly
match the user feedback but is closer to the user scoring.
LPIPS’ scores are generally distributed just like the user

feedback except for the Reflections, which scoredworse than
every single one of the effects, and FovVideoVDP ranked
Subsurface Scattering below many other effects while scor-
ing Refraction as the second-best reconstruction. This as-
sessment leads us to conclude that, despite the discrepancies,
LPIPS and FovVideoVDP are more suited to infer the quality
of reconstructions produced by other means.
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Figure 13. Difference between user scores that participated in the experiment with reticule (in green), user scores that participated in the experiment without
the reticule (in orange) and the LPIPS value for each effect (on the bottom of the horizontal axis). In order, the featured effects are: Colored Shadows
(CS) with LPIPS of 0.104 (AlexNet)/0.217 (VGG)/0.121 (SqueezeNet), Emission (E) with LPIPS of 0.272 (AlexNet)/0.369 (VGG)/0.215 (SqueezeNet),
Reflections (RL) with LPIPS of 0.133 (AlexNet)/0.248 (VGG)/0.133 (SqueezeNet), Refraction (RR) with LPIPS of 0.125 (AlexNet)/0.262 (VGG)/0.151
(SqueezeNet and Subsurface Scattering (SS) with LPIPS of 0.137 (AlexNet)/0.242 (VGG)/0.122 (SqueezeNet).

6.3 3D Gaussian Splatting Scores
After comparing the user feedback with quality scores from
the NeRF reconstructions, we constructed 3DGS-based re-
constructions of the same scenes. The peripheral view of
each ray-traced scene was replaced by a standard 3D Gaus-
sian Splatting reconstruction after 30000 (thirty thousand) it-
erations of training. These reconstructions were trained upon
datasets of 400 images surrounding the artifacts of each im-
age with known extrinsic parameters.
Table 3 contains scores from foveated NeRF reconstruc-

tions and foveated 3DGS reconstructions from each frame
used in the experiment lined out at Section 5. It points to a
clear improvement all over the reconstructions of the effects,
having the least performing effect to be Reflection over any
observable metric.
SSIM was the effect that accused the least amount of

improvement, having Reflections as good with NeRF and
3DGS, and pointing to a modest downgrade with Refraction.
This is also observed with FovVideoVDP, which pointed to a
very modest decrease in quality when comparing Reflections
and Refraction. This result is a surprise on some level, given
that FovVideoVDP considers screen eccentricity to measure
the objectionable differences metric necessary for its scor-
ing. On the other hand, we must mention the huge increase
of quality when using 3DGS to reconstruct Emission in the
periphery, which was the worst perceived effect by the public
in its NeRF reconstruction.
PSNR, on the other hand, only pointed to a 1.325-point

drop in quality in Reflections, pointing to enhancements
over every other effect. According to PSNR alone, the best-
increasing effect was Colored Shadows, Emission being the
second-best enhanced effect of the bunch.
LPIPS trained in an AlexNet showed improvement in four

different effects (Colored Shadows, Emission, Reflections
and Refraction). The effect that most benefitted from 3DGS
was Emission, with an LPIPS value decrease of 0.167. In the
case where we observed a decrease in visual quality through
AlexNet’s LPIPS, the value increase is very modest. VGG
and SqueezeNet’s LPIPS performed better, universally point-
ing to enhancements in every effect. VGG pointed at the
biggest enhancements, showing the biggest drops in scoring
over every effect when compared to other LPIPS test.
Reflections probably fared worse in these tests due to the

reconstruction conditions. The NeRF reconstruction of this
effect was troublesome already, needing manual tuning of
training parameters to learn these reflections since the mir-
rors were relatively small amidst the scene, causing the mir-
ror image to become less prioritized. The 3DGS effect suf-
fered even more, optimizing fewer details on the reflective
surface. A more detailed comparison can be seen at Fig-
ure 14. This problem may be circumvented by optimizing
such reconstructions with more images focusing on the mir-
rored surfaces, but that solution may lead to overfitting prob-
lems and generate undesirable artifacts. Other alternative
would be exploring a different 3DGS-based method, one
more suited to reconstructing scenes with less amount of
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Table 3. NeRF quality scores versus 3DGS quality scores. 3DGS
compositions that had better scoring than their NeRF counterparts
are marked in bold. The different LPIPS models were shortened
for brevity; LPIPS with AlexNet was shortened to “LPIPSA.”,
LPIPS with VGG was shortened to “LPIPSV.” and LPIPS with
SqueezeNet was shortened to “LPIPSS.”. FovVideoVDPwas short-
ened to “VDP” for brevity.
Effect Metric NeRF 3DGS Difference
Colored PSNR 31.99 34.414 ↑ 2.424
Shadows SSIM 0.971 0.98 ↑ 0.009

LPIPSA. 0.104 0.074 ↓ 0.03
LPIPSV. 0.217 0.1 ↓ 0.117
LPIPSS. 0.121 0.058 ↓ 0.063
V DP 8.733 8.887 ↑ 0.154

Emission PSNR 30.351 32.404 ↑ 2.053
SSIM 0.965 0.984 ↑ 0.019
LPIPSA. 0.272 0.105 ↓ 0.167
LPIPSV. 0.369 0.11 ↓ 0.259
LPIPSS. 0.215 0.079 ↓ 0.136
V DP 7.648 8.611 ↑ 0.963

Reflections PSNR 30.105 28.78 ↓ 1.325
SSIM 0.959 0.959 0.000
LPIPSA. 0.133 0.136 ↑ 0.003
LPIPSV. 0.248 0.165 ↓ 0.083
LPIPSS. 0.133 0.109 ↓ 0.024
V DP 8.245 8.237 ↓ 0.008

Refraction PSNR 32.693 34.272 ↑ 1.579
SSIM 0.965 0.962 ↓ 0.003
LPIPSA. 0.125 0.091 ↓ 0.034
LPIPSV. 0.262 0.144 ↓ 0.118
LPIPSS. 0.151 0.078 ↓ 0.073
V DP 8.306 8.267 ↓ 0.039

Subsurface PSNR 30.865 31.618 ↑ 0.753
Scattering SSIM 0.936 0.972 ↑ 0.036

LPIPSA. 0.137 0.083 ↓ 0.054
LPIPSV. 0.242 0.125 ↓ 0.117
LPIPSS. 0.122 0.069 ↓ 0.053
V DP 7.72 8.476 ↑ 0.756

data.
Considering the comparisons made in Section 6.1, the

3DGS reconstructions seem to score generally better than
their NeRF counterparts, with a specific effect. These re-
sults are exciting since 3DGS reconstructions are bound to
have higher resolutions at interactive frame rates according
to Henriques et al. [2024a].

7 Conclusion
In this work, we validated a novel approach for the field of
VR and Foveated Rendering, enabling ray-traced effects in
virtual reality setups by replacing peripheral view by neu-
ral rendering approximations. We believe that, since NeRFs’
color and depth information are world position and gaze di-
rection dependent, they pose a fine candidate for replacing
ray-traced effects in the peripheral view while preserving the
same effects.
To achieve this goal, we used Nvidia’s Instant-NeRF to

generate scene reconstructions based on ray-traced effects
and conducted a user study to understand better how people

Figure 14. Comparison of the same frame generated with NeRF in the pe-
riphery, after manual tuning of training parameters, against the same view
of the same scene with 3DGS in the periphery of the screen. We can see
that the 3DGS reconstruction got the mirror blurrier than NeRF due to a
combination of factors: number of epochs for optimizing the splats, input
data focusing on the surface of the mirror, training parameters.

perceive such approximations. At the same time, we tested
how necessary a visual aid is to fixate the user’s gaze upon a
foveal region in setups where there is no user gaze tracking.
According to our findings, NeRF is capable of better re-

producing some ray-traced effects better than others. Effects
that are clearly reproduced in well-lit scenes and mostly dis-
play other colors can be reproduced quite seamlessly, such as
colored shadows or subsurface scattering. At the same time,
effects that are only clearly visible in darkened scenes, or that
depend onmore complicated ray behavior, havemore percep-
tible artifacts that users perceive as quality loss. Meanwhile,
our observations pointed to the relevance of using a visual
aid, such as a reticule, at the center of the foveal region to
experiment in scenarios where eye tracking is impossible.
This work also explores 3DGS’ capabilities as a surro-

gate for peripheral vision in VR, focusing on enhancing
ray-traced effects that NeRF may have struggled to recon-
struct. These new comparisons were made using image qual-
ity metrics (PSNR and SSIM) and visual quality metrics
(FovVideoVDP and LPIPS). But first, we compared user as-
sessment with thesemetrics over NeRF reconstructed images
to see if one metric would better approximate the user feed-
back. These tests, although valuable, do not fully replace
human assessment in a study such as this.
FovVideoVDP and LPIPS better captured the relation be-

tween user feedback and visual quality, but not perfectly.
Even that being the case, every single metrics points to bet-
ter visuals when using 3DGS over NeRF for rendering ray-
traced effects, which is very exciting considering its better
latency at higher resolutions.
This work was a deeper exploration of the limitations of

radiance fields as a peripheral view candidate in ray-traced
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environments, while at the same time providing insight on
the role of having the foveal region under the user’s fovea.
As we deepen our understanding of these features, we can
better direct future endeavors on the field as we explore new,
inventive ways to incorporate these new technologies into
foveated rendering pipelines.

7.1 Future Works

Although this study explored visual perception using one spe-
cific NeRF implementation for reconstructing the peripheral
vision, we haven’t assessed the cost of displaying such ef-
fects. However, the computational cost for real-time render-
ing, which is the main interest of such an application, will
largely depend on the chosen technique to render the periph-
eral image.
Some other future works would include comparing these

results against other radiance field-based techniques. Given
the observable upsides of using 3DGS instead of NeRF for
rendering peripheral vision of ray-traced scenes shown by
Henriques et al. [2024b] and by this work, we believe it
would be wise to experiment with recent solutions that ex-
plore light interaction with 3DGS. Some notable works are
3DGUT [Wu et al., 2024], aimed at reconstructing real-time
mirrors in 3DGS, and GaussianShader [Jiang et al., 2023],
aimed at applying some simplified shading to 3DGS recon-
structions.
It must be noted that the technique described in this pa-

per was taught for static scenes, which greatly limits its us-
age in interactive applications. New works such as Gaus-
sianFlow [Gao et al., 2024] and Motion-Aware 3DGS [Guo
et al., 2025] present promising results for representing dy-
namic scenes, and extending such dynamism to be interac-
tive would greatly expand the possibilities. On the subject of
interactive scenes, works such as Gaussian Splashing [Feng
et al., 2024] and GaussianAvatars [Qian et al., 2023] seem
to be strong candidates for further investigation as well.
At last, it would be valuable to repeat the user experiments

using the 3DGS rendered scenes instead of the NeRF ones
to double-check if the metrics comparison from Section 6.3.
As stated previously, although LPIPS and FovVideoVDP ap-
proximate user feedback, they do not perfectly correspond to
user feedback.
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