Journal on Interactive Systems, 2026, 17:1
ISSN: 2763-7719 e doi: 10.5753/jis.2026.5597

© This work is licensed under a Creative Commons Attribution 4.0 International License.

RESEARCH PAPER

Prediction and Analysis of Cybersickness in VR Games Using

Symbolic Machine Learning

Wedrey Nunes da Silva ® & [ University of Brasilia | wedrey.silva@aluno.unb.br ]

Thiago Porcino © [ National Laboratory for Scientific Computing - LNCC | thiago@!(ncc.br ]
Carla Denise Castanho © [ University of Brasilia | carlacastanho@unb.br ]

Ricardo Pezzuol Jacobi ® [ University of Brasilia | jacobi@unb.br ]

& Department of Computer Science, University of Brasilia (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia, DF,
70910-900, Brazil.

Abstract. Cybersickness (CS) is one of the main challenges for the adoption of Virtual Reality (VR), manifesting through
symptoms such as nausea, dizziness, and eye strain, particularly in Head-Mounted Display (HMD) devices. Although
subjective measures, such as questionnaires, are widely used to assess CS, they do not allow for real-time user feedback.
This study investigates the role of biosignals in identifying the causes and indicators of CS in VR games, employing
Symbolic Machine Learning (SML) to classify the most relevant factors. Our approach combines Electrocardiogram
(ECG), Electrodermal Activity (EDA), and Accelerometer (ACC) data with game metrics and user profile attributes. Data
were collected from two VR games: a car game and a flying game. Decision Trees and Random Forests were used to
build interpretable models, and the results showed that integrating biosignals and game data significantly improves CS
prediction, with Random Forest achieving an AUC of 0.95. The findings highlight that exposure time, motion intensity,
and electrodermal activity are among the key predictors of CS, reinforcing the importance of physiological monitoring in
VR research. Furthermore, the study demonstrates the potential of SML in creating explainable models, contributing to
more effective strategies for mitigating CS.
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1 Introduction

Virtual Reality (VR) has emerged as an innovative technol-
ogy, offering new possibilities for human-computer interac-
tion [LaViola Jr, 2000; Vince, 2004]. However, prolonged
exposure to virtual environments can trigger Cybersickness
(CS), a condition characterized by symptoms such as nausea,
dizziness, eye strain, and headaches. The duration of these
symptoms varies from a few minutes to several hours after
VR exposure, depending on individual user characteristics.
CS not only compromises the quality of the experience but
also represents a major challenge for the widespread adoption
of VR, often leading to the abandonment of the technology
due to the discomfort it causes [LaViola Jr, 2000]. Therefore,
it is crucial for developers to implement effective strategies to
prevent and mitigate CS from the early design phases, reduc-
ing its impact and optimizing user experience [Stanney and
Hash, 1998].

To effectively understand and address CS, researchers
have focused on developing strategies and methods to assess
its occurrence and severity. According to LaViola Jr [2000],
three main theories explain the causes of CS: (1) the Sen-
sory Conflict Theory, which attributes CS to the discrepancy
between sensory information sent to the brain, especially be-
tween visual signals and those from the vestibular system
[Reason and Brand, 1975; Caserman et al., 2021]; (2) the
Postural Instability Theory, which describes CS as a phys-
iological response resulting from difficulty in maintaining
balance and postural control [Riccio and Stoffregen, 1991];
and (3) the Poison Theory, which suggests that CS symptoms

in virtual environments occur due to adverse stimulation af-
fecting the visual and vestibular systems, leading the body to
misinterpret the situation as a possible ingestion of toxic sub-
stances, triggering discomfort reactions [LaViola Jr, 2000].

CS is a real problem with medical and safety implica-
tions, limiting the use of VR in fields such as education, enter-
tainment, engineering, and video games, where its potential is
significant [Kennedy and Lilienthal, 1995]. Studies indicate
that between 40% and 60% of VR users may experience mod-
erate to severe symptoms, while approximately 5% remain un-
able to adapt even after multiple exposures [Kolasinski, 1995;
Garcia-Agundez et al., 2019]. This condition is particularly
common in devices such as Head-Mounted Displays (HMDs),
which provide an immersive experience by displaying content
directly in the user’s eyes. Although recent advances in HMD
technology have improved realism and immersion, they may
also intensify the discomfort associated with CS [Saredakis
et al., 2020]. In this context, Kourtesis et al. [2019] highlight
the importance of considering both hardware advancements
and software features as complementary strategies to reduce
the occurrence of CS.

Although several theories attempt to explain the causes
of CS, there is still no systematic and direct method for mea-
suring it [Krokos and Varshney, 2022]. Researchers often
rely on subjective measures, such as self-reported question-
naires, to assess discomfort intensity, providing an overview
of symptoms, including nausea, visual discomfort, and dis-
orientation, which vary according to the individual and the
virtual environment [Kennedy et al., 1993; Islam et al., 2020].
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However, these approaches, generally applied after the VR
experience, limit the accurate monitoring of the condition
during immersion. Studies such as the one from Young et al.
[2007] show that symptom reports are significantly higher
when assessments are conducted both before and after ex-
posure, compared to a single questionnaire applied after the
experience, highlighting the limitations of this method. These
findings emphasize the need for more objective approaches,
such as the use of biosignals, which enable the identifica-
tion of causative factors and indicators of CS, allowing for
real-time analysis with greater accuracy.

This article is an extended and revised version of the
study titled “Analysis of Cybersickness through Biosignals:
an approach with Symbolic Machine Learning,” published
in the proceedings of the 28th Symposium on Virtual and
Augmented Reality (SVR 2024) [Nunes da Silva et al., 2024],
organized by the ACM Digital Library and held in Manaus,
Brazil, from September 30 to October 3, 2024.

The primary objective of this study is to analyze the
influence of biosignals on understanding the factors associ-
ated with CS in VR games, aiming to demonstrate a signifi-
cant correlation between the occurrence of this condition and
the recorded signals. The central hypothesis is that integrat-
ing quantitative assessments (biosignals and game data) with
subjective assessments (data from the Cybersickness Profile
Questionnaire — CSPQ), using Symbolic Machine Learning
(SML) techniques, represents an effective approach to iden-
tifying, classifying, and understanding the causative factors
and indicators of CS.

The data collected through the CSPQ questionnaires,
along with game information and biosignals such as Electro-
cardiogram (ECG), Electrodermal Activity (EDA), and body
movements captured by an Accelerometer (ACC), were used
for training and evaluating the model. During the experiments,
participants interacted with two VR games: a car racing and
a flying game. The selection of these games was motivated
by the possibility of conducting the experiments more effi-
ciently, allowing for the collection and analysis of key metrics
such as speed, acceleration, and rotation, which are essential
for identifying the factors associated with CS. In contrast,
Role-Playing Games (RPGs) frequently interrupt character
movements with dialogues, combats, and other interactions,
making it difficult to collect continuous and relevant data.
Additionally, RPGs would require significantly more time to
conduct the experiments.

The transparency provided by symbolic methods is par-
ticularly valuable in contexts that require clear and explain-
able models, such as this research, which aims to identify and
understand the elements that influence the manifestation of
symptoms related to CS in VR games. To achieve this, we
implemented an algorithm based on SML techniques, capable
of classifying the main causative and indicative factors of CS.
In summary, our contributions include:

* Investigation of the correlation between the levels of CS
reported by users and the captured biosignals;

* Generation of rankings of the main indicators and
causative factors of CS;

e Comparison of the results obtained with the PDI (Po-
tential Discomfort Indicator) method, proposed in this
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study, and the PCS (Potential Cause Score) method, pre-
sented in the reference study.

This article is organized as follows: Section 2 presents
previous studies that explore the use of biosignals to detect
and analyze CS and Visually Induced Motion Sickness (VIMS)
in virtual environments. Section 3 provides a detailed descrip-
tion of the methodology used, while Section 4 focuses on the
approach based on SML. The results, including the scores
from the Virtual Reality Sickness Questionnaire (VRSQ),
physiological changes, and generated rankings, are presented
in Section 5. Finally, Section 6 discusses the limitations of
this study and presents conclusions and perspectives for future
research.

2 Related Work

In addition to subjective measures, it is essential to comple-
ment analyses with additional methods, such as quantitative
assessments based on participants’ physiological signals dur-
ing exposure to CS. Among the most common biosignals are
EEG, ECG (used to calculate Heart Rate - HR and Heart
Rate Variability - HRV), Galvanic Skin Response (GSR), and
Electrogastrography (EGG). CS analysis through SML, using
decision tree-based models, provides greater clarity and relia-
bility in predictions, facilitating the identification of the main
factors associated with this condition.

24 Analysis with Biosignals

Islam et al. [2020] conducted a study that analyzed the detec-
tion and prediction of CS in a VR roller coaster simulation.
During the experiment, physiological data such as HR, GSR,
breathing rate (BR), and HRV were collected. The virtual
environment was developed in Unity 3D, and participants
were exposed to both rest and activity periods while their
biosignals were recorded. Initially, the data were analyzed
using a Support Vector Machine (SVM) model, followed by
an architecture combining Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM). The study
identified that most participants experienced CS, with strong
correlations between self-reported scores on the Fast Motion
Sickness (FMS) scale and HR, GSR, and HRV data. The
CNN-LSTM model outperformed the others, demonstrating
efficiency in detecting and predicting CS based on physiolog-
ical biosignals.

The Simulator Sickness Questionnaire (SSQ) presents
limitations as it interrupts the user during the experience, com-
promising results and making real-time quantitative measure-
ments unfeasible. To overcome this challenge, [Krokos and
Varshney, 2022] investigated CS induced by vection in immer-
sive virtual environments using EEG signals. With 44 partici-
pants, the study revealed a correlation between CS symptoms
reported via joystick and increases in Delta, Theta, and Alpha
waves. The experiment consisted of a 61-second simulation
in a virtual environment with both abrupt and smooth cam-
era movements, using an HTC Vive head-mounted display
synchronized with a 14-channel EEG. Participants reported
greater discomfort with abrupt changes and difficulty in an-
ticipating movements, suggesting that direct control could
mitigate symptoms. Approximately 70% of participants tilted
their bodies according to movements, and 32% had prior expe-
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rience with immersive devices. The authors emphasized the
need for evaluation standards for hardware (headsets, trackers,
and monitors) as well as content (games, performances, and
other immersive experiences), along with further investiga-
tions into factors such as specific tasks, immersion duration,
age, and sex in CS.

The study by Garcia-Agundez et al. [2019] investigated
the use of a two-lead ECG to detect CS in 13 VR players
during 15-minute sessions, recording ECG data and applying
the SSQ questionnaire. Four participants interrupted the ex-
periment due to CS, and data from two were discarded due
to artifacts. The results showed statistically significant dif-
ferences in SSQ and ECG scores, with an average increase
of 8 points in the SSQ. Surprisingly, participants with higher
levels of CS exhibited lower heart rates. The analysis in-
dicated a higher correlation between Standard Deviation of
the Normal-to-Normal intervals (SDTNN) and SSQ, particu-
larly in oculomotor symptoms (r = 0.47) and disorientation
(r = 0.38), highlighting the complex relationship between
CS, ECG, and specific symptoms, in contrast with previous
studies.

Keshavarz et al. [2022] explored the use of physiological
data such as ECG, EDA, EGG, respiration, body temperature,
skin temperature, and body movements, combined with Ma-
chine Learning (ML) techniques, to identify and predict the
onset of VIMS. The experiment included 43 participants who
watched a video designed to induce VIMS for 15 minutes.
The analysis with ML models showed a moderate correla-
tion between physiological measures and the scores on the
FMS Scale. The authors emphasized that, although useful,
physiological measures alone are not sufficient for reliable
real-time detection or prediction of VIMS. Among the eval-
uated models, Random Forest (RF) stood out, achieving an
Area Under the Curve (AUC) of 0.75, effectively distinguish-
ing participants who experienced symptoms from those who
did not.

2.2 CS Analysis with Symbolic ML

Porcino [2021] proposed an experimental analysis based on
SML to identify the possible causes of CS in VR games. The
research is based on the hypothesis that symbolic models, by
offering a clear and interpretable representation of the results,
can help game designers identify and implement more effec-
tive strategies to mitigate CS symptoms. To collect the data,
two games were developed in Unity 3D: a racing game and a
flying game. During the experiments, participants engaged
in sessions of 5 or 20 minutes and answered the CSPQ and
VRSQ questionnaires before and after the sessions, reporting
their level of discomfort.

In addition to subjective evaluations, real-time data were
collected during the gameplay, including acceleration, head
orientation, and scene position. These data, combined with
up to eight factors attributed to CS (acceleration, exposure
time, frame rate, age, rotation, gender, speed, and prior VR
experience), were analyzed using two SML algorithms: Deci-
sion Tree and Random Forest. These algorithms generated
rankings of the possible causes of CS, facilitating the interpre-
tation and identification of strategies to mitigate symptoms.
The authors also reviewed previous studies that proposed
approaches for factors such as exposure time, acceleration,
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speed, frame rate, and camera rotation on the z-axis [Bouyer
et al., 2017; Budhiraja et al., 2017], but noted that aspects
related to user profile, such as gender, age, and experience,
still lack clear strategies.

3 Method and Experiments

This section describes the procedures used to conduct the
experiments in this study, covering the biosignals and games
employed, the data collection methods through qualitative
questionnaires, the techniques applied to obtain quantitative
data, and the preprocessing stage of the collected data.

31 Software and Equipment

The simulation was conducted using the HTC Vive HMD,
which features a resolution of 1080 x 1200 pixels per eye, a
90Hz refresh rate, and a 110-degree field of view. The oper-
ating system used was Windows 10 Pro (x64), running on a
computer equipped with an Intel Core i7 processor, 16 GB of
RAM, and an NVIDIA GeForce GTX 1050 Ti graphics card,
capable of running games developed in Unity 3D, SteamVR,
and biosignal collection software. As shown in Figure 1, two
VR games were used: a car racing game and a flying game,
both implemented in Unity 3D as part of the study conducted
by Porcino [2021]. Biosignal collection was performed using
the BITalino (r)evolution Plugged, a portable, modular, and
cost-effective device widely used in scientific research. This
equipment enables the precise acquisition of physiological
signals such as ECG, EMG, EEG, EGG, and ACC, with sam-
pling rates of 1, 10, 100, or 1000Hz and communication via
Bluetooth/BLE.

Figure 1. Car Racing Game on the left (a) and Flying Game on the right (b)
[Porcino, 2021].

The Biosignal Collector application (BC) (Figure 2) was
designed to enhance biosignal collection and allow partici-
pants to report CS levels using voice commands, based on
a scale from 0 (no symptoms) to 3 (severe). Integrated with
the OpenSignals software via the TCP/IP protocol, the BC
collects data from the BITalino and generates output in JSON
format, supporting frequencies of 10Hz, 100Hz, or 1000Hz,
as well as enabling customized configuration of channels (1
to 6) and sensors. The tool organizes the data by sensor,
including the reported CS levels, and allows for visualiza-
tion and saving of customized graphs, suitable for analysis or
CNN model training. Written in C# for the Windows Desktop
environment, the BC features a user-friendly and efficient
interface, simplifying the preprocessing and analysis of the
collected data.

3.2 Qualitative Data and Game Data
Qualitative data were collected during participants’ interac-
tion with the game software. The CSPQ questionnaire, con-
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4/ Biosignal Collector BC (Version 1.0.1) = X
Settings  ProcessData  Exit
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Collection Controller
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Remove All Recorded Biosignals Open Folder of Collected Data

Level Of CS (If voice recognition is enabled, please speak 0, 1, 2 or 3 in English)
© Level 0 (none) (@]

O Level 2 (Moderate) O Level 3 (Severe)

Log Collection
Open Log File

Open Log Folder

Figure 2. BC Main Screen

sisting of nine questions, explored aspects such as gender, age,
prior experience, pre-existing symptoms, flicker sensitivity,
glasses usage, visual impairments, posture during gameplay,
and dominant eye, as described by Porcino [2021]; Porcino
et al. [2022]. On the other hand, the VRSQ questionnaire eval-
uated nine symptoms related to CS, including general discom-
fort, fatigue, eye strain, difficulty concentrating, headaches,
a “heavy head” sensation, blurred vision, dizziness, and ver-
tigo. Additionally, game data were continuously recorded
throughout the experiment at a rate of one instance per second,
capturing information such as speed, acceleration, rotations,
regions of interest, and other variables.

3.3 Biosignals

As previously mentioned, our study utilized biosignal data
from ECG and EDA, as well as body movements captured
by an ACC. The literature [Garcia-Agundez et al., 2019; Qu
et al., 2022; Islam et al., 2020] highlights that EDA and ECG
biosignals are widely recognized as important indicators of
CS. Furthermore, according to LaViola Jr [2000], abrupt user
movements can be useful in identifying CS and are frequently
used in studies on the topic, as exemplified in the work of
Jeong and Han [2024].

3.3.1 Electrocardiogram

The ECG is the recording of the electrical activity generated
by the heart on the body’s surface [Alberdi et al., 2016]. It is
widely used for the assessment of heart diseases and cardiac
rhythm disorders. This recording provides valuable infor-
mation about heart rate, rhythm, and potential arrhythmias,
enabling a more precise analysis of the effects of CS on the
cardiovascular system. Typically, the heart rate range is be-
tween 60 and 100 beats per minute (bpm), corresponding to
an RR interval of 0.6 to 1 second [Qu er al., 2022].

ECG signals allow for the analysis of HRV, providing
essential information about the heart’s electrical activity. In

Silva et al., 2026

this study, the RR interval was used as an input value every
second in the dataset employed for the SML model.

The RR interval (RR-I) is one of the HRV parameters and
corresponds to the time between two consecutive heartbeats.
This value is obtained by measuring the distance between
successive RR peaks in the ECG signal, reflecting the duration
of the cardiac cycle, as illustrated in Figure 3. This metric
is widely used to assess heartbeat regularity and temporal
variation. A shorter RR-I is associated with an increased
heart rate, while a longer RR-I indicates a reduced heart rate.

® FPicosR

Figure 3. Example of an ECG with RR Interval highlighted.

3.3.2 Electrodermal Activity
CS can trigger emotional and psychological responses that
manifest as changes in electrodermal activity. In the study
conducted by Qu et al. [2022], the relationship between CS
symptoms and EDA was investigated, revealing that individu-
als experiencing more intense symptoms exhibited a signif-
icant increase in skin conductance. These findings suggest
that electrodermal response may serve as a robust indicator
for assessing the severity of CS and its effects on the body.
EDA corresponds to variations in the skin’s electrical
conductance in response to emotional or psychological stim-
uli and is widely used as a physiological measure to assess
autonomic nervous system activity. It is recorded through
electrodes placed on the skin’s surface, preferably in regions
with higher sweat gland activity, such as the palms of the
hands, fingers, or the soles of the feet. The unit of measure-
ment for EDA is microsiemens (x.5), with values typically
ranging between 5 and 50 [Qu e al., 2022].

3.3.3 Accelerometer

The ACC is an electromechanical device used to measure
acceleration forces, playing a crucial role in various techno-
logical applications. Since its popularization in the 1990s
with the advancement of Microelectromechanical Systems
(MEMY), these devices have revolutionized industries such
as automotive and consumer electronics by enabling function-
alities like hard drive protection and motion control in games
[AndrejaSic, 2008]. In addition to measuring displacements
and providing data on the angle and magnitude of movements,
ACC:s are used to analyze rapid and abrupt motions during
exposure to virtual environments, allowing researchers to un-
derstand their relationship with CS. These devices capture
acceleration data in units of gravitational force (g) or meters
per second squared (m/s?) [PLUX Biosignals, 2024], making
a significant contribution to studying discomfort associated
with human movement [Bassett and John, 2010].
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3.4 Biosignal Acquisition

As illustrated in Figure 4, the electrodes used in the Einthoven
lead configuration for ECG were positioned with IN+ (red)
and IN- (black) attached to the clavicles, while the REF
(white) was placed over the iliac crest. For EDA data collec-
tion, the electrodes were applied to the participant’s fingers.
The ACC sensor was fixed at the suprasternal notch using
adhesive tape to ensure stability during the experiments.

RA \(-V-,,/ A ’ | » \
o—v ‘ A ‘."
(a) (b) ) _/

Figure 4. a) Electrode placement for ECG [PLUX Biosignals, 2023a]; b)
EDA on fingers [PLUX Biosignals, 2023b]; ¢c) ACC on the user’s suprasternal
notch.

Accelorometer

3.5 Participants

The selection criteria adopted in this experiment were de-
signed to ensure the safety of participants, excluding those
with severe health conditions, such as extreme vestibular disor-
ders and severe balance problems, who are more susceptible to
intense CS. The recruitment process utilized various outreach
methods, including sending messages in WhatsApp groups
and individual approaches. As expected, most participants
were students from the University of Brasilia (UnB), since the
dissemination efforts were primarily targeted at this audience.

3.6 Procedure

To conduct this experiment, the participation of all volunteers
was ensured through explicit consent. Each participant con-
firmed their agreement to participate anonymously by signing
the informed consent form.

Upon arrival at the laboratory, participants were given
time to read the consent form and receive basic instructions
about the experiment. These instructions included informa-
tion about the game, the recommended posture for greater
comfort, and the recommendation to avoid conversations dur-
ing the experience, except in case of the need to stop due
to discomfort. Participants were instructed to describe their
initial state using a symptom scale (in English): O for no CS
symptoms, 1 for mild symptoms, 2 for moderate symptoms,
and 3 for severe symptoms. After this, they were equipped
with the HMD and the electrodes/sensors.

To minimize the impact on participants, considering the
use of VR devices and body electrodes, an exposure time of
10 minutes was chosen, different from the 5 and 20 minute
intervals proposed by Porcino [2021]. This time was divided
into 5 minutes for baseline data collection and 5 minutes for
the VR game experience. Additionally, 2 to 3 minutes were
allocated for completing the questionnaires at the end of the
session.

Figure 5 presents the experiment flow, organized into
four distinct phases, providing a clear overview of the steps
followed by the participants. Initially, a five-minute collec-
tion of physiological signals was conducted during the resting
phase. Next, participants completed the CSPQ and Pre-VRSQ
questionnaires, providing profile information before the ex-
perience. During the five-minute interaction with the game,
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game data, biosignals, and continuous verbal reports on CS
symptoms were collected. Finally, after the VR experience
ended, participants completed the Post-VRSQ questionnaire.

5 min CSPQ .
. 5 min
Baseline at and VR Game Post-VRSQ
Rest Pre-VRSQ

Figure 5. Experiment Flow.

3.7 Collected Data

As presented in Table 1, the study involved 17 participants
distributed across two games, with 8 in the car racing game
and 9 in the flying game. Among the participants, 8 were
female and 9 were male, with ages ranging from 18 to 50
years.

Table 1. Experiments conducted and characteristics of the collected
data.

Game | Gender Age Exposure | Users
Car Female | 37 to 50 5 (min) 2
Car Female 18 to 36 5 (min) 2
Car Male 18 to 36 5 (min) 4
Flight | Male 18 to 36 5 (min) 5
Flight | Female | 18to 36 5 (min) 4
Total 17

During the experiments, technical issues with Bluetooth
connectivity between the Bitalino board and the computer
running the OpenSignals software resulted in the exclusion
of data from participants 2 and 4, as it was impossible to
synchronize the biosignals, game information, and discom-
fort reports. Additionally, participant 6 was excluded from
the analyses since, despite scoring on the VRSQ, he/she did
not report discomfort during the experiment. In total, 2,309
instances were collected in the car racing game and 2,408 in
the flying game.

3.71 Structure of Data Obtained from the Games

Table 2 presents the organization of the data collected during
the experiments conducted in the car racing and flying games.
The first section of the table describes the attributes related to
game data, while the second section details the user attributes
collected through the CSPQ questionnaire.

3.7.2 Structure of Data Obtained from the BC

The structure of the biosignals collected using the BC tool is
described in Table 3. Each data instance is associated with a
TimeStamp attribute. The LevelCS attribute represents the
CS level verbally reported by the user during the gameplay ac-
tivity. Finally, the ECG, EDA, and ACC attributes correspond
to the data captured by their respective sensors.

List 1 provides an example of the raw biosignal data
recorded during the gameplay activity. Each entry represents
a data instance collected at a specific moment throughout the
experiment.

3.8 Preprocessing
During the data collection process, it is common to encounter
noise and anomalies that may compromise the accuracy of the
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Table 2. Attributes of data collected through games. Types:
Numeric (N) and Categorical (C).

Game Data User Data
Attributes Type Attributes Type
TimeStamp N Gender C
Speed N Age C
Acceleration N VR Experience C
Rotation (x, y, z) N Flicker Sensitivity C
Position (x, y, z) N Pre-symptoms C
Region of Interest N Uses Glasses C
FoV Size N Visual Impairments C
Frame Rate N Posture C
Static Frame C Dominant Eye C
Haptic Feedback C Discomfort Level N
Degree of Control C
DoF Simulation C
Player Locomotion C
Automatic Camera C

Table 3. Structure of the collected biosignals. Attributes: Numeric
(N) and List (L).

Biosignal Values

Timestamp | LevelCS | ECG | EDA | ACC
N N L L L
[

{
"TimeStamp": O,
"LevelCS": O,
"ECG": [0.097, 0.105, 0.108, 0.064, 0.044,
- 0.035, 0.009, -0.009, -0.041, -0.056],
"EDA": [21.09, 21.09, 21.09, 21.09, 21.09,
— 21.09, 21.09, 21.09, 21.09, 21.09],
"ACC": [-0.663, -0.654, -0.654, -0.663,
— -0.654, -0.654, -0.644, -0.663, -0.663,
— -0.654]

},

wooow

{
"TimeStamp": 301.497,
"LevelCS": 2,
"ECG": [-0.085, -0.1, -0.103, -0.1, -0.103,
— -0.088, -0.079, -0.062, -0.05, -0.032],
"EDA": [24.68, 24.68, 24.68, 24.68, 24.71,
— 24.71, 24.71, 24.71, 24.73, 24.73],
"AcC": [-0.615, -0.625, -0.606, -0.615,
- -0.606, -0.625, -0.615, -0.606, -0.606,
— -0.625]

}

]

Listing 1: Example of Raw Data collected in JSON format.

analysis. These interferences can lead to misinterpretations
by researchers, affecting the reliability of the results. In this
context, preprocessing is essential for analysis [Awal et al.,
2014], as it aims to reduce noise and anomalies, enabling a

more precise identification of symptoms associated with CS.

In this study, biosignals were originally collected at a rate
of 100 Hz. However, to ensure compatibility with the game
data used in the experiments [Porcino, 2021] and to meet
the research requirements, the sampling rate was reduced to
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1 Hz. This adaptation allowed the alignment of biosignal
collection frequency with the game’s standard, which records
one sample per second.

Raw physiological signals underwent a preprocessing
stage using algorithms developed in Python specifically for
this purpose. These algorithms were designed to facilitate
the visual inspection of biosignals, and in some cases, such
as ECG, filters including low-pass, high-pass, and median
were applied. Additionally, the captured biosignal data was
integrated with the game data, including user profiles and
information related to in-game interactions.

For ECG data, the reduction in sampling rate from 100
Hz to 1 Hz was achieved by segmenting the data into 10-
second blocks (1,000 values) and extracting 10 RR intervals
per block. When it was not possible to identify all 10 intervals
due to factors such as bradycardia or signal noise, the last
available RR interval was repeated to complete the list. The
extracted RR intervals were then organized into a global list
and linked to the game data, being associated with each second
of collection.

For EDA data, integration with game data involved re-
ducing the sampling rate to 1 Hz. This process was performed
by calculating the average of values collected at 100 Hz and
recording only the mean value per second. This approach
ensured the preservation of relevant biosignal information.

The player’s body movement data, obtained via an ACC,
underwent the same procedure applied to EDA, reducing the
sampling frequency from 100 Hz to 1 Hz. The average accel-
eration values were calculated in 1-second intervals. However,
due to a technical limitation of the sensor used in this study,
which only records movements along the Z-axis, the average
was based on the frontal acceleration values of the partici-
pant’s movements. These data were then integrated into the
dataset used for model training and classification.

4 Approach with Symbolic ML

This study presents an approach that advances beyond the
method proposed by Porcino [2021]; Porcino ef al. [2022]
by incorporating biosignal data for analysis. By utilizing RR
intervals extracted from ECG, EDA, and body movement
recordings obtained from an ACC, it is possible to conduct
a more detailed assessment of the causes of CS and estab-
lish correlations between reported symptoms and individuals’
physiological responses. This methodology significantly en-
hances the ability to identify symptoms, playing a crucial role
in advancing understanding and developing effective strate-
gies to prevent and mitigate CS.

42 Proposed Approach
In the proposed approach, illustrated in Figure 6 (a), train-
ing begins with the collection of qualitative data (CSPQ and
VRSQ), along with quantitative data from the game and biosig-
nals. Next, the data undergoes a preprocessing stage, followed
by a newly incorporated phase in this study that allows for
model selection (with or without the inclusion of biosignals).
The remaining steps of the original reference model were
preserved.

The classification process starts with a set of instances
from a specific user, followed by data preprocessing. Sub-
sequently, model selection occurs, which may or may not
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consider biosignals. After this selection, the data is processed
by the trained model. If the result indicates any level of dis-
comfort, the decision path is examined, generating a ranking
of the main causative or indicative factors of CS.

To enhance data collection, not only were quantitative
questionnaires and game data included, but also the partici-
pants’ physiological signals. During this stage, biosignal and
game data were collected simultaneously and consolidated
into a single file per experiment, ensuring an integrated and
comprehensive analysis. Based on the reference work, we
developed a complete workflow covering biosignal collection
to CS cause identification. We applied two distinct ranking
methods: the Potential-Cause Score (PCS) [Porcino, 2021],
presented in the reference study, and the Potential Discomfort
Indicator (PDI), proposed in this work, expanding the possi-
bilities for analysis, interpretation, and comparison of results
between methods.

4.2 Symbolic Classifiers

Symbolic classifiers are algorithms that use symbols and
logical rules to capture and describe patterns in training
data. These patterns are represented by a language com-
posed of a set of Ny positional “if-then” rules, described
ash = {Ry, Ry, ..., Ry, } [Bernardini, 2006]. Each rule is
derived directly from the training data and can be adjusted or
expanded as the system incorporates new information. These
rules consist of disjunctions of conjunctions of attribute tests
in the form X; op Value, where X; represents an attribute, op
is an operator belonging to the set {=, #, <, <, >, >}, and
Value is a valid value associated with the attribute X;.

Each rule R takes the form if B then H or symbolically
B — H, where H is the head or conclusion of the rule, and B
is the body or condition of the rule. Both H and B are sets of
attribute tests with no common attributes. In a classification
rule, the head of the rule H takes the form class = C;, where
C; € {C4,...,Cng, } [Bernardini, 2006].

In the context of this work, symbolic classifiers based
on Decision Tree (DT) were chosen as a suitable approach for
data classification due to their ability to provide a transparent
and easily interpretable visual representation of the model’s
decision-making process. Once a DT is constructed, it can
be used to classify new examples, allowing for a clear and
intuitive understanding of the classification rules employed
by the model.

Decision Trees are a ML technique that decomposes
complex problems into simpler subproblems. Their structure
is recursively defined by leaf nodes, which correspond to
classes, or by decision nodes, which contain tests on specific
attributes. Each outcome of these tests leads to an edge that
connects to a subtree with the same hierarchical structure
[Monard and Baranauskas, 2003]. During the construction of
a DT, the algorithm seeks the best division of the data at each
node, aiming to maximize the homogeneity of the resulting
groups.

To evaluate the quality of splits at each node, various
metrics are used to measure the degree of impurity or non-
homogeneity of a dataset. Among the most common metrics
are Entropy and the Gini Index, which play fundamental roles
in selecting the most discriminative attributes at each stage
of the tree construction. Entropy, based on the axioms estab-
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lished by Shannon [1948], is a measure that quantifies the
impurity or disorder of a training dataset. At each hierarchical
level of a Decision Tree, the attribute with the highest infor-
mation gain is selected as the tree node. The mathematical
expressions for calculating Entropy and information gain are
presented below:

Entropy(S) = — Zpi log, (p:) D
i=1

In Equation 1, .S represents the dataset or a subset of the
data; c is the number of classes in the dataset; and p; is the
probability of class ¢ in the dataset.

Z |S;J| - Entropy(S,)
v€EValues(A) | |
@

The calculation of Gain(.S, A), presented in Equation 2,
evaluates the information gain when splitting the data based
on attribute A. In this context, A represents an attribute or
feature, while Values(A) denotes the possible values that A
can assume. The subset .S, corresponds to the data in .S
where the attribute A has the value v. Meanwhile, |S,,| and
|S| represent the number of instances in the subsets S,, and
S, respectively.

The Gini Index, adopted in this work, measures the prob-
ability that two randomly selected elements from the same
subset have different class labels. According to Rokach and
Maimon [2005], the Gini Index is an impurity-based criterion
that evaluates the divergences between the probability distri-
butions of the target attribute values. This metric has been
widely used in various studies [Daniya et al., 2020; Rokach
and Maimon, 2005] and is defined as:

Gain(S, A) = Entropy(S) —

c

Gini(D) =1 (p;)? 3)

i=1

In Equation 3, D represents the dataset, and C' denotes
the number of classes present in this dataset. The probability
of an item belonging to a specific class or category is indicated
by p;. For each class, the square of the probability (p?) is
calculated, and all these squared terms are summed. This
value is then subtracted from one (1) to obtain the Gini index.

The Gini index ranges between 0 and 1. A Gini value of
0 indicates a perfectly homogeneous distribution, where all
items belong to the same class. Conversely, a Gini value of
1 reflects a completely impure or heterogeneous distribution.
This metric is useful for quantifying the impurity or disorder
of a dataset based on the distribution of its classes.

4.3 Classifier Evaluation

In ML, an important step is to validate the data and ensure that
the trained model can make accurate and useful predictions
in new scenarios. Among the available tools for this purpose,
Weka (Waikato Environment for Knowledge Analysis) stands
out as a powerful data mining platform. Developed in Java
by the University of Waikato in New Zealand, Weka was de-
signed to provide researchers with easy access to advanced
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Figure 6. Proposed Approach.

ML techniques. The tool offers a comprehensive and prac-
tical solution with complete features for data preprocessing,
visualization, and evaluation.

Based on the collected and preprocessed data, we used
the Weka tool to apply various ML algorithms for CS classifi-
cation. Three datasets (Datasets A, B, and C) were organized,
containing game information, user profile data, and biosignals,
as presented in Tables 2 and 3.

* Dataset A: 2309 samples (Car Racing Game).

* Dataset B: 2408 samples (Flying Game).

* Dataset C: Total of 4717 samples (Combination of
Datasets A and B).

The datasets used in this study include discomfort levels
assigned by users, classified on a scale from 0 to 3. Although
the multiclass format primarily aims to provide a biosignal
database that can be leveraged in future research, in this study,
we opted for binary classification, which was sufficient for
the analyses conducted. In this format, the output classes
were reorganized into two categories: 0 = None and 1 =
Discomfort, with the latter encompassing Mild, Moderate,
and Severe levels.

In this study, we used Weka to evaluate key decision tree
(DT)-based algorithms, such as CSForest, DecisionStump,
ForestPA, HoeffdingTree, J48, LMT, ExtraTree, RandomFor-
est, RandomTree, and REPTree. To validate the classification
models, we applied the k-fold cross-validation technique, con-
figured with 10 splits (Folds=10), for all the symbolic clas-
sifiers evaluated. K-fold cross-validation (KCV) is a widely
adopted approach by professionals and is essential for both

model selection and classifier error estimation. This tech-
nique divides the dataset into k subsets and, iteratively, uses
a portion for model training while the remaining subsets are
used to evaluate its performance [Anguita et al., 2012].

For this analysis, we performed a binary classification
by defining two categories: 0 = None and 1 = Discomfort.
The RF algorithm stood out in all evaluated configurations,
both with and without the inclusion of biosignal attributes,
demonstrating superior performance. The detailed results
of the binary classification with biosignals are presented in
Table 4. Specifically, the RF algorithm achieved accuracy
rates of 99.78%, 99.50%, and 99.62% in datasets A, B, and C,
respectively. As a result, it was selected as the best classifier.

4.4 Attribute Evaluation

Our main objective is to deepen the understanding of the
causes related to discomfort in virtual environments, focus-
ing on predicting the occurrence of CS. To achieve this, it is
essential to evaluate the attributes that influence the decision-
making process of classification models. After identifying
the best classifier, we used the scikit-learn library to create
a ranking of the most relevant attributes. The chosen eval-
uation technique was leave-one-out cross-validation, which
involves training the model multiple times while removing
one attribute at a time from the training set and evaluating the
model’s performance on the test set. This approach is widely
used in ML model evaluation, especially for small datasets
[Tan er al., 2018]. Moreover, various studies in the litera-
ture have already applied this technique to assess RF models
[Pashaei and Pashaei, 2019; Yao et al., 2019; Valkonen et al.,
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Table 4. Binary Classification with Biosignals (Weka).
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Classifier ACC(A) | KPP (A) | ACC(B) | KPP (B) | ACC(C) | KPP (C)
CSForest 99.35% 0.9837 97.80% 0.9533 98.62% 0.9687
DecisionStump 84.54% 0.5982 63.08% 0.0000 69.73% 0.1731
ForestPA 99.61% 0.9901 98.80% 0.9741 99.32% 0.9844
HoeffdingTree 72.76% 0.0000 87.04% 0.7303 78.67% 0.5273
J48 99.70% 0.9923 98.75% 0.9733 99.22% 0.9820
LMT 99.57% 0.9891 98.59% 0.9696 99.13% 0.9801
ExtraTree 98.31% 0.9572 97.76% 0.9519 98.56% 0.9669
RandomForest | 99.78% 0.9945 99.50% 0.9893 99.62% 0.9912
RandomTree 98.48% 0.9616 97.34% 0.9427 97.77% 0.9490
REPTree 99.65% 0.9913 98.05% 0.9582 99.17% 0.9810
2017]. Table 5. Set of Selected Attributes.
The construction of the ranking of the best attributes for Game Data User Data Biosignal Data
the classification model followed a well-defined approach. Ini- TimeStamp Gender ACC
tially, the algorithm was executed on all three datasets (A, B, Rotation X Flicker EDA
and C), incorporating the biosignal attributes. Subsequently, Rotation Y Visual Deficiencies ECG
these attributes were removed from each dataset, and the clas- ROtéﬁon Z
sification process was repeated to evaluate the impact of their Region of Interest
exclusion. We opted to use ten attributes in the model with- IS:;I:C‘: Rate

out biosignals and thirteen in the complete model, including
ACC, EDA, and ECG. This methodology allowed for a clear
analysis of the importance of physiological data in improving
the model’s performance.

In the analysis of attributes without biosignals, the TimeS-
tamp (Exposure Time) attribute stood out as the most relevant
for Datasets A and C, as highlighted in previous studies [Por-
cino, 2021; Porcino et al., 2022]. Other attributes widely
supported by the literature also demonstrated high relevance,
such as Flicker [LaViola Jr, 2000], Rotation [Fomenko and
Kaewpankan, 2022], and Gender [Reason and Brand, 1975].
These results emphasize the importance of specific contex-
tual and user-related characteristics in the decision-making
process.

During the attribute selection process, we alternated be-
tween the top eight attributes identified in Datasets A and
B. The frame rate (FPS), an attribute highlighted by Porcino
[2021]; Porcino et al. [2022], was considered relevant both
in the games used in their study and in our research, and was
therefore incorporated into the model. Additionally, although
it did not rank among the top eight attributes, the Speed at-
tribute was also included due to its proven importance in
triggering CS, as reported in previous studies [Oh and Son,
2022; Porcino, 2021; Porcino et al., 2022].

Finally, the selected attributes for composing the mod-
els with and without biosignals were organized based on a
detailed analysis of the classifier’s performance in different
scenarios. These attributes, essential for CS prediction, are
listed in Table 5, highlighting the relevance of characteris-
tics such as ACC, EDA, ECG, along with other environment-
and user-related features. This robust selection reinforces
the importance of combining contextual and physiological
information to achieve more accurate predictive models.

4.5 Statistical Procedure

The statistical analysis focused exclusively on numeri-
cal variables, since nominal categorical variables such as
Flicker, Region Of Interest, and Gender are not ap-

propriate for the comparative tests employed. The variable
DiscomfortLevel was used only as a grouping factor be-
tween the classes (with and without CS symptoms), and not
as a direct variable of analysis.

Initially, the Shapiro—Wilk test [SHAPIRO, 1965] was
applied to assess the normality of the numerical variables. As
the normality assumption was violated for most variables, a
non-parametric approach was adopted. The Kruskal-Wallis
test [Kruskal and Wallis, 1952] was used to compare the
classes, as it is appropriate for analyzing data that do not follow
a normal distribution. In cases of statistical significance (p <
0.05), Dunn’s post hoc test [Dunn, 1964] with Bonferroni
correction was performed to identify significant differences
between the groups.

The analyses were conducted individually for each par-
ticipant, considering nine numerical variables: TimeStamp,
RotationX, RotationY, RotationZ, Frame Rate, Speed,
ACC, EDA, and ECG. Each of these variables was analyzed sep-
arately in relation to the CS groups. The results presented in
the following subsections were consolidated from these indi-
vidual analyses, providing evidence regarding the consistency
and predictive potential of the collected data.

4.5 Statistical Analysis

The statistical analysis of both datasets revealed relevant pat-
terns in distinguishing users with and without CS symptoms.
The TimeStamp variable was consistent across all partici-
pants in both games (p < 0.05), confirming its robustness
as a temporal marker associated with discomfort. The ACC
variable also showed high relevance, being significant in all
cases in the car game and in several participants in the flight
game, reinforcing its potential as a physiological indicator.
Variables such as ECG, EDA, RotationX, RotationY, and
Speed demonstrated utility in specific contexts, suggesting
a complementary contribution to multivariate models. Con-
versely, Frame Rate and RotationZ, although significant
only in occasional situations, may add predictive value when
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combined with more robust variables. These results highlight
the importance of multivariate approaches in developing ML
models for CS detection.

4.6 Model Evaluation
We adopted leave-one-out cross-validation to evaluate the
models. In this method, the algorithm is trained with all
participants except one, using the excluded participant to test
the model. This procedure is repeated iteratively, alternating
the removed participant until all have been used for testing.
Additionally, we conducted an analysis to identify the
optimal tree depth in the model built with the RF algorithm.
Our goal was to maximize AUC scores while minimizing tree
depth, seeking a balance between performance and efficiency
in model configuration.

4.6.1 Maximum Tree Depth

The RF algorithm stood out as the best-performing one in the
analyses conducted, as previously evidenced. Unlike a simple
decision tree, RF combines multiple trees, each trained on
random subsets of the training data, providing greater robust-
ness and generalization capability. However, this approach
also has a high computational cost due to the need to build
and integrate multiple trees.

To optimize the training process in the experiments, we
explored different depth configurations in the datasets of the
car racing and flying games. Both datasets were split into 70%
for training and 30% for testing. The results of the AUC scores
as a function of the tested depths are presented in Figure 7.
We identified that the optimal depth varied between games:
in the Flying Game, the best performance was obtained with a
depth of 5, while in the Car Racing Game, a depth of 7 proved
to be more efficient.

Depth X AUC Score
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Figure 7. Tree Depth vs. AUC Score (with biosignals).

4.6.2 Model Parameter Configuration
As previously demonstrated, the RF algorithm outperformed
the DT algorithm in terms of robustness and generalization
capability. However, training RF requires higher computa-
tional capacity. During the experiments conducted with the
car racing and flying games, we used a 70% training set and
a 30% test set. The analysis of AUC scores revealed that the
optimal depth was 5 for the Flying Game and 7 for the Car
Racing Game.

The RF model parameters were configured based on
technical criteria and evidence from the literature:

* n_estimators = 100: number of trees in the forest, widely
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used in previous studies [Wang et al., 2025; De Miras
et al., 2023] for balancing predictive performance and
processing time. Higher values may increase robustness,
but marginal gains often do not offset the additional
computational cost.

e criterion = ’gini’: Gini index as the impurity criterion,
chosen for its computational efficiency and good perfor-
mance in similar tasks, aligned with the approach of this
study.

* max_depth = 5 or 7: limits the maximum depth, re-
ducing the risk of overfitting. A value of 5 was more
suitable for the Flying Game, while 7 achieved better
performance in the Car Racing Game, adapting to the
specific characteristics of each task.

¢ random_state = 42: sets the seed for the random num-
ber generator to ensure reproducibility, with 42 being
a conventional choice without direct impact on perfor-
mance.

Parameters not specified followed the default values of
the scikit-learn library.

4.6.3 AUC Scores

AUC is widely recognized as an important evaluation criterion
in ML studies [Kotlowski ef al., 2011; Nguyen et al., 2023],
particularly in binary classification problems. In our research,
we analyzed the AUC results obtained by the two decision
tree-based algorithms used (DT and RF). Evaluations were
conducted on datasets from the car racing and flight simu-
lation games, considering both scenarios without biosignal
inclusion and those incorporating different combinations of
physiological signals (ACC, EDA, and ECG).

Our focus was to identify the highest AUC scores across
all tested combinations. As presented in Table 6, among the
five combined scenarios analyzed (Games vs. Algorithms),
four demonstrated superior performance when biosignals
were included, highlighting the relevance of these data for
model improvement.

Table 6. Best AUC Scores.

Attributes Total Game Algorithm AUC
Game, Profile, ACC, EDA, ECG 13 Flight RF 0.95
Game and Profile 10 Flight DT 0.85
Game, Profile, EDA, and ECG 12 Car RF 0.71
Game, Profile, ACC, and EDA 12 Car DT 0.66
Only ACC, EDA, and ECG 3 Flight DT 0.66

Table 7 highlights that our model achieved solid perfor-
mance compared to other studies that also used biosignals
for CS prediction. In our approach, the combination of game
data, user profile, and biosignals, totaling 13 attributes, re-
sulted in an AUC of 0.95. This performance is comparable
to the reference study [Porcino, 2021; Porcino et al., 2022],
which achieved the same AUC value using a smaller number
of attributes, only 8 to predict CS.

4.7 Cause Identification

The choice of DT-based algorithms is important due to their
ability to provide a clear and transparent interpretation of the
decision-making process. Decision Trees are widely used in
supervised learning, especially for classification tasks [Zhao
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Table 7. Comparison of the best model analyzed in our work with
previous approaches.

Reference Task Attributes Model AUC
ECG, EDA, EGG,
Respiration,
[Keshavarz et al., VIMS  Body Temperature, RF 0.75
2022] Skin Temperature,
and Body Movements
[Recenti et al., MS EEG, EMG, HR, RF 0.80

2021] MSQ Questionnaire

[Porcino, 2021; Por-  CS Game Data and RF 0.95

cino et al., 2022] User Profile
Game Data,
Our Study CS User Profile, RF 0.95

ACC, EDA, and ECG

and Zhang, 2008]. Their structure is inspired by a common
tree, consisting of a root, nodes (splitting points), branches,
and leaves.

In a DT, nodes are represented by circles, while branches
correspond to the connections between these nodes [Ali ez al.,
2012]. Each internal node reflects a decision based on a spe-
cific attribute, and leaf nodes represent the final outcomes or
classes. During the process, the decision flow moves from
one node to another based on the evaluated attribute values,
repeating until it reaches a leaf node, where the final classifi-
cation is determined based on the attributes analyzed along
the path.

4.8 Ranking of Discomfort Causes

The ranking of the most relevant attributes was created based
on the Gini value, calculated from the decision path followed
by each instance for a specific user. This value plays a fun-
damental role in determining the importance of an attribute,
as it directly influences node splits during the construction
of the decision tree. The implementation was carried out
in Python using the scikit-learn library. Below, we describe
the steps of the process that led to the final list of the most
influential attributes, ordered in descending order according
to their contribution to user discomfort.

Initially, for each experimental instance of a specific user,
we checked whether the discomfort prediction made by the
RF model was positive, meaning that the discomfort level was
equal to 1 (DiscomfortLevel = 1). Since the RF algorithm
consists of an ensemble of decision trees, we also iterated over
each individual tree (estimator) that composes the model. If
the individual tree’s prediction matched the final decision of
the RF model, the Gini values associated with each attribute
were summed [Porcino, 2021]. This process can be better
understood through the example illustrated in Figure 8.

With the accumulated Gini values for all user instances
(grouped by attribute), we calculated the percentage influence
of each attribute relative to the total identified. This overall
process is represented by Equation 4, which summarizes how
the attributes are ranked based on their relevance in the model.

“4)

- Gini(Path},
PDI, =/ (M> % 100

TotalGini

>_; Gini(Path’): For each attribute (j) and instance (i)
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associated with user w, the total sum of Gini values is calcu-
lated and grouped.

TotalGini: Total sum of Gini values for all attributes
and all instances.

J: Indicates that the output will be sorted in descending
order, starting with the attributes with the highest Ginz values.

Let us take as an example two instances represented in
Figure 8, which show only the relevant nodes for the decision
path of a specific user. The numerator value in Equation 4 for
these instances is given by:

>.; Gini(Path};) = (Instancel(Gender[0.432] +
TimeStamp|0.415] + EDA[0.671] + Agel0.363] +
ECGI[0.328]) +  Instance2(TimeStamp|0.822] +
Gender|0.482] + Fxperience|0.440] + Age[0.381] +
Speed[0.284]))

node #0
Gender ...
gini = 0.432

node #60
TimeStamp ...
qini = 0.415

node #70 +
Gender ...
gini = 0.482

node #80 node #90
EDA ... Expc:anance...
gini = 0.389 gini = 0.440

node #92
TimeStamp...
gini = 0.327

node #39
Speed...
gini = 0.284

Instance 1 Instance 2

Figure 8. (Example) Gini values for the decision path, for the in-
stances: (1) [0, 60, 80, 81, 82, 95, 96] e (2) [0, 70, 90, 91, 92, 99,
100].

For instance 1, it is observed that the EDA attribute
appears twice along the decision path, being grouped and
totaling a value of 0.671. Having the highest Gini value
indicates that EDA contributed significantly to the overall
impurity reduction in the dataset, making it the most important
attribute for this decision.

In instance 2, the TimeStamp attribute also appears twice,
with its values summed, resulting in a total of 0.822. This
result highlights TimeStamp as the most relevant attribute for
this instance. The consolidation of grouped values for both
instances is presented in Table 8.

After calculating the proportion of each attribute relative
to the total sum of all attributes and instances (denominator
of Equation 4) and organizing them in descending order, we
arrive at the final result: the ranking of the most important
attributes, presented in Table 9.
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Table 8. Sum of Gini values, grouped by attribute (Example from
Figure 8).

Attribute Gini Value (Total)
Gender 0914
TimeStamp 1.237
EDA 0.671
Age 0.744
ECG 0.328
Experience 0.440
Speed 0.284

Table 9. Final result of Equation 4, ranking of the most relevant
attributes in order of importance (Example from Figure 8).

Attribute Gini Value (Total) | Percentage
TimeStamp 1.237 26.79%
Gender 0.914 19.79%
Age 0.744 16.11%
EDA 0.671 14.53%
Experience 0.440 9.53%
ECG 0.328 7.10%
Speed 0.284 6.15%
5 Results

In this section, we present a detailed analysis of the results
obtained in each evaluated scenario, addressing key aspects of
the research. Initially, we explore the VRSQ scores to assess
the levels of discomfort reported by participants, considering
differences between genders and specific symptom categories,
such as Oculomotor and Disorientation. Next, we examine
user reports and biosignals collected during the experiments in
the Car Racing and Flying games, aiming to identify patterns
associated with CS. Finally, we discuss the most relevant
factors for the occurrence of CS, with and without the use
of biosignals, establishing rankings based on the analyzed
attributes.

5.1 VRSQ Scores

The data presented in Table 10 indicate that male users re-
ported greater discomfort compared to female users in the
Car Racing Game. On the other hand, female participants
obtained higher overall VRSQ scores during the Flying Game,
suggesting a higher incidence of CS symptoms.

Table 10. VRSQ Analysis.

Gender Oculomotor Disorientation VRSQ Score
Car Flight | Car Flight | Car  Flight

F 2778 4722 | 3556 46.67 | 31.67 4694

M 41.67 16.67 | 33.33 13.34 | 37.50 15.00

5.2 User Discomfort Levels

We analyzed the levels of discomfort reported by participants
during immersion in the virtual environment, emphasizing
gender differences and the overall distribution of CS symp-
toms.

5.21 Self-Reports for the Car Racing Game

As presented in Table 11, male participants reported a higher
incidence of CS symptoms compared to female participants.
These results align with the analysis of mean VRSQ scores
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by gender from the previous section. Our findings also cor-
roborate those of Porcino [2021], whose study also indicated
that male participants reported greater discomfort than female
participants during the racing game. Our results contradict
the literature, which suggests that women are more suscepti-
ble to experiencing CS symptoms compared to men, as they
do not possess the same spatial perception [Kolasinski, 1995;
LaViola Jr, 2000; Mourant and Thattacherry, 2000].

Table 11. Total and percentage of CS levels reported by gender (Car
Racing Game).

Gender | CS Level | Total Reported %o
Female | Mild 171 | 54.98
Moderate 76 | 24.44
Severe 64 | 20.58

Total 311
Male Mild 218 | 62.46
Moderate 102 | 29.23
Severe 29 8.31

Total 349

With a significance level of 0.05, the Fisher’s test applied
to the total reports (Table 11) yielded a p-value < 0.0001,
leading to the rejection of the null hypothesis. Thus, we
conclude that, in this scenario, there is a significant association
between gender and discomfort level.

We analyzed the overall distribution of user self-reports
during the Car Racing Game, including the periods in which
they reported no symptoms. For 53.2% of the experience time,
users did not report discomfort. On the other hand, 27.6% of
the time was associated with mild symptoms, while 12.6%
and 6.6% corresponded to moderate and severe, respec-
tively.

5.2.2 Self-Reports for the Flying Game

We also analyzed the experiments related to the Flying Game.
According to Table 12, most participants of both genders
reported mild CS symptoms, with no male participants report-
ing symptoms at the most severe level. However, the analysis
was hindered by an insufficient and imbalanced number of par-
ticipants with valid data per gender, making it impossible to
reach a conclusive assessment regarding which gender exhib-
ited a higher incidence of CS. For this reason, a more detailed
analysis was conducted only for the Car Racing Game.

Table 12. CS levels reported by gender (Flying Game).

Gender | CS Level | Total Reported %o
Female | Mild 296 | 65.78
Moderate 97 | 21.56
Severe 57 | 12.67
Male Mild 596 | 89.22
Moderate 72 | 10.78
Severe 0 0.00

We also applied Fisher’s exact test to the totals presented
in Table 12, considering a significance level of 0.05. The test
resulted in a p-value < 0.0001, providing strong evidence to
reject the null hypothesis. Thus, consistent with the findings
from the Car Game, the results for the Flight Game indicate
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that gender has a significant influence on the level of discom-
fort reported by participants.

Finally, we examined the overall proportion of user self-
reports for this game, including the periods in which they
reported no symptoms. Most users experienced some de-
gree of CS during the experiment. The Mild level was the
most common, accounting for 59.1% of cases, followed by
Moderate and Severe levels, with 11.2% and 3.8%, respec-
tively. Only 25.9% of the gameplay time was associated with
the absence of discomfort.

5.3 Physiological Changes (Rest vs. CS)

Our objective now is to analyze the physiological changes of
users during game immersion, comparing them with baseline
data. It is important to highlight that the analyses were con-
ducted by comparing resting data with those recorded during
the game, particularly in cases where users reported some
level of discomfort. For this purpose, the means and standard
deviations were calculated, and the Wilcoxon signed-rank test
was applied to paired samples. This test, widely recognized
in the scientific literature, is an essential statistical tool for as-
sessing whether there is a significant difference between two
sets of related measurements, without assuming data normal-
ity, and is among the most widely used techniques in scientific
research [Wilcoxon, 1945].

5.3.1 Physiological Changes in the Car Racing Game

In the case of the Car Racing Game, as indicated in Table 13
and Figure 9, the results showed an average increase in players’
body movements (Z-axis) during the game, especially in the
presence of CS symptoms, compared to baseline data. This
increase can be attributed to the “Postural Instability Theory’
[LaViola Jr, 2000], along with the movements made by users
to keep the car on track during the game. Additionally, a
significant average increase in EDA was observed during the
game, corroborating the study by Islam et al. [2020], which
identifies EDA as one of the main indicators of CS.

Regarding the ECG, specifically RR intervals, there was
an average reduction compared to resting data. These inter-
vals represent the time between two consecutive R waves,
corresponding to the interval between two heartbeats. Con-
sequently, during CS symptoms, players exhibited a higher
heart rate, confirming the findings of the study by Tian and
Boulic [2024].

The Wilcoxon tests conducted for the Car Game (Ta-
ble 13) revealed statistically significant differences between
the measurements of the two analyzed conditions (baseline
and with CS symptoms). This significance is confirmed by the
extremely low p-values (< 0.001). Furthermore, considering
the 95% confidence interval (CI), none of the intervals for the
analyzed biosignals include the value zero, which allows for
the rejection of the null hypothesis of no difference between
the paired measurements. Thus, the analysis provides consis-
tent evidence of a relationship between the presence of CS
symptoms and the observed changes in physiological signals.

’

5.3.2 Physiological Changes in the Flight Game

The results from the Flying Game, presented in Table 14
and Figure 10, indicate significant changes in all analyzed
biosignals. However, the body movement data captured by the
ACC show a distinct pattern compared to the same biosignal
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recorded in the Car Racing Game. In the Flying Game, partic-
ipants’ body movements, especially during the baseline phase,
were considerably more restrained, possibly reflecting a more
disciplined behavior. This pattern may also be attributed to the
calmer and less intense nature of the Flying Game, in contrast
to the dynamic and fast-paced nature of the Car Racing Game.
Additionally, the considerably high standard deviations, both
in the baseline phase and during the experiment, are related
to possible abrupt movements made by participants and were
therefore not treated as outliers, remaining included in the
analysis.

Regarding the EDA biosignal, an average increase was
also identified during the game activity compared to baseline
data, following the same explanatory rationale observed in the
Car Racing Game. Similarly, the ECG, particularly the RR
intervals, showed an average reduction compared to resting
data, indicating an increase in heart rate during the game, with
a justification similar to that applied in the previous game.

The analysis of the Flight Game data (Table 14), using
the Wilcoxon test, indicated statistically significant differences
between the baseline condition and the condition with CS
symptoms. This evidence is supported by the obtained p-
values, all of which were very low, some below 0.001. It was
also observed that, within the 95% CI, none of the estimated
intervals for the analyzed biosignals included the value zero,
which supports the rejection of the null hypothesis. Taken
together, these results strengthen the association between the
occurrence of CS symptoms and the recorded physiological
changes, highlighting the relevance of these parameters for
understanding and detecting the phenomenon.

5.4 Rankings

CS is influenced by individual factors such as gender, age, and
health, as well as software-related elements such as flicker,
lag, acceleration, and rotation, making the identification of
its causes a complex task. Although previous studies [Garcia-
Agundez et al., 2019; Krokos and Varshney, 2022; Qu et al.,
2022; Islam et al., 2020] have explored biosignals, they did not
use them to classify the most relevant factors of CS. Porcino
[2021] investigated eight factors associated with CS symp-
toms; however, physiological signals were not considered.
Below, we present the results of each scenario analyzed in
our study.

5.4 Results of Causes Without Biosignals

The averages of the main analyzed factors are presented in
Table 15, in the PDI columns, and in Figure 11, organized
by order of importance. In both games used in the experi-
ments, Exposure Time (TimeStamp) was identified as the most
relevant cause of discomfort, corroborating the findings of
Porcino [2021], as highlighted in the PCSRef columns of Ta-
ble 15. Other factors, such as Speed, Z Rotation, Frame Rate,
and Gender, were also significant in both studies, although
differences exist in the order of relevance and the percentage
values assigned to each attribute. According to Fomenko and
Kaewpankan [2022], rotations in VR environments can in-
crease the likelihood of sensory conflicts, a finding consistent
with other studies in the literature [Fomenko and Kaewpankan,
2022; Bonato et al., 2009], reinforcing the importance of these
factors in the manifestation of CS symptoms.
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Figure 9. Comparison of Means and Standard Deviations for ACC, EDA, and ECG Biosignals in the Car Racing Game.

Table 13. Means, standard deviations, and Wilcoxon test results for the biosignals (ACC, EDA, and ECG) recorded during the Car Game,
comparing baseline conditions and the occurrence of CS symptoms.

-0.25

.. Means and Standard Deviations . . . .
Biosignal Baseline With CS V Statistic | p-value 95% CI Median Diff.
ACC 0.593 (0.097) 0.650 (0.075) 24.936 < 0.001 | 0.0600 to 0.0750 0.0700
EDA 13.731 (7.876) | 16.789 (5.926) 22.190 < 0.001 | 3.2250 to0 4.9100 4.6500
ECG (RR Interval) | 0.751 (0.120) 0.689 (0.210) 10.041 < 0.001 | -0.0749 to -0.0300 -0.0500
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Figure 10. Comparison of Means and Standard Deviations for ACC, EDA, and ECG Biosignals in the Flying Game.

Table 14. Means, standard deviations, and Wilcoxon test results for the biosignals (ACC, EDA, and ECG) recorded during the Flight Game,

comparing baseline conditions and the occurrence of CS symptoms.

Biosignal Me]‘;‘::e‘i‘i‘:; Sta“dar‘u,?fl: ‘étsmns V Statistic | p-value 95% CI Median Diff.
ACC 0.103 (0.591) | 0.126 (0.589) 52.112 0.031 | 0.0049 to 0.0399 0.0300
EDA 13.433 (6.351) | 14.819 (3.458) | 95.886 | <0.001 | 1.3500 to 2.5950 2.0650
ECG (RR Interval) | 0.761 (0.118) | 0.697 (0.205) 42942 | <0.001 | -0.0600 to -0.0350 | -0.0449

5.4.2 Results of Causes With Biosignals

According to our experiments, the averages of the main factors
contributing to the identification of CS are presented in Table
16, in the PDI columns, with biosignal-related attributes high-
lighted in bold, and in Figure 12. In the Car Racing Game,
player movements (in the Z-axis), captured by an ACC, had
the greatest impact on identifying CS. This finding can be
explained by the “Postural Instability Theory”, described by
LaViola LaViola Jr [2000]. Exposure Time (TimeStamp)
was identified as the second most relevant attribute in trigger-
ing symptoms, corroborating the findings of Porcino [2021];

Porcino et al. [2022].

EDA ranked third, aligning with the works of Islam et al.
[2020] and Jung et al. [2021], which also demonstrated a
strong correlation with CS. Additionally, RR intervals (ex-
tracted from ECG) were also found to be significant factors for
CS symptoms. The results obtained using ECG in our study
are consistent with other studies described in the literature
Islam et al. [2020]; Garcia-Agundez et al. [2019]; Qu et al.
[2022].

In the Flying Game, Exposure Time (TimeStamp) once
again stood out as the most relevant factor, followed by EDA.
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Table 15. Ranking of the average percentages of the main characteristics causing CS (excluding biosignals), compared to the reference study
Porcino [2021]. PDI - method used in our study, PCS - method proposed by Porcino [2021]. Where no value is provided, no comparison was

made.
Car Game Flight Game

Attribute PDI| | PCS | PCSRef | Attribute PDI| | PCS | PCSRef
TimeStamp 25.65 | 28.59 27.32 TimeStamp 30.04 | 32.49 22.99
Speed 13.73 | 13.49 12.73 Rotation Y 13.55 | 13.82 -
Flicker 12.33 | 12.00 - Rotation Z 12.72 | 14.93 18.64
Visual Deficiencies 11.11 | 12.49 - Speed 11.32 | 10.97 12.38
Region of Interest 10.58 | 11.16 - Rotation X 10.19 | 10.34 -
Rotation X 6.31 5.49 - Frame Rate 8.15 2.80 5.43
Rotation Z 5.65 4.55 13.84 Visual Deficiencies 7.86 7.66 -
Rotation Y 5.54 4.86 - Flicker 3.12 4.04 -
Gender 5.14 5.30 12.52 Gender 2.20 2.15 6.18
Frame Rate 3.98 2.07 11.92 Region of Interest 0.86 0.80 -
VR Experience - - 8.26 VR Experience - - 4.76
Age - - 7.77 Age - - 5.33
Acceleration - - 5.64 Acceleration - - 11.76

PCSRef - results obtained from Porcino [2021] for comparison purposes.

T
0 5 10

(a) Car Racing Game

excluding biosignals.

30.04%

(b) Flying Game
Figure 11. Rankings of the average percentages of the main factors used to identify CS, using the PDI method, in the Car Racing (a) and Flying (b) games,

Table 16. Ranking of the average values of the main CS-indicative factors, including biosignals.

Car Game Flight Game
Attribute PDI | PCS | Attribute PDI | PCS
ACC 21.28 22.53 | TimeStamp 23.42 24.83
TimeStamp 20.37 21.46 | EDA 19.28 16.48
EDA 14.03 12.41 | Rotation Y 11.39 11.02
Speed 7.60 7.58 ACC 11.06 11.34
Visual Deficiencies 6.79 7.64 Rotation Z 8.59 9.48
ECG 5.36 4.74 Speed 6.94 6.78
Flicker 5.05 5.22 Rotation X 6.54 5.86
Region of Interest 5.04 5.07 ECG 3.93 5.06
Rotation Z 3.76 3.14 Visual Deficiencies 3.89 3.77
Gender 3.52 3.86 Frame Rate 1.78 1.75
Rotation X 3.22 2.87 Flicker 1.52 2.17
Rotation Y 2.69 2.34 Gender 1.50 1.27
Frame Rate 1.28 1.15 Region of Interest 0.16 0.19

Y Rotation ranked third, while player movements captured by

the ACC appeared in fourth place. Additionally, RR intervals
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Figure 12. Rankings of the average percentages of the main factors used to identify CS, using the PDI method, in the Car Racing (a) and Flying (b) games,

including biosignals.

were also identified as a significant factor in predicting CS.
The underlying principles explaining and relating these at-
tributes are the same as those supporting the results obtained
in the experiment with the Car Racing Game.

5.4.3 Comparison Between PDI and PCS Results

We also conducted the identification of the main characteris-
tics that trigger CS using a combination of the Random Forest
algorithm with the method proposed by Porcino [2021]. The
results presented in Tables 15 and 16, in the PCS and PDI
columns, were evaluated using the Wilcoxon test for both
the Car Racing and Flying Game. The obtained p-values (p-
value > 0.05) indicated no statistically significant differences
between the approaches, suggesting that the results derived
from the Gini measures and the method by Porcino [2021]
are highly consistent.

Since we aimed to demonstrate that there is no signifi-
cant difference between the two methods, the null hypothesis
became the focus of our interest. It highlights that the results
derived from the previously calculated Gini values (using the
scikit-learn library) are similar to those obtained through the
method proposed by Porcino [2021].

6 Limitations

This study presents some limitations, such as a limited number
of participants and the exclusion of data due to Bluetooth con-
nectivity issues between the BITalino board and the computer
running the OpenSignals software. Additionally, difficulties
in electrode placement impacted data collection. Moreover,
the sensor used to capture player movements during the expe-
rience was limited to measuring acceleration along the Z-axis
(forward and backward movements), excluding the analysis
of movements in other directions (X and Y).

Furthermore, the need to generate a unified dataset from
two distinct sources (game and biosignals) introduced chal-
lenges in ensuring consistent data synchronization. In some
cases, there was a delay in the start of biosignal capture rela-
tive to the player’s experience. To mitigate this issue, instances
of the game that were not aligned with the biosignals due to

time discrepancies between the two datasets were discarded.

Finally, the study still has limitations that include the
need to deepen the investigation with other demographic
groups (particularly across different age ranges) and to in-
crease the number of participants. It is also essential to ex-
plore the potential relationship between individuals who ex-
perience Motion Sickness, triggered by real movements, and
CS, induced by exposure to VR environments.

7 Conclusion and Future Work

The study of CS has garnered increasing interest, particu-
larly regarding methods for identifying and assessing its in-
tensity in VR environments. Despite this, there is a clear
gap in studies that integrate biosignals, user profile data, and
game characteristics to identify the factors contributing to
CS. Moreover, the use of SML to interpret model decisions
remains underexplored. In this context, the present study in-
vestigated how biosignals can be utilized to identify potential
causes associated with CS in VR games. The results from the
VRSQ questionnaire indicated that, in the car racing game,
men reported greater discomfort than women, whereas, in
the Flying Game, women exhibited higher discomfort scores.
The Wilcoxon test confirmed significant differences between
biosignal data in the resting state and during CS symptoms.

The use of the Random Forest algorithm enabled the in-
terpretation of model decisions and the creation of a ranking
of the main factors associated with CS. By combining game
data, user profiles, and biosignals, the model achieved the best
performance, emphasizing the importance of physiological
signals in predicting CS. In the car racing game, the most
relevant factors were movements detected by the ACC, expo-
sure time, EDA, and RR intervals from the ECG, while in the
Flying Game, the key attributes were exposure time, EDA,
and Y-axis rotation. These results highlight the relevance of
integrating different data sources to identify critical factors
related to CS.

Finally, we intend to explore the relationship between
Motion Sickness (MS), caused by real-world movement, and
CS, induced by VR environments. Additionally, we plan to



Prediction and Analysis of Cybersickness in VR Games Using Symbolic Machine Learning

investigate how sensors integrated into modern HMD devices,
which allow eye and head tracking, can be used to mitigate
CS symptoms through dynamic feedback. Identifying the
main causative or indicative factors of CS is essential for VR
technology developers to implement more effective mitigation
strategies, contributing to more enjoyable experiences and
positively impacting users’ lives.
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