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1 Introduction
Augmented Reality (AR) is described as a technology that
integrates virtual and real elements in an interactive and real-
time manner [Azuma and Ronald, 1997]. This technology has
expanded into various domains, such as gaming, education,
industry, and healthcare, offering new ways of interacting with
and visualizing information. To ensure convincing AR scenes,
it is essential that virtual objects are seamlessly integrated
into the real environment, with consistent shadows, geometry,
and lighting.

The present study focuses on calculating the directional
light vector in AR scenes, enabling accurate shadow projec-
tion for virtual objects. This calculation is performed through
image processing and inverse rendering techniques, which
estimate the light direction in the scene. Instead of relying
on deep learning-based approaches, geometric methods are
employed, providing a simpler and more straightforward so-
lution. This approach allows for the projection of shadows
that are coherent with the environment, enhancing immersion
and realism in AR scenarios.

The most common devices that employ AR include Head-
Mounted Displays (HMDs), such as AR glasses, and smart-
phones, which stand out for their versatility and accessibility.
Although various devices support this technology, the focus
of this work is on the application of AR on mobile phones,
given their popularity and ability to provide an interactive
experience.

2 Background
With the advancement of mobile devices in recent decades,
AR has become more accessible and present in various fields.
Nevertheless, achieving proper visual integration between vir-
tual objects and the real environment, particularly regarding

lighting and shadow projection, remains a major challenge.
As highlighted by Cao and Foroosh [2007], estimating the
direction of light in AR scenes using solar shadows is a com-
plex task. Inconsistent lighting undermines both the realism
and the immersion of AR experiences.

Previous studies have addressed light estimation in AR
using both geometric methods and more advanced techniques.
For instance, Cao and Foroosh [2007] and Koc and Balcisoy
[2013] computed the direction of light based on shadows
and object geometry, whereas deep learning-based methods,
such as that proposed by LeGendre et al. [2019], offer greater
flexibility for complex scenarios.

However, training datasets for shadow generation and ma-
nipulation in augmented reality using deep learning method-
ologies impose substantial costs and complexities. For
instance, the recent RdSOBA dataset (Rendered-Shadow-
Generation Dataset) released by Tao et al. [2024] contains
nearly 80,000 object-shadow pairs, 788 foreground 3D ob-
jects, 30 rendered 3D scenes, and multiple viewpoints and
lighting conditions. Such scale demands high computational
resources, time for rendering under multiple lighting setups,
annotation or mask generation, and storage, which often limits
applicability in low-resource environments.

The present study proposes a geometric approach that
does not rely on specialized hardware (e.g., RGB-D cameras,
desktop-class GPUs for deep learning) or additional objects
(e.g., light probes), using only a standard camera and fiducial
markers to compute the directional light vector on an AR
scene. This approach optimizes the calculation of shadows
and lighting for mobile devices, avoiding the high computa-
tional cost and the need for large volumes of data.
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2.1 Problem Description
The accurate projection of shadows in AR scenes is essen-
tial to ensure convincing immersion and visual integration
between virtual objects and the real environment. The cen-
tral problem lies in precisely calculating the directional light
vector so that the illumination of virtual objects corresponds
to the lighting conditions of the physical world. However,
performing this calculation efficiently, using only a standard
camera and fiducial markers, without relying on specialized
hardware or complex techniques, remains a significant chal-
lenge.

This problem is particularly important in AR scenarios
applied to mobile devices, where processing and resource
limitations make it even more challenging to ensure realistic
and coherent shadow projection within the environment. As
highlighted by Kán and Kafumann [2019], lighting estimation
on mobile devices must be both accurate and efficient so that
virtual objects visually behave naturally, without appearing
out of place in the environment. Furthermore, variations in
lighting conditions, such as direct or diffuse light, add an
extra layer of complexity to the precise calculation of the light
vector, requiring a robust solution that performs well across
different scenarios.

The choice of a geometric approach and the use of sim-
ple smartphone cameras and fiducial markers, instead of more
complex techniques such as deep learning or specialized hard-
ware, is justified by the need to develop an accessible, efficient
solution suitable for mobile devices. In AR scenarios, where
processing and resource limitations are significant, methods
that require high computational power or large volumes of
training data may not be feasible.

Deep learning techniques, such as those proposed by
LeGendre et al. [2019], although effective in more complex
scenarios, present practical challenges, including the require-
ment for specialized hardware and high computational costs,
which may limit their application on mobile devices. The ap-
proach presented in this work, on the other hand, is based on
geometric methods that utilize information directly extracted
from the scene through a single camera and fiducial markers,
such as those provided by ArToolKit [Kato and Billinghurst,
1999]. This enables a low-cost solution applicable in contexts
where the use of advanced technologies is unfeasible.

Moreover, the proposed approach aims to maintain effi-
ciency without sacrificing the quality of lighting and shadow
estimations, which are essential for a seamless integration be-
tween virtual objects and the real environment. This choice is
particularly relevant for applications targeting mobile devices,
where real-time performance and low resource consumption
are critical. The justification for developing this solution lies
in the pursuit of an accessible, efficient, and practical tool to
project accurate shadows in AR scenes without the need for
significant investments in technological infrastructure.

2.2 Materials and Methods
The method proposed in this work to estimate the directional
light vector in AR scenes follows a pipeline of interconnected
steps, utilizing simple and accessible resources such as mobile
phone cameras and fiducial markers. Mobile device cameras
enable real-time scene capture without the need for specialized
equipment, such as depth cameras or multiple cameras.

Fiducial markers are widely used in AR systems to deter-
mine the position and orientation of virtual objects relative to
the real environment. These markers, such as those provided
by the ArToolKit tool developed by Kato and Billinghurst
[1999], serve as reference points in the captured image, fa-
cilitating the correlation between the real and virtual worlds.
Their application simplifies the projection of virtual objects
and, in this context, directly contributes to the calculation of
the directional light vector.

The proposed pipeline initially involves capturing a 2D
image of the scene using a mobile phone camera. Next, the
objects and shadows present in the image are separated from
other elements using image processing techniques. After this
separation, the center of mass of the objects and their respec-
tive shadows are calculated. With this information, the 2D
image data is transposed into the three-dimensional environ-
ment through inverse rendering, enabling the calculation of
the directional light vector. This process, which relies on lim-
ited resources such as a single camera and fiducial markers,
provides an efficient and low-cost solution for light estimation
on mobile devices.

3 Main Contributions
The primary contribution of this work is the presentation of
an efficient methodology for estimating the directional light
vector in AR scenes, using only a mobile device camera and
fiducial markers. This approach ensures accurate shadow
projection on virtual objects without the need for specialized
hardware or complex algorithms such as those based on deep
learning.

Specifically, the aim is to implement an image processing
pipeline capable of separating objects and shadows from 2D
images captured by simple cameras. From this information,
inverse rendering techniques are applied to transpose the 2D
image data into the three-dimensional environment, enabling
the calculation of the light vector. The work also seeks to
validate the methodology in different AR scenarios, evaluating
the system’s efficiency and accuracy.

4 Foundations
This section provides a brief description of the main concepts
that will support this work. First, AR is discussed, addressing
its main characteristics. Next, the inverse rendering technique
is explored, with emphasis on methods such as Differentiable
Rendering (DR) and Inverse Ray Tracing (IRT), which are
used both in related works and in the present study. Finally, im-
age processing is covered, focusing on segmentation methods
such as K-means clustering and GrabCut, as well as tech-
niques that assist in manipulating visual information, which
are fundamental to the success of the applications developed
throughout this work.

4.1 Augmented Reality
AR is a technology that combines elements from the real
world and the virtual world, providing an interactive and im-
mersive experience. A clearer and more modern definition of
AR was presented in [Azuma and Ronald, 1997]. The work
highlighted three main characteristics: the combination of
real and virtual objects in the same environment; interaction
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with these objects in real time; and the correct alignment of
virtual objects in a three-dimensional space. These character-
istics are essential for AR systems to function convincingly,
making virtual objects naturally integrate into the physical
environment and providing a more coherent experience for
the user.

An important aspect of augmented reality is the percep-
tion of lighting and shadows, which plays a crucial role in
visual realism and user immersion. The projection of real-
istic shadows is essential for virtual objects to appear truly
integrated into the physical environment, helping to provide
visual cues about depth and position. In Kán and Kafumann
[2019], it was emphasized that, on mobile devices, calculat-
ing shadows in real time while considering natural lighting
conditions enables virtual objects to visually behave similarly
to real objects.

4.2 Inverse Rendering
Inverse rendering can be described as “the problem of esti-
mating one or more properties of lighting, reflectance, and
shape from the observed appearance (i.e., one or more im-
ages)” [Yu and Smith, 2019]. It is a technique that reverses
the traditional rendering process, using 2D images to deduce
the physical properties of a 3D scene. This approach is partic-
ularly relevant in areas such as AR, where the integration of
virtual objects into real environments depends on an accurate
estimation of lighting conditions and material characteristics.

In recent years, neural networks have been employed in
inverse rendering to estimate three-dimensional information
from two-dimensional images [Kato et al., 2020]. However,
training these networks requires large volumes of 3D data,
which are more difficult to obtain compared to 2D images. To
overcome this limitation, some recent approaches use 2D data
as a reference, adjusting training to improve 3D estimation.
One strategy for this is to integrate the inverse rendering pro-
cess into the neural network pipeline, allowing the generated
results to be directly compared with real images and refined
based on the observed difference.

Differentiable Rendering (DR), as described by Kato
et al. [2020], involves a series of techniques aimed at opti-
mizing the rendering process, enabling the system to obtain
useful gradients from the rendering procedure. This allows
the neural network to efficiently adjust 3D entities even when
working with 2D inputs. By integrating the rendering process
into network training, more precise and faster estimates of
scene geometry and lighting can be achieved.

According to Azinovic et al. [2019], when the 3D ge-
ometry of the scene is already known, other techniques such
as Inverse Ray Tracing (IRT) or Inverse Path Tracing (IPT)
may be more suitable for obtaining information about scene
illumination. These techniques allow better estimation of
light interaction with the already defined scene geometry,
especially in AR environments.

Inverse Ray Tracing (IRT), in particular, is a technique
that traces rays of light in the scene back to the point of ob-
servation. In the context of AR scenes, IRT can be used to
calculate the distance between 3D points and the camera by
tracing shadows observed in 2D images. When the shadow of
an object is captured in a 2D image, IRT allows mapping this
shadow back into three-dimensional space, using the shadow’s

center position to perform ray casting and determine its pro-
jection onto the 3D plane. This ensures that virtual shadows
are consistent with the real lighting of the scene, creating a
more natural and accurate visual integration between virtual
objects and the physical environment.

4.3 Image Segmentation
Image segmentation consists of dividing an image into ho-
mogeneous regions with the objective of isolating areas of
interest, such as shadows and objects, enabling the extraction
of relevant information for analysis and processing. For this
task, the present work is based on three main techniques: the
K-means algorithm, the GrabCut method, and thresholding.

K-means clustering, as presented in Macqueen [1967],
is a clustering algorithm that partitions data into k groups or
clusters. In the context of segmentation, each image pixel is
represented by its features, such as color or intensity values,
and is assigned to the cluster whose centroid, calculated based
on a distance metric (usually Euclidean), is the closest. The
process begins with the random selection of k centroids, after
which the pixels are assigned to the corresponding clusters.
Then, the centroids are recalculated as the mean of the pixels
in each cluster, and this iteration repeats until the assignments
stabilize. An important peculiarity of K-means is its sen-
sitivity to the initial choice of centroids, which can lead to
varied results for the same image; to mitigate this effect, it is
common to use a fixed seed for initialization. In this work,
segmentation is performed in the LAB color space, focusing
on the L∗ component, which ranges from 0 (absolute black) to
100 (absolute white), to identify regions with low luminosity,
typically associated with shadows.

Another widely used method is GrabCut, developed by
Rother et al. [2004]. It is an iterative segmentation technique
that extends graph cut approaches for extracting objects from
an image. Initially, it is necessary to define a rectangle that
bounds the area where the object of interest is presumed to be;
this rectangle serves as a starting point for the algorithm to
identify, based on similarity in color and texture, which pixels
belong to the object and which belong to the background.
From this definition, the algorithm constructs a graph where
each pixel is represented by a node, and the connections be-
tween pixels are weighted according to their similarity in
color and texture. To model the color distributions of the
object and background, a Gaussian Mixture Model (GMM)
is used, characterized by statistical parameters such as the
mean (µ) and the standard deviation (σ). GrabCut minimizes
an energy function that combines a data term (evaluating the
likelihood of pixels fitting the color models) and a smoothness
term (enforcing consistency among neighboring pixels). This
minimization, performed via max-flow/min-cut algorithms,
results in a binary mask that separates the object from the
background. The process is iterative, with continuous up-
dates of the GMMs and reassessment of the segmentation,
progressively refining the object contours.

Thresholding is a straightforward segmentation approach
used when there is a clear distinction between the intensity
levels of the objects and the background. In this method, a
threshold value is defined, which can be determined automat-
ically, as in Otsu’s method Otsu [1979], so that pixels with
intensity above the threshold are assigned to one class (e.g.,
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white, with value 255) and those below to another class (e.g.,
black, with value 0). The objective is to maximize the sepa-
ration between classes by minimizing intra-class variance or,
equivalently, maximizing inter-class variance. This conver-
sion produces a binary image that facilitates the creation of
masks to isolate regions of interest, although its effectiveness
depends on uniform lighting and a clear distinction between
the object and the background.

5 Related Work
Geometric methods have been widely used to estimate ambi-
ent lighting by analyzing the interaction of light with scene
elements to infer its direction and intensity [Koc and Balcisoy,
2013]. Historically, research in this field began primarily with
image processing techniques and geometric methods, which
analyze the shape of objects and the influence of lighting in
the environment. These methods stand out for their simplicity
and efficiency but face limitations in dynamic scenarios or
those with multiple light sources.

Some works, for example [Castro et al., 2012], added
physical objects to the scene, including light probes, and used
images captured from these objects to extract the light source
direction. Our method differs by relying on shadows cast by
real objects, without the need to include additional elements.

In recent years, with the advancement of deep learning,
techniques have emerged that are more robust in estimating
lighting in complex environments. However, these approaches
still present challenges, such as the need for large volumes
of training data and difficulty handling varying lighting con-
ditions, making light estimation an ill-posed problem, that
is, lacking a unique solution for each scene [Marques et al.,
2022].

Since the proposal of this work does not involve deep
learning techniques, this section will focus exclusively on
studies that employ geometric methods for lighting estima-
tion. It will present research that explores the relationship
between light and shadows in the scene, using image process-
ing techniques and geometric analysis to infer the direction
of illumination.

5.1 Light Source Estimation Using
Geometry

Light source estimation based on geometry is widely used in
AR, visual effects, and computer vision applications. These
methods rely on analyzing the geometry of objects present in
the scene and the shadows they cast to calculate the direction
and intensity of the incident light. One advantage of this type
of approach is that it depends on simple physical properties,
such as the shape of objects and shadow correspondence,
eliminating the need for complex models or large training
datasets. This section reviews works that employ geometric
techniques for light estimation, focusing on AR environments.

The technique developed by Wang and Samaras [2003]
utilizes multiple directional light sources from a single image
to estimate the lighting of objects with known geometry and
Lambertian reflectance. They combined shading information
and cast shadows to determine illumination in AR scenes with-
out requiring calibration objects. Compared to other methods,
this approach yielded better results when working with mul-

tiple light sources. However, it requires known geometry,
which may limit its applicability in some scenarios.

Camera calibration and the estimation of light source
orientation using solar shadows were the focus of the work by
Cao and Foroosh [2007]. In this study, a method was devel-
oped to calculate parameters such as focal length, aspect ratio,
and principal point of the camera. The method was capable
of estimating the direction of sunlight from two viewpoints
of a scene, demonstrating accuracy in both synthetic and real
images. The method stood out by dispensing with complex
calibration objects, being applicable in natural environments.
However, its main limitation lies in the dependence on sun-
light, which makes it unsuitable for indoor scenarios or those
with artificial light sources.

In the field of light estimation from a single image,
Nguyen and Le [2012] proposed a method based on the use of
convex-shaped objects as light probes. The system calculates
light directions and intensities based on contours defined by
the user, eliminating the need for physical light probes and
prior knowledge of the scene’s 3D geometry. This method
demonstrated good accuracy in estimating zenith angles but
encountered difficulties when dealing with reflective or trans-
parent surfaces.

Real-time lighting estimation was also explored by Gru-
ber et al. [2012], who developed a system based on arbitrary
geometry captured by RGB-D cameras. The method uses
spherical harmonics to calculate ambient lighting and render
soft shadows on virtual objects, ensuring coherent visual in-
tegration. The system proved efficient in handling dynamic
changes in light sources and the scene but is limited to diffuse
Lambertian surfaces, which may restrict its use with reflective
materials.

In outdoor AR scenes, ambient lighting estimation can be
performed through Lambertian surfaces, as proposed by Koc
and Balcisoy [2013]. This work used human face geometry to
extract the direction and intensity of ambient light, realistically
illuminating virtual objects. The system demonstrated effec-
tiveness on mobile devices, especially under direct sunlight,
but showed limitations in cloudy scenarios, where diffuse
light affects estimation accuracy. Another positive aspect
was its integration with common sensors in mobile devices,
allowing the system to operate in real time.

The use of optimization and albedo removal to estimate
multiple light sources was proposed by Lopez-Moreno et al.
[2013], who developed a system capable of preventing the
merging of nearby lights. The method was successfully ap-
plied in complex scenarios, demonstrating significant accu-
racy in estimating light directions and intensities, with an
average error of 20-30 degrees. However, the technique relies
on the manual selection of convex objects, which limits its
applicability in scenes with irregular geometric shapes.

Matching the edges of shadows with the surfaces that cast
them is a technique that does not require prior knowledge of
the object’s geometry, as demonstrated by Chotikakamthorn
[2015]. The method uses RGB-D depth images to estimate the
location of nearby point light sources. Results indicated that
the method is effective in estimating light direction in indoor
environments but showed greater distance error in scenes with
smaller objects.

The use of RGB-D cameras, such as the Kinect, was
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also explored by Boom et al. [2017], who demonstrated a
hybrid CPU-GPU method to efficiently estimate the position
of a point light source. The system relies on depth maps and
intensity images to perform lighting calculations, enabling
realistic rendering of synthetic objects in AR scenarios. With
an average accuracy of 20 degrees, the system proved effective,
although it has limitations when multiple light sources are
present in the scene.

Another method for estimating light direction in AR
scenes, using shadows and foreground objects from a single
image, was proposed by Liu and Wu [2022]. This technique
stands out by employing a homography transformation to
align the image coordinate system with the real-world coordi-
nate system, increasing the accuracy of the lighting estimation.
Tests conducted in virtual scenes showed low average errors,
depending on the scene, with good results in cases with clear
shadows. The system also integrates direct manual interac-
tion, allowing users to touch virtual objects more naturally.
However, accuracy decreases in scenes where shadows are par-
tially obstructed or where the object is not fully connected to
the ground, and the approach is limited to a single directional
light source.

Table 1. Comparison between related works
Work Inputs Outputs

Cao and Foroosh [2007] Two 2D images 3D light vector
Gruber et al. [2012] RGB-D images Spherical harmonics

lighting
Boom et al. [2017] RGB-D images 3D light vector
Chotikakamthorn [2015] RGB-D images Multiple 3D light

vectors
Wang and Samaras [2003] 2D image Multiple 3D light

vectors
Nguyen and Le [2012] 2D image Multiple 3D light

vectors
Lopez-Moreno et al. [2013] 2D image Multiple 3D light

vectors
Koc and Balcisoy [2013] 2D image 3D light vector
Liu and Wu [2022] 2D image 3D light vector
Ours 2D image 3D light vector

Table 1 provides a comparison of different approaches
for obtaining scene illumination, based on the types of inputs
and outputs required by each method. Geometric methods
for illumination estimation explore various strategies to re-
cover information about light from images. Some methods
use depth sensors, such as RGB-D cameras, to reconstruct
the three-dimensional position of the light source, leveraging
both depth and color information simultaneously [Boom et al.,
2017; Chotikakamthorn, 2015; Gruber et al., 2012]. Other ap-
proaches operate with 2D images, analyzing the relationship
between cast shadows and objects in the scene to estimate
the illumination direction [Cao and Foroosh, 2007; Koc and
Balcisoy, 2013; Liu and Wu, 2022]. Additionally, some tech-
niques use predefined geometric models, such as Lambertian
surfaces or convex objects, to infer multiple light directions
[Wang and Samaras, 2003; Nguyen and Le, 2012; Lopez-
Moreno et al., 2013]. Each of these approaches presents dis-
tinct advantages and challenges, being more suitable for differ-
ent types of scenes and applications, ranging from controlled

indoor environments to open spaces with natural lighting.
The work presented in Liu and Wu [2022] is the most

similar to our proposal. Aside from the techniques used to
segment the image and estimate the light direction, the main
difference between our approach and that of Liu and Wu
[2022] lies in the use of additional mobile device sensors, such
as accelerometers, to calculate the light direction. In contrast,
our method relies solely on a single image for estimating the
light direction.

6 Proposed Method
This section discusses the AShE system, developed to estimate
the directional light vector in AR scenes, with a focus on
mobile devices. Although it runs as a web application, all
processing is performed locally on the device; no data is
sent to the cloud. The user captures an image of the real
scene, which is then processed on the device by a pipeline
that combines image segmentation and geometry techniques
to compute the scene’s light vector.

For the system to operate correctly, the captured image
must contain some essential elements. It is necessary to have
a fiducial marker placed on a flat surface, one or more objects
near the marker that cast hard shadows, and a predominant
light source, preferably sunlight. The light source should
be sufficiently distant to ensure that the shadows of multiple
objects remain approximately parallel. These components
allow the segmentation algorithms to isolate the objects and
their shadows, which are fundamental for the calculation of
the directional light vector.

On the other hand, certain conditions can compromise
the system’s performance. Diffuse or weak lighting makes
it difficult to distinguish between the object and the shadow.
Translucent objects, those with very dark colors, or varied
textures may be mistakenly interpreted as shadows by the
algorithms. Additionally, shadows overlapping the objects
themselves or other elements of the scene also pose a problem
for segmentation.

From this image, the processing pipeline performs seg-
mentation, identifies the centers of mass of the object and the
shadow, and calculates the light direction using geometric
and inverse rendering techniques. The details of this process,
as well as the overall system architecture, are presented in the
following sections.

6.1 System Architecture
The system was developed using accessible and widely used
technologies, aiming to create a solution that could run di-
rectly in browsers without the need for external servers. This
approach was chosen to ensure system accessibility, especially
on mobile devices.

The segmentation algorithms used do not depend on
high-quality images. Therefore, it is possible to use the system
on devices with simple cameras, such as cell phones and
webcams. This aligns with our initial goal of accessibility.

For image processing, the OpenCV library was used,
known for its widespread application in the field of computer
vision. This library enabled the use of algorithms such as
GrabCut and K-means to segment the image, isolating objects
and their shadows. All processing is performed directly in
the browser through the Pyodide library, which allows Python
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code to run within the JavaScript environment.
The web interface was built using HTML, CSS, and

JavaScript, while the Three.js and AR.js libraries were em-
ployed to render 3D objects and integrate the virtual scene
with the real environment. The combination of these tools
enabled the creation of AR scenes directly within the web
environment. The source code and datasets of our system is
available in https://github.com/AVRGroup/AShE.

The developed system is structured around the process-
ing pipeline shown in Figure 1 and each step is illustrated in
Figure 2.

Figure 1. AShE’s processing pipeline.

Each step plays a fundamental role in the overall func-
tioning of the system. Therefore, each of these steps will be
detailed throughout this section, highlighting the methods
employed.

(a) Input - Scene image (b) Input - Cube mask (c) Segmentation - Grab-
Cut

(d) Segmentation -
GrabCut mask

(e) Segmentation - K-
means application

(f) Segmentation - K-
means mask

(g) Largest object and its
corresponding shadow

(h) Centers of mass - 2D
vector

(i) Inverse Rendering -
3D estimation

Figure 2. System pipeline visualization.

The system input consists of an image containing essen-
tial elements, as previously described in this work. Subse-
quently, geometric methods are applied to associate shadows
with their corresponding objects. Finally, using inverse ren-
dering techniques, the system calculates the directional light
vector, enabling the projection of virtual shadows aligned
with the scene’s lighting conditions.

Each of these steps will be detailed in the following
subsections, covering everything from data input to geometric
processing and final rendering.

6.2 Data Input
The system’s data input consists of two distinct images that
together provide the necessary information for processing.
The first image is a capture of the real scene, obtained through
a standard camera (Figure 2(a)). This image must contain the
fiducial marker, nearby real objects that cast shadows, and
the predominant light source (preferably sunlight). The sec-
ond image is generated by rendering the virtual object using
AR.js, which displays the cube with a single color, enabling
precise extraction of its position and boundaries, resulting in
a mask (Figure 2(b)). The cube’s mask is obtained from an
intermediate rendering performed on a render target, where
the cube is highlighted with a uniform color material. This
mask allows isolating the virtual object from the scene.

To optimize performance, the captured scene image is
resized to a resolution of 640 × 480 pixels, balancing the
quality required for analysis with reduced memory usage.

6.3 Image Segmentation
Two main algorithms were used: K-means, employed for
shadow detection; and GrabCut, responsible for segmenting
the foreground objects.

The first step in segmentation involves detecting shadows
using K-means. This algorithm groups the image pixels into
different clusters based on their color and brightness charac-
teristics, as illustrated in Figure 2(e). In the LAB color space,
the darkest clusters are classified as shadows. As a result,
binary masks are generated where shadow pixels are marked
in white (255) and all other pixels in black (0), as shown in
Figure 2(f). To ensure reproducibility across different runs,
a fixed seed was set, preventing unwanted variations in the
segmentation results. The parameters of the method were
empirically defined through experimentation.

The segmentation of foreground objects is performed
using GrabCut. Initially, a region of interest is defined as a
rectangle that covers almost the entire image. This strategy
enables automation of the process without requiring manual
intervention. From this initial region, the segmentation is
refined iteratively, separating the foreground from the back-
ground, as shown in Figure 2(c). The final output produced
by GrabCut is a binary mask where the segmented objects
appear isolated, as illustrated in Figure 2(d).

6.4 Association Between Object and
Shadow

After image segmentation, the system generates two sets of
binary masks representing objects (Figure 2(c)) and shadows
(Figure 2(f)). To prevent the virtual 3D object from being
considered in the analysis, its mask (Figure 2(b)) is applied to

https://github.com/AVRGroup/AShE
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exclude it from the subsequent processing steps. Among the
object masks, the one with the largest area is selected, since
the GrabCut algorithm may produce small unwanted artifacts.
This criterion ensures that the selected mask corresponds to a
real object, reducing noise interference.

After selecting the largest region corresponding to an
object, its center of mass is calculated, defined as the average
position of all pixels that make up the identified region. This
calculation is performed using the following formulas:

cx =
M10

M00
, cy =

M01

M00
, (1)

where cx and cy correspond to the horizontal and vertical
coordinates of the center of mass, M00 is the total area of the
region, represented by the sum of the pixels belonging to the
object, and M10 and M01 are the spatial moments related to
the distribution of the pixels with respect to the horizontal
and vertical axes.

This calculation is applied both to the largest object and
to each identified shadow. From this, the system uses criteria
based on distance and size to determine which shadow be-
longs to the main object. The Euclidean distance is calculated
between the object’s center of mass and the centers of mass
of each shadow. This criterion ensures that shadows closer to
the object are prioritized.

Additionally, the system considers the relative area of the
shadows, penalizing those that are small or far from the ob-
ject. This penalization is implemented through an exponential
function, adjusting the area according to the distance:

j =
a

ed/c + k
, (2)

where j is the adjusted area, a is the area, d is the distance, c
is a scaling constant that controls the impact of the distance,
and k prevents division by zero. Based on the distance and
adjusted area, each shadow receives a score s calculated as:

s =
d

j + 1
. (3)

The shadow with the lowest score is selected as cor-
responding to the main object. This association method is
effective in scenarios with hard shadows and clearly visible ob-
jects. However, it may present limitations in situations where
shadows overlap or are cast on irregular surfaces. The result
of associating the largest object with its shadow is shown in
Figure 2(g) of the pipeline.

6.5 Processing the Directional Light Vector
The calculation of the directional light vector is the final stage
of the proposed pipeline, employing inverse rendering tech-
niques to determine the direction of light based on elements
extracted from the two-dimensional image. This step com-
bines geometric information from the scene with specific ad-
justments to correlate the processed data from the 2D image
to the three-dimensional space.

To perform this calculation, the system uses the center
of mass of the largest real object to correspond to the central
point of the 3D model generated on the fiducial marker, estab-
lishing it as a reference in three-dimensional space. Since the
system does not directly have the shadow of the 3D model, it

assumes that if the real object had the same proportion and
size as the virtual object, their shadows would be equivalent.
Based on this logic, the system scales the vector between the
center of the real object and the center of its shadow (Figure
2(h)) according to the relative proportion between the real and
virtual objects. This adjustment allows the estimated position
of the virtual model’s shadow to be determined, using the
characteristics of the real object and its shadow as reference.

After the scale adjustment, the system performs raycast-
ing, which consists of projecting a virtual ray from an origin
point (such as the camera position) toward a target, like a spe-
cific point on a plane. In the context of the proposed system,
this technique is used to project the 2D point corresponding
to the center of mass of the real object’s shadow onto the
three-dimensional plane of the virtual scene. The vector cal-
culated between the center of the real object and the center
of its shadow is scaled according to the previously computed
adjustment, ensuring that the raycasting intersection point pro-
vides an appropriate estimate of the virtual model’s shadow
position in 3D coordinates.

With the three-dimensional points of the geometric cen-
ter of the virtual model and the estimated position of the
projected shadow determined, the directional light vector is
calculated as the vector difference between these two coordi-
nates in three-dimensional space. This vector represents the
direction of the incident light in the scene, which is then ap-
plied to the virtual scene’s lighting, enabling the generation of
shadows consistent with the real environment’s illumination.
Figure 2(i) visually represents the generated vector between
the central point of the virtual object (green point) and the
raycasting intersection point with the plane (yellow point).

Additionally, the system allows the user to switch the
virtual models associated with the fiducial marker after the
light vector has been processed. This enables real-time visu-
alization of how the shadows of different virtual objects adapt
to the calculated lighting.

7 Results
In this section, the results obtained by the system are pre-
sented. Tests were conducted using both artificial and real
images. However, the accuracy of the algorithm could only
be determined with the artificial images, since only in these
cases is it possible to obtain a reference light angle for the
scene.

The real scenarios were captured using a cellphone cam-
era, with a printed fiducial marker fixed to the ground and a
real object positioned nearby. The images were taken outdoors
between 10 a.m. and 3 p.m., with direct sunlight incidence to
produce well-defined hard shadows.

The synthetic scenarios were generated using Three.js,
with virtual scenes containing an image of the fiducial marker
at the center and simple geometric objects around it. This
approach allowed manipulation of the directional light vector,
enabling the creation of different shadow patterns in the scene.
Additionally, textures were added to the ground to simulate
surface irregularities.

Performance tests were conducted on two different de-
vices. The first is a mobile device, an iPhone 8 Plus running
iOS 16, equipped with an Apple A11 Bionic processor (6
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cores: 2 × 2.39 GHz Monsoon + 4 × 1.19 GHz Mistral), a
3-core Apple GPU, and 3 GB of RAM. The second device
is a desktop running Windows 10, featuring an AMD Ryzen
7 5700X processor (8 cores, 16 threads, base frequency of
3.4 GHz), an AMD Radeon RX 6750XT GPU, and 32 GB of
RAM.

7.1 Artificial Scenarios
The artificial scenarios allowed the acquisition of the direc-
tional light vector for each scene, enabling a direct comparison
between the vectors calculated by the system and the actual
vectors used to generate the scene. This made it possible to
calculate the angular error between these vectors and assess
the accuracy of the proposed approach.

When creating the scenes, efforts were made to repro-
duce ideal conditions for the system’s operation. Objects
were positioned at an appropriate distance from the marker,
avoiding excessive proximity that could compromise shadow
definition. Furthermore, objects with light colors and back-
grounds with simple, minimally varied patterns were used to
reduce interference in the segmentation algorithms.

7.1.1 Quantitative Results
This section presents the quantitative results obtained from
the artificial experiments. The main parameter evaluated was
the directional light vector estimated by the system, with its
accuracy measured by the angular error relative to the ground
truth.

Figure 3 shows the results of tests conducted in artificial
scenarios. The images are arranged in pairs, with the first
representing the ground truth, that is, the directional light
vector generated in the virtual scene using Three.js, and the
second illustrating the light vector estimated by the system.
This arrangement allows for a visual comparison between the
results.

(a) GT - SC 1 (b) ER - SC 1 (c) GT - SC 2 (d) ER - SC 2

(e) GT - SC 3 (f) ER - SC 3 (g) GT - SC 4 (h) ER - SC 4

(i) GT - SC 5 (j) ER - SC 5 (k) GT - SC 6 (l) ER - SC 6

(m) GT - SC 7 (n) ER - SC 7 (o) GT - SC 8 (p) ER - SC 8

Figure 3. Comparison between Ground Truth (GT) and Estimated Results
(ER) in all artificial scenarios (SC).

Table 2 presents the real and estimated vectors for each
scenario, as well as the associated angular errors. The average
error of 11.42° demonstrates that the system achieves con-
siderable accuracy, especially when compared to the worst

possible case, which would be an angular error of 180°. The
angular error represents the directional divergence between
the vectors, expressed in degrees, indicating the accuracy of
the algorithm.

Table 2. Angular error between ground-truth and estimated vectors
for eight scenarios.

Ground-Truth
Vector Estimated Vector Angular

Error (°)
1 (1.15, 7,−4) (-1.15, 1.42, -1.26) 16.12°
2 (−0.5, 3,−3) (0.30, 1.35, -1.44) 15.47°
3 (4, 8,−4) (0.95, 1.52, -0.88) 5.34°
4 (3, 5,−5) (0.95, 1.19, -1.30) 5.80°
5 (3, 8,−5) (0.45, 1.38, -1.37) 13.16°
6 (−1, 6,−5) (-0.25, 1.40, -1.40) 5.15°
7 (−3, 4,−3) (-0.46, 1.63, -1.06) 18.00°
8 (−1, 6,−5) (0.14, 1.42, -1.41) 12.35°
- Average 11.42°

A correlation can be observed between the angular errors
shown in Table 2 and the image pairs in Figure 3. For instance,
in scenario 7 (Figures 3(m) and 3(n)), the estimated shadow of
the cube significantly diverges from the real shadow, reflecting
the highest angular error found, 18.00°. On the other hand,
in scenario 6 (Figures 3(k) and 3(l)), the angular error was
the lowest, 5.15°, with the estimated shadow almost perfectly
aligned with the real shadow, making the difference barely
noticeable.

For the mobile device, the average processing time for
the synthetic images was 6.73 seconds, while for the desktop
it was 3.86 seconds, representing a 42.6% faster execution on
the desktop compared to the mobile. To ensure a more accu-
rate performance evaluation, the initial runs were disregarded
since the initial loading of Pyodide can significantly affect
the processing time. It is important to note that the execution
times are one-time; once processing is completed, the image’s
lighting vector remains fixed, eliminating the need for future
reprocessing. After this preprocessing step, which took only
a few seconds, the system ran at 60 fps on all tested devices.

7.2 Real-World Scenarios
The images of the real scenarios were captured with the aim of
observing the system’s performance under uncontrolled con-
ditions. Unlike the artificial scenarios, there is no reference
lighting vector for direct comparison, making it impossible
to precisely quantify the angular error.

However, these tests served to evaluate the performance
of the segmentation algorithms in complex environments.
The images made it possible to verify the system’s ability to
correctly distinguish objects from the background and identify
their respective shadows, even in the presence of variations
in lighting, object shapes, colors, and background textures.

7.2.1 Qualitative Results
This section presents a qualitative analysis of the results ob-
tained in real-world scenarios. While the previous section
provided numerical values of angular errors for artificial sce-
narios, here the evaluation is based on the visual coherence
of the projected shadows, allowing for an assessment of the
system’s behavior under uncontrolled conditions.
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Figure 4 shows the results for the real scenarios. Al-
though it is not possible to calculate the angular error due to
the lack of ground truth, visual inspection indicates that the
projected shadows maintain good correspondence with the
real shadows in the scene. For instance, in Figure 4(a), even
with a bright and complex textured background, the shadow
of the cube does not deviate noticeably from the shadow of the
real cup. Similarly, in Figures 4(b) and 4(c), the darker back-
ground does not impair segmentation, allowing the system to
produce visually coherent results.

(a) Real scenario 1 (b) Real scenario 2 (c) Real scenario 3

Figure 4. Results in real scenarios with a virtual textured cube.

With the estimated lighting vector, different virtual ob-
jects can be integrated into the scene, ensuring that their
shadows are projected correctly regardless of their shapes.
The initial cube serves only as a reference for calculating
the light vector. Once this vector is obtained, the cube can
be replaced with other models, allowing the visualization of
more complex and realistic objects integrated into the scene,
as illustrated in Figure 5.

(a) 1st 3D object (b) 2nd 3D object (c) 3rd 3D object

Figure 5. Visualization of scenes with different 3D objects.

Furthermore, it was observed that the system can handle
real objects of various shapes and colors, as well as variations
in light incidence. Objects with complex shapes, light-colored
surfaces, and partially self-cast shadows did not significantly
compromise the lighting estimation. The method also demon-
strated robustness across different capture angles, distances,
and times of day.

8 Limitations
Despite the results presented in the previous sections, the
system exhibits some limitations that may impact its accu-
racy and applicability in different scenarios. During testing,
limitations were identified that affect the estimation of the
directional light vector, making it necessary to discard some
samples that showed processing failures or results significantly
deviating from expectations.

One of the main limitations observed was the system’s
difficulty in handling overlapping or partially occluded shad-
ows and objects. The system assumes that objects and their
shadows are visible and isolated, but in cases where multiple
objects and shadows merge or are blocked by other elements
in the scene, the correspondence between the object and its
shadow becomes less precise. This issue can be seen in Fig-

ure 6(a), where one cube overlaps another, complicating the
segmentation algorithm (Figure 6(b)). This problem directly
affects the determination of the light vector (Figure 6(c)),
resulting in an imprecise illumination estimate.

(a) Error 1 – estimation
result

(b) Error 1 – grabcut
segmentation result

(c) Error 1 – object de-
tection failure

(d) Error 2 – estimation
result

(e) Error 2 – K-means
segmentation result

(f) Error 2 – shadow de-
tection failure

(g) Error 3 – estimation
result

(h) Error 3 – K-means
segmentation result

(i) Error 3 – shadow de-
tection failure

Figure 6. System errors.

Another significant limitation is the system’s sensitiv-
ity to diffuse lighting. The method relies on the presence of
well-defined hard shadows to accurately estimate the light di-
rection. However, in environments with multiple light sources
or diffuse light, such as on cloudy days, shadows may lose
contrast or even become imperceptible, making correct seg-
mentation difficult. This issue is illustrated in Figures 6(d),
6(e), and 6(f), where the presence of two light sources results
in shadows of varying intensities. The overlapping of these
shadows creates a region of higher intensity that is mistakenly
interpreted by the algorithm as the main shadow.

Additionally, the system’s performance is affected by
surfaces with highly varied textures, both in the background
and on the objects themselves. In scenarios with complex
visual patterns, reflective surfaces, or translucent materials,
the segmentation algorithms can confuse parts of the back-
ground with shadows or incorrectly separate regions of the
main shadow. This problem can be seen in Figures 6(g), 6(h),
and 6(i), where the analyzed object is a slightly translucent
and reflective glass. Due to its translucency, part of the light
passes through the material, generating a shadow with varying
intensities along its projection. These variations cause the pro-
jected shadow to be inconsistently identified, resulting in the
segmentation of the shadow into distinct clusters, which com-
promises the correct identification of its shape and position.
Similarly, detailed patterns in the background can be mistak-
enly interpreted as objects, interfering with the segmentation
process and impacting the illumination estimation.

In terms of performance, the system was designed to
run directly in browsers on mobile devices. However, the use
of AR elements can be computationally intensive, especially
on low-end devices. During testing, it was observed that,



AShE – A Shadow Estimator for Augmented Reality Systems on Mobile Platforms Dutra and Silva, 2026

depending on the parameters used in the segmentation algo-
rithms, the complexity of the 3D models, or the quality of the
shadows, processing times increased significantly, sometimes
causing the application to freeze or even the page to reload.

Finally, it is important to emphasize that the proposed
algorithm works correctly only when the shadow of the real
object is projected onto a flat surface. Processing shadows
projected onto non-planar objects would require implement-
ing additional techniques to infer the geometry of the object
receiving the shadow.

These limitations do not invalidate the system’s func-
tionality but indicate that there is room for improvement and
refinement. Some constraints, such as the dependence on hard
shadows, stem from the approach adopted in this work, which
is based on image segmentation. Others, such as performance
issues, could be addressed by reducing scene quality or by
combining additional segmentation techniques.

9 Conclusion
In this work, a system was presented to estimate the directional
light vector of a 3D scene from images captured by simple
devices, such as mobile phones and webcams, using geometric
and segmentation techniques. The main objective was to
enable a more realistic integration of virtual objects into real
environments, ensuring coherent correspondence between the
lighting of synthetic elements and the captured surroundings.

The system pipeline begins with capturing an image
containing a fiducial marker, on which a virtual cube is po-
sitioned. Subsequently, segmentation techniques are applied
to identify objects and shadows in the scene. From this in-
formation, the system estimates the directional light vector
by analyzing the relationship between the centers of mass
of the real object and its shadow. Then, scaling adjustments
are performed to correlate the proportions between the real
and virtual objects. Finally, inverse rendering techniques are
employed to transform the vector obtained from the 2D im-
age into a three-dimensional light vector, which is used to
illuminate the scene.

The experiments conducted demonstrated that the sys-
tem is capable of estimating the light direction with an average
angular error of 11.42°. Tests in artificial scenarios indicated
that the approach is suitable for controlled conditions. In real
scenarios, qualitative evaluation indicated that the system can
generate shadows consistent with the scene’s actual shadows.
However, the absence of a ground truth for numerical valida-
tion made quantitative analysis impossible in these cases.

Despite the positive results, some limitations were identi-
fied. Image segmentation proved to be the main source of error
in the system, showing sensitivity to textured backgrounds,
overlapping shadows, and variations in light intensity. Ad-
ditionally, the presence of multiple light sources or poorly
defined shadows can compromise the accuracy of the esti-
mation. Regarding computational performance, the system
executed efficiently on most modern devices but may face
difficulties on more limited hardware, especially older mobile
devices, where segmentation and rendering calculations can
impact the scene’s frame rate.

Nonetheless, the system demonstrated potential for AR
applications in controlled scenarios. The results indicate that

geometric approaches can be viable for this type of prob-
lem without the need for more complex techniques such as
machine learning. As future work, improvements in segmen-
tation, strategies to better handle adverse scenarios, and opti-
mizations may contribute to enhancing the system’s quality
and applicability.
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