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Abstract—We present our approach to extend a Virtual Reality
software framework towards the use for Augmented Reality
applications. Although VR and AR applications have very similar
requirements in terms of abstract components (like 6DOF input,
stereoscopic output, simulation engines), the requirements in
terms of hardware and software vary considerably. In this article
we would like to share the experience gained from adapting our
VR software framework for AR applications. We will address
design issues for this task. The result is a VR/AR basic software
that allows us to implement interactive applications without fixing
their type (VR or AR) beforehand. Switching from VR to AR
is a matter of changing the configuration file of the application.
We also give an example of the use of the extended framework:
Augmenting the magnetic field of bar magnets in physics classes.
We describe the setup of the system and the real-time calculation
of the magnetic field, using a GPU.
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I. INTRODUCTION

IRTUAL Reality is an established technique in many in-

dustrial areas, like automotive, aerospace, plant engineer-
ing, and oil and gas industry. Recently, Augmented Reality has
provided means to enhance reality with computer generated
information. Application areas for AR are assembly training
and support, gaming, and medicine. Both, VR and AR offer
interactive environments where visual information is generated
by a computer according to user input and modifications done
by a simulation. This means similar components are needed
in both types of environments:

« For user interaction mostly 6DOF (Degrees of freedom)
tracking is utilized.

« Visual information is output stereoscopically.

« Some simulation engine manipulates the virtual scene.
The difference between AR and VR lies especially in
how the visual information is presented to the user.

While VR shows an entirely computer generated environment,
AR mixes reality with computer graphics. This has techni-
cal consequences because other devices, like Head-Mounted-
Displays (HMDs), are needed to implement an AR system.
But it also influences the design of the software that drives
the AR application.

When we were starting a new project on augmenting school

experiments we decided to extend our existing VR software
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framework enabling it to cope with the new requirements. In
this article we would like to present the extensions and changes
necessary for this purpose.

In the following sections we present the status of the
software before we started AR activities. We then describe
the new requirements for AR in detail. Subsequently, we show
the design changes on the way from VR to AR. Finally, we
present our example application: Enhancing experiments on
magnetic field explorations for physics classes. We also give
some details about the real-time calculation of the magnetic
field, using a GPU.

II. RELATED WORK

To date, many Virtual and Augmented Reality software
frameworks exist. Commercial frameworks for desktop / pro-
jector -based, immersive, stereoscopic environments with ded-
icated 6DOF input devices, like 3DVIA [1], are out of the
scope of this article, because they can be used to implement
AR applications, but information about their software design
cannot be acquired by the public. The omni present AR apps
on smart phones are based on AR toolkits, e.g Metaio’s Mobile
SDK [2]. These often only have AR functionality and are
closed source.

Related to our work are VR frameworks that have a
very modular design which can be modified towards AR
usage and real VR/AR frameworks. In [3] an extension
to the well known MVC paradigm is proposed, called
MVCE(nvironment). While this is a valid abstract concept, no
design details of the underlying software is given. DWARF
[4] is a component based AR framework realized as a set of
services. The latter, as well as the AMIRE framework [5] are
focused on AR. VHD++ [6] contains the vhdRuntimeEngine
which implements a vhdServiceManager. vhdServices are soft-
ware components that are loaded as plug-ins. The vhdView-
erService is the renderer component, capable of mixing the
camera image with graphics. Although the modular, plug-in
based design is similar to our approach and provides a high
level of flexibility, it is not clear how migration from VR
to AR applications is done. In [7] Ohlenburg et al. describe
the MORGAN framework. It provides its own render engine,
separating render data from other scene data. No details on
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the design consequences from the difference of VR and AR
applications is given. VARU [8] is a client-server framework
for tangible space applications which is component based.
Components are described by XML-files, as well as their
configuration. AR and VR applications are handled by the
VARU client by their respective AR / VR managers”. Both
connect to the VARU server which supplies data needed by
AR or VR applications. The “’streaming manager” connects
to clients, e.g. video cameras that supply real imagery. In the
following we describe our own AR / VR software framework,
called ”basho”.

III. BASHO AS IS

The VR framework basho was designed with the aim to
build a modular and extensible system. This includes

o Small kernel for data management and system control
o Separation of scene data and processing (rendering, sim-
ulation)
« Independance of input/output devices and scene represen-
tation
« Easy extendability through components, e.g. sound,
physics, ray-tracing
Further on, all plug-ins have to implement a predefined con-
figuration interface allowing a plug-in independent processing
of the configuration file. This is needed to make known all
plug-ins that have to be loaded to the application. A central
design principal was the principle of locality which forbids
distribution of source code to complete one task over different
classes that are responsible for different tasks. For example,
registration of a new data component should not need changes
in different already existing source files. Instead, one method
call should be sufficient.

In our terminology the kernel is the framework responsible
for system control and high level data management. System
control includes the system’s main-loop, loading and manag-
ing run-time loadable components. These run-time loadable
components represent input-devices, scene data, scene manip-
ulators (actions), rendering and simulation. Components that
have to be loaded at run-time as well as their configuration
are specified inside the application’s configuration file.

Our VR framework is divided into five main components
drawn in solid lines as seen in figure 1.

Plug-In
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o
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Fig. 1. Kernel sketch with the plug-in interfaces. The numbered lines show
the calling order of the single components during one main-loop cycle. Objects
marked with (*) are called through the main loop directly.

The connecting lines characterize the information flow
within the system. The Scene component is responsible for
storing and representing the virtual world. The Attendee has
a special purpose within this virtual world, since it is the
representation of the actual user. The attendee is part of
the virtual world and it consequently belongs to the Scene
component.

The Manipulator component is responsible for managing
Engines, that manipulate the virtual world and Sense Renderers
for stimulation of the user’s senses. Figure 3 shows three
example engines for manipulating the virtual world.

Input Devices handles all known physical input devices.
Input devices do not manipulate the scene. They only convert
the received input data into a generic format. Actions manages
all scene manipulators the user can use to interact with the
scene or manipulate it. These actions are called from the input
devices after pre-processing the input data in order to be able
to implement non input device specific actions. Some sample
actions are “create new object”, “delete object”, “move object”
or “interact with object”.

The Scripting component provides an interface for program-
mers to extend the framework using a scripting language or
to develop applications using a scripting language with the
benefits of run-time manipulation and rapid prototyping.

All components only provide the interfaces and all in-
put devices, actions, scene element attributes, renderers, and
scripting support are implemented as plug-ins that are loaded
during run-time.

One key design strategy was the separation between scene
data storage and the data processing. Data processing is on
one hand the rendering, this is producing the input for the
human senses, and on the other hand scene manipulation
through simulation (Engines). In order to gain this separation
an abstract scene entity concept has been introduced.

The objective of this concept was to avoid class hierarchies
that would have to be embedded into the kernel if the
need arises to make this class hierarchy visible to any VR
application. Another design requirement was that all scene
components, like transformation, geometry, shader, physics,
or sound attributes are loaded at run-time and therefore all
classes in this class hierarchy would be abstract classes.

Instead, our scene description is very high level and scene
elements managed through the kernel represent whole entities,
like a chair or table as whole. With the fact that all scene
components are loaded at run-time, these scene elements
themselves are only containers storing all attributes needed
to define some entity. In our terminology attributes are the
building blocks of a scene element, like transformation, ge-
ometry, shader or physics attributes. In order to keep a VR
application independent of a certain data plug-in, direct access
to attributes describing a scene element must be prohibited.
To realize this, the scene element acts as mediator to access
the attributes. A special command object has to be used to
specify the attributes’ method with its parameters that, in turn,
has to be called through the scene element. This ensures that
data plug-ins can be exchanged. For example, if we want to
replace the currently used scene graph only the plug-ins using
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the scene graph have to be replaced, but no application has to
be changed.

Figure 2 sketches this construct. The Door knob scene
element is represented through the all enclosing rectangle, that
stores all attributes (geometry, material, position, ...) specified
in the top of the rectangle. The mediator requirement of the
scene element is symbolized through the S/G (Set/Get) boxes.
The virtual world managed via the kernel consists only out of
scene elements. The management of the attributes is the scene
elements’ task. All entities in the virtual world sketched in
figure 3 are therefore only scene elements.

These scene element attributes describe only the static
appearance of an entity. However, a scene element may have
a dynamic behaviour. This dynamic behaviour describes how
the user can interact with the scene element and is called
functionality. Like attributes, functionalities are user defined
and not part of the kernel. Further on, functionalities are again
not called directly, they are called through messages.

Often, functionalities are bound by constraints, so every
functionality can hold one or more constraint function and
only if all of them return true the request is processed. An
example constraint is shown in figure 2.

Door knob Door leaf

Geometry| Material |Position |

Position |Materia| |Geometry|

nteract ./ Qﬁﬁ_’ shared door _check/ \
Event e constraint set ~--.Interact

Fig. 2. Objects and functionalities needed to represent a door. The S/G
boxes symbolize the mediators to call set/get-methods in order to access the
attributes shown in the top of the objects.

The constraint needed here is to ensure the correct function-
ality of a door. Its task is to guarantee that the user can only
open the door up to a certain position and that if the door is
closed it has to be first unlocked using the door knob.

The attendee represents the user and is derived from scene
element. As sketched in figure 3 the attendee is the linkage
between the virtual and the real world. Consequently, an
attendee knows all input devices associated with it and is
responsible to create the sensual output for the user. For every
input device a scene element can be added as a representation.
The attendee’s task is to query its input devices and to call the
active or configured action. As the last call during the main
loop cycle the attendee calls its sense renderers.

Putting the input devices and the sense renderers into the
attendee is a logical choice. Especially if there are different
attendees in a collaborative environment, the mapping of the
input devices and the sense renderers would be spread over
the different system components and thus violate our principle
of locality.

The display configuration is done through a special plug-
in, the display abstraction. This is an active component that
knows its associated renderer and is responsible to call them.
The output buffer is always an OpenGL framebuffer.
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Fig. 3. Illustration of the coupling of the real and virtual world. The attendee
is the central connection. It is responsible for the sensual stimulation of the
user and the processing of user interaction. The blobs inside the virtual world
represent scene elements.

IV. FRoOM VR TO AR

Our goal by extending the VR framework with AR com-
ponents was to create a framework that enables us to write
applications that can be used as pure VR application or as AR
application by changing the configuration, e.g. loading VR
Input/Output devices or AR Input/Output devices.

Having a modular design, many extensions needed to enable
AR with our framework can be implemented as independent
plug-ins, but changes inside the kernel are unavoidable. Both
will be described in the following paragraphs.

A. Requirements of AR

In order to work out the key differences between AR and
VR we can use Azumas’ [9] three key characteristics of AR.
These are the combination of the real and virtual world,
registration in 3D, and interactivity in real time. The first
two characteristics represent the major differences to a virtual
environment.

In order to merge the real and the virtual world the real
world has to be captured. This can be done using a video-
camera, e.g. a web cam or a head mounted display (HMD),
either with video or optical see through. Registration, the
alignment of the video coordinate frame with the virtual
camera coordinate frame, is an essential component in such a
system.

In VRs, registration is needed for aligning tracking devices
working inside a local coordinate system and the virtual world.
This registration is done inside the input device plug-in and
does not affect other plug-ins. For the registration of the
visual data the display abstraction needs an interface to set
the view and projection matrix for the left and right eye
since the stereoscopic matrix pairs are usually calculated inside
the display abstraction using a user defined monoscopic view
position and view plane.

In an AR setup the system often needs knowledge about the
appearance of the real world in order to correctly place virtual
objects into the real world’s image. However, those “’shadow”
scene elements representing the real world must be hidden and
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must not be rendered as color image but as depth image. This
is needed to stitch the real and virtual world images together.
In order to do so, the display abstraction needs to support
rendering into different buffers and a mechanism to distinguish
between hidden scene elements and scene elements that have
to be rendered.

B. Input/Output devices

In AR two types of input devices can be distinguished.
First the video input to capture the real world and second the
tracking of the interaction devices or objects we are interested
in. For the video input we can distinguish between monoscopic
desktop AR using a web-cam for example and stereoscopic
AR using HMDs. For every different video input device a
new input device plug-in has to be created. The task of such
an input device is to capture the actual frame and store the
video data.

In order to be able to pass the received video data to a
tracking or the compositing component a Video attribute was
added. Data stored in the attribute is the video data and the
image resolution. Since the video data is a central part of the
rendering its appropriate storage is inside the attendee.

Further information the video input has to provide are the
view and projection matrices, either for mono or stereo, that
are needed for registration of the real with the virtual world.
In case of an HMD, the LCDs are one or two separate screens
and the rendering output will be directed to those screens. This
configuration is part of the display configuration component.

C. Layers

In order to subdivide the scene into the two needed cat-
egories, scene elements and shadow scene elements of real
objects, a layer concept as known from vector drawing ap-
plications is integrated into the kernel. Since the kernel by
itself only knows the scene elements forming the scene, but
no attributes, layers are not used to organize graphical output.
They are more or less a generic concept of organization. Every
scene element can be assigned to one or more layers and every
system component, like engines or renderers, can request all
objects of the desired layers. A consequence of the usage of
the layer concept is being able to identify engines that can
be executed in parallel. Since engines change the scene only
engines without common scene elements can be run in parallel
without risking a corrupted scene state.

A related layer concept is used by Kaufmann et al. [10] in
their Construct3D application in order to separate the geometry
of different users and the construction process into different
layers. Their approach seems to be bound to the application
and is only used on a visual level.

For an AR application two layers are needed. One AR layer
stores the shadow scene elements and the other VR layer stores
the scene elements that have to be integrated into the video
stream of the real world. When using this application in a VR
setup both layers need to be rendered into the color buffer to
create an appropriate output.

These two layers as well as the initial assignment of the
scene elements to the different layers are both created inside

the AR application. However, these layers will be also used
in the configuration file to direct the graphical rendering.

D. Display configuration

In order to combine the video stream and the virtual scene,
different intermediate canvases are required next to the output
OpenGL canvas. An intermediate canvas could either be a
framebuffer object (FBO) or a texture or memory area which
cannot be displayed immediately. Only an OpenGL canvas
specifying the output canvas is displayed immediately. The
specification of all canvases needed is done through configu-
ration of the display configuration component.

Specifying the canvases is done by first creating the output
OpenGL canvases. Then all intermediate canvases are derived
from these output canvases. Using the above mentioned case
with an AR and VR layer, two intermediate canvases are
required. These canvases are represented by two FBOs. Every
FBO stores the color and depth buffer of the associated layer.

Every OpenGL canvas can be associated with one or more
virtual cameras. These cameras are also attached to the derived
intermediate canvases. In order to make the canvases and
cameras accessible to other components they are organized in
so called render targets. One render target stores one canvas
and one camera and is accessible through a unique name.

The following example shows a configuration for the case
we need to merge real and virtual world using the depth buffer.
AR-RT and VR-RT are the names of the auxiliary targets
storing the intermediate canvases used for rendering.

Canvas "GL” (StereoType(”SideBySide”) Pos(0 0) ... )

Camera "Cam” ( Type(”Stereo”) ...
EyeSeparation(5.0)
Attendee(”User”))

CreateRenderTarget ’Out” ( Canvas(”GL”) Camera(”Cam”) )
CreateAuxiliaryTarget ”AR-RT” ( Canvas("FBO”) RenderTarget(”Out”) )
CreateAuxiliaryTarget "VR-RT” ( Canvas("FBO”) RenderTarget("Out”) )

Another major difference to the previous display abstraction
is that the new one is passive. It is not called through the
main loop. Instead, all renderer components that need one or
more render targets actively query these render targets from
the display abstraction. Thus this component was transformed
into a passive administrator of data buffers, here for display
output. This allows us to post-process the rendering data in an
arbitrary way. However, the last processing component, writing
all data into the OpenGL framebuffer, must be aware of this
and do the buffer swap.

These major changes resulted in a complete redesign of the
display component of the system.

E. Data storage and Graphics-Rendering

Since the layer concept is a central part of the kernel,
data and rendering plug-ins must be adapted to this concept.
A scene data representation that encapsulates a third-party
scene graph, has to store every layer in an individual scene
graph. This enables the renderer to draw the different layers
independently from each other.

Converting the display configuration into a passive com-
ponent led to two new tasks every graphics renderer has to
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accomplish: Distinguish between mono and stereoscopic ren-
dering as well as activating the render target before rendering
and finalizing the render target after rendering. In case of an
OpenGL canvas this results in calling the makeCurrent and
the swapBuffers function.

For the scene data plug-ins no additional configurations are
needed. In case of the graphics renderer a render target has
to be joined with the layers that have to be rendered into this
target.

Using the basic configuration from above the renderer would
render all scene elements of the AR layer into the AR-RT
render target and the VR layer into the VR-RT render target.
Both render targets are specified in the display configuration
as auxiliary targets. An example of such a configuration is
shown below wherein AR-Layer and VR-Layer are the layer
names defined in the application.

RenderTarget ”AR-RT” ( ”AR-Layer” )
RenderTarget "VR-RT” ( ”VR-Layer”)

The configuration for a VR setup may look like this:
RenderTarget "Out” ( ”AR-Layer” ”"VR-Layer” )

In the VR case no intermediate canvases are needed. The
rendering is directly done in the OpenGL canvas and both
layers are rendered.

The OpenGL renderer and the associated data component
used is not based on a third party scene graph. It supports
generic GLSL vertex and fragment shaders as well as geometry
shaders. This feature will be used by the example application
in order to create the triangle geometry needed.

F. Combiner

The Combiner component’s task is to merge the video
stream with the virtual scene. Consequently, it has to be called
after the graphics renderer. Using the basic AR requirements
from above the combiner has to compare the AR and VR
depth buffer pixel by pixel and copy the color component
associated with the nearest depth component into the output
buffer. However, if the requirements change a new combiner
component has to be implemented.

As a consequence a generic combiner was implemented that
allows to process arbitrary input data buffers and write the
output to a specified output buffer. The input data can be an
FBO or memory area. An output buffer can be either an FBO
or OpenGL canvas. The configuration allows also to specify an
arbitrary GLSL fragment shader as program and define input
textures, an arbitrary parameter set, and the output buffer. Input
textures can be all FBO textures or scene elements with a video
stream attribute. Input textures can be bound to any GLSL
uniform sampler2D variable. At the moment, the parameter
set can be a collection of float and integer parameters.

Processing is done by an orthographic projection of a
textured OpenGL quad in such a way that it covers the whole
viewplane. Since the input textures are render targets or a
video stream their size is equal to the viewplane and therefore
every texel will be processed by the specified GLSL fragment
shader.
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The following configuration is an example for the setup used
in the earlier paragraphs. DepthMerge is the GLSL shader that
will be used. It compares both depth values texel by texel and
sets the color value associated to the nearest depth texel.

DepthMerge ( Input( (FBO(”AR-RT” Depth) "Texturel”)

(SceneElement(”User”) "Texture2”)
(FBO("VR-RT” Depth) “Texture3”)

(FBO(”VR-RT” Color) "Texture4”) )
Output(Canvas(’Out”)))

Inside the Input section all input textures are specified.
SceneElement(”User”) adresses a scene element that has to
store a Video attribute. In this case it is the attendee and the
video data is copied to a texture every frame. Output specifies
the render target the result has to be written into. Here, it is the
OpenGL render target Out. However auxiliary render targets
can be used also allowing to build a post processing pipeline.

V. RESULTS: EXAMPLE APPLICATION

The example application that already uses the developed
VR/AR framework has been presented at ISMAR 2011 [11].
However, the focus of the poster was a non technical descrip-
tion of the application itself. Here, the focus lies on describing
the technical details of the application and the integration into
the developed VR/AR framework.

The aim of this application is to augment or display
magnetic field lines either using an HMD in an AR setup
or a mono/stereo display in a VR setup. Its motivation is to
give pupils a better understanding of invisible physical forces
leading to a better model-building, since there exists a large
barely comprehensible gap between the experiment and its
theoretical background for a lot of pupils.

Our objective is that augmented/virtual reality techniques
can help to narrow this gap. Magnetism as physical concept
has been chosen as the initial experiment to gain knowledge
about the usefulness of our approach to augment real physical
experiments or to display the experiment in an virtual environ-
ment while interacting with the physically existing experiment
setup.

A. Hardware setup

In case of the magnetic field experiment two optically
tracked magnets are used as 6-DOF input devices. Using real
magnets provides us with natural haptic feedback allowing the
student to move the magnets freely while feeling the magnetic
field forces and simultaneously seeing the changing magnetic
field lines as a model for the magnetic field. This gives a direct
visual cue of the perceived haptic feedback and should help
to understand the concept of magnetism.

1) AR setup: The first hardware setup as seen in figure 4
uses a stereo video see-through HMD with built-in optical
marker tracking. The HMD consists of two OLED microdis-
plays with near eye optics and a camera with four pixel-
synchronous image sensors (2 color, 2 b/w infrared sensitive).

The two color camera sensors are located near the center of
the HMD and are used for the stereo video see-through. The
two b/w sensors are located at the outer ends of the HMD and
are used for tracking. To minimize latency and to avoid jitter,
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Fig. 4. AR setup using a video see-through HMD with included tracking and
real magnets as interaction device. The separate monitor displays the image
generated for the user’s left eye.

the image acquisition is synchronized with the refresh rate of
the OLED displays.

In the prototypical tracking system presented here, the
tracking markers are integrated into the real magnets. They
contain 3 IR-LEDs each. The LEDs are arranged in well
distinguishable patterns. One advantage of this setup is that no
external cameras are needed. Since the tracking cameras are
in a fixed position with respect to the see-through cameras,
tracking of the user’s head is not necessary. The field of view
of the video see-through sensors is always contained in the
tracking volume.

The HMDs-API provides functions to query the color im-
ages, the view and projection matrices for left and right eye as
well as the position and orientation of the tracking markers. All
data is queried in one input device plug-in. However, no data
processing is done in this plug-in. Its only task is to retrieve
all data and pass it to the configured processing units allowing
an application independent usage of the input device. The two
OLED microdisplays are addressed as a single display by the
operating system and they can be directly addressed through
the display configuration.

2) VR setup: The second hardware setup is a VR setup.
The display is an active stereo LCD-TV. For optical tracking
a three camera setup using the Natural-Point OptiTrack system
is used. As interaction devices magnets extended with tracking
markers are used. The tracking system is directly mounted on
the back of the TV-Screen using aluminium profiles. Figure 5
shows the setup in use.

All tracking data is sent to the application using VRPN
[12]. Since the Natural-Point tracking software only runs
under Microsoft Windows and the MagSim application under
Linux a virtual machine with Microsoft Windows has been
installed on the same computer to avoid a two computer setup.
No problems occurred while running the tracking software
inside the virtual machine. On the framework side a generic
VRPN input device plug-in already existed and redirecting the
received input data was done through configuration.

In both cases (VRPN and HMD input device) the tracking
data is sent to a special action that sets both virtual magnets to
the new tracking positions. In figure 6 this action is represented

Fig. 5.
magnets with tracking markers as interaction devices.

VR setup using an active stereo LCD-TV, optical tracking and real
by Interaction.

B. Application MagSim

The MagSim application consists of one short application
source, that creates the two used layers and the two magnets
that represent the real magnets as shadow scene elements.
They are used to generate a depth image for the real existing
magnets and for the magnetic field simulation. Their depth
image will be used by the Combiner to merge the real and
virtual world to resolve occlusion by the real magnets and the
magnetic field lines. The second part is a configuration file
specifying and configuring the plug-ins the application has to
load. Figure 6 shows the used plug-ins for the AR setup and
the work flow between the different components. The dashed
line shows the calling order of the components and the solid
lines show the data flow between the different components.
The calls (1) and (3) are triggered through the systems main-
loop. Plug-ins components are drawn with a thick border. The
only component that is more or less application specific is
the Magnetic Field Simulation plug-in. It uses the two mag-
nets specified in the AR layer to calculate the superimposed
magnetic field of both magnets. The resulting field lines are
stored as line strips. They are transformed into triangle meshes
and are colored using a GLSL geometry shader associated as
attribute to the Magnetic Field scene element.

1) Real-time Magnetic Field Simulation: The magnetic
field of a steady electric current can be calculated using the
law of Biot-Savart [13]:

Idl
B(P) - [ Rl M

with
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Fig. 6. Work-flow of the application using the AR setup. Dotted lines indicate
system calls and the solid lines show the internal “calls” beetween the used
plug-ins and the virtual scene. Plug-ins are drawn with thick border. All
attributes (Video stream, Geometry, ...) are also part of one or more plug-
ins.

B(P) the magnetic field at point P

P a given point, at which the field is to be computed

I the current

dl the differential element of the wire

r the vector from the wire element dl to the point
P

Lo the magnetic constant

This law describes the direction as well as the strength
of a magnetic field at a given position P for an electric
circuit of an arbitrary, infinitely narrow wire. The resulting
vector is integrated over the complete wire. The superposition-
principle of magnetic fields does allow to integrate respectively
accumulate the field vectors to get a single result at a certain
point. By defining a wire of a coil, an electromagnet can
be simulated. A geometrically equivalent permanent magnet
possesses the same magnetic field outside the magnet as the
solenoid, so we can use Biot-Savar’s law to efficiently simulate
the magnetic field. In our final AR-setup the interior of the
magnet is not visible, therefore there is no need for a proper
simulation of that part of the field.

In our case, cuboid-shaped permanent magnets are used
for interaction. Their surface can be approximated by plenty
straight wires (see fig. 7). The magnetic field of each of these
wires is, without the need of integration, directly computable
by (from [14]):

B(P) = ey

I
- (cos B — cos f32) 2)

with:
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e a unit vector, defined by %, which is

perpendicular to the plane spanned by P and the
two endpoints A, B of the wire.

1 the current

a the projection of P to the vector BA defining
the wire.

B1,B2 angles between AB (the wire) and PB

This formula is derived from equation 1 and describes the
magnetic field of a straight wire of finite length. Only the
start- and endpoint of the wire, the current and the Position
P in space is needed. An electric current is only possible in a
closed circuit, so simulating only one straight wire makes no
sense. Instead, four straight wires are used, one for each side
of the simulated magnet, forming a closed loop. A stack of
these wires defines the complete magnet. The more wire-layers
are used, the more accurate the resulting magnetic field will be
(see fig. 7). The resulting magnetic field is easily computed by
accumulating the field vectors of the calculation of the single
wires.

Since we have an interactive environment, the magnetic
fields of all involved magnets have to be computed many
times per second. To achieve real time frame rates, the com-
putation is done using modern graphics hardware (GPU). The
problem fits perfectly to this architecture, because identical
calculations (”’Single Instruction”) need to be done for many
different points in space and many different wires defining
the magnets ("Multiple Data”). By using this SIMD-Principle,
many computations can be done in parallel, perfectly taking
advantage of the many cores of modern graphics cards.

The simulation is implemented in CUDA [15]. In CUDA,
so called ”blocks” are processed, which contain a number of
threads. 32 of these threads, a so called "warp”, always share a
program counter, meaning they are processed in parallel in one
computational unit. To achieve the best hardware utilisation,
a block should therefore contain a multiple of 32 threads.

The magnets we used so far all have a rectangular base
area. Thus a stack of eight wire-circuits and four wires
for the four side does result in 32 identical computations
with individual data, perfectly suitable for 32 threads. In the
simplest configuration, computing a grid of vectors of the
magnetic field, one block is created for computing each a
single point of the grid, containing 32 threads which iterate
over all the given magnets respectively their eight-fold-stacks
of four-wire-loops. By defining a grid of N*N*N, the same
amount of blocks is created and processed by the GPU.

One thread of each warp collects all the results of the other
31 threads using shared memory, accumulates the vectors to
a single field direction and strength, and writes the result to
main memory.

Calculating Field Lines: Since the the magnetic field’s
calculation result is a vector, a vector field can be derived. The
field vectors can be interpreted as tangents of the field lines. By
concatenating field vectors, field lines can be calculated. Since
the tangent of a function is derived from the gradient, this
function can be expressed as a first-order ordinary differential
equation (ODE). The problem of calculating the field line is
an initial value problem with a (random) starting point P in
space as initial value and the following positions as the result
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of the integration of this function. Common solving methods
or approximations can be applied, using for example the Euler
method or the more sophisticated Runge-Kutta integration
schemes. Fig. 7 show the different results using euler and rk4,
with different numbers of circuit stacks.

I

il

RK4

Euler

Fig. 7. Comparison of Euler and Runge-Kutta integration methods. The
magnets are created of 8, 16, 32, 64 and 128 wire-circuits (f.t.t.b.), to show
the different calculation accuracies.

Euler’s method method is the simplest calculation scheme.
It uses, in this case, the vector V derived from the magnetic
field calculation, scales it to a predefined length h and ads
this vector V to the starting point P; to define the starting
point P for the next iteration. This process is repeated until
a certain point or length of the resulting polyline is reached.
Having a completely linear function, the result would be
absolutely correct. In most cases however this simple method
leads to a large error, since curves cannot be followed exactly
because a vector is always straight. The accuracy thus depends
on the amount of h, the scaling factor or “step size”, which
has to be very small to get a reasonable accurate result.

Around 1900 C. Runge and M.W. Kutta developed a better
method to approximate an ODE, based on the idea of using not
only one sample per iteration but sampling also the neighbour-
hood of the starting Point P by using derivatives resp. vectors
derived from different weighted Euler-Steps starting all from
Point P. Then a weighted sum of these samples is used as
the resulting vector V. Many different types of Runge-Kutta-
methods do exist, a very common one is the RK4-method,
using four samples per step. The error per step is on the order
of O(h®) and thus much better than Euler’s method, which is
on the order of O(h?).

The "Dormand-Prince” (Dopr853) method, taken from [16],
also is a Runge-Kutta method which uses 12 function evalu-
ations (here the field vectors), instead of four in the RK4-
method. The error of this method is on the order of O(h®),
making it even more accurate. Additionally it is a so called
“embedded method”, meaning that, by combining the 12
vectors with different constants, two results of a different
order can be calculated. This is used in conjunction with an
adaptive step size control. By giving a predefined tolerance,
the size of the next step is increased/decreased to keep the
field line’s error within this tolerance. The version from [16],
which is given as source code and which we used as a basis
for our CUDA implementation, is written for usual” functions
f(x,y). The mentioned tolerance does consist of an absolute
and a relative part, scaled by the value of y:

tolerance = absTolerance + |y| x relTolerance 3)

This is done to prevent the integration from trying to keep the
error very small, even if the value of y is very large. In our
case, y is the position in space, thus not being a valid scale
factor for the tolerance. Using other values as a scale factor
were not successful, we tried the normalized field strength and
a measure of the curvature of the line.

Fig. 8 shows a comparison of both the RK4 and the Dopr853
integration scheme. The error of the Dopr853 implementation
is larger than the RK4 implementation, as is especially visible
in the interior of the magnets. The lack of a valid scale factor
possibly causes this problem, but this has to be evaluated
further.

2) Configuration of the MagSim Application: The config-
uration of the plug-ins used for the MagSim Application is
identical to the example configurations introduced above. All
relevant parts of the AR case can be seen in figure 9 and in
figure 10 for the VR case.

For both hardware setups the MagSim application source
code is identical. The only difference is the configuration.
Each configuration is stored in a text file and is parsed at
application start. The configuration describes what plug-ins
have to be loaded at run-time and the configuration parameters
of every plug-in. Every plug-in specification and configuration
is encapsulated by Extension and !Extension tags and the name
behind Extension is the plug-ins name.

The differences between both configurations is, that in the
VR setup no Combiner plug-in is needed and that the HMD
input is replaced using a generic VRPN input device plug-in
for 6 DOF input. Next to the different plug-ins loaded the
display description and the renderer configuration is different,
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Fig. 8. A direct comparison of the RK4 method (top) and the Dopr853
method (bottom). Especially the field lines inside the magnets are more
accurate for RK4, where Dopr853 should be much better.

since in the VR setup the magnets and the magnetic field
visualisation has to be rendered onto one screen as seen in
figure 5. As seen in the configuration file the OpenGLRenderer
renders the VR-Layer and the AR-Layer directly into the
output OpenGL canvas.

C. User workflow

Since experimenting with the magnetic field is a single
user task, no collaboration is needed. In order to let others
participate in case of the AR setup, the left eyes image is
copied to an additional GL canvas as shown in figure 4. All
other pupils can now observe the visual impressions of the
user who wears the HMD.

However, in both setups the user interacts with the system
by moving the magnets and observing the change in the
magnetic field while receiving direct haptic response from the
magnets. The visualized magnetic field gives the pupils a direct
visual cue of the perceived haptic feedback and should help
to understand the concept of magnetism.

For the MagSim application the user directly interacts with
the virtual world using the magnets as tangible input devices
without the need to select some object to interact with. This
is desirable since there are no interaction metaphors to learn.

VI. FUTURE WORK

We would like to undertake more projects with our newly
established VR/AR software to be able to evaluate it in more
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Extension DisplayConfiguration
Canvas ”GL” (StereoType(”SideBySide”) Pos(0 0) Size(800 600 )
Camera "Cam” ( Type(”Stereo”) ...
EyeSeparation(5.0)
Attendee(”User”))
”Out” ( Canvas("GL”)
Camera("Cam”) )
CreateAuxiliaryTarget ”AR-RT” ( Canvas("FBO”)
RenderTarget(”Out”) )
CreateAuxiliaryTarget "VR-RT” ( Canvas("FBO”)
RenderTarget(”Out”) )

CreateRenderTarget

!Extension

Extension OpenGLRenderer
RenderTarget "AR-RT” ( ”AR-Layer” )
RenderTarget "VR-RT” ( ”VR-Layer”)

!Extension

Extension Combiner
DepthMerge ( Input( (FBO(”AR-RT” Depth) "Texturel)
(SceneElement(”User”) "Texture2”)
(FBO(”VR-RT” Depth) "Texture3”)
(FBO(”VR-RT” Color) "Texture4™) )
Output(Canvas(’Out”)))
!Extension

Extension SceneData
!Extension

Extension HMDInput
!Extension

Extension MagneticFieldSimulation
!Extension

Fig. 9. Part of the AR configuration file used to load and configure all
needed plug-ins.

Extension DisplayConfiguration
Canvas ”GL” (StereoType(”SideBySide”) Pos(0 0) Size(960 1050 )
Camera "Cam” ( Type(”Stereo”) ...
EyeSeparation(5.0)
Attendee(”User”))

CreateRenderTarget ”Out” ( Canvas(’GL”) Camera(”Cam”) )

!Extension

Extension OpenGLRenderer
RenderTarget "Out” ( "VR-Layer” ”"AR-Layer” )
!Extension

Extension SceneData
!Extension

Extension VRPNInput
!Extension

Extension MagneticFieldSimulation
!Extension

Fig. 10. Part of the VR configuration file used to load and configure all
needed plug-ins.

detail. It was noted, that the process of registering real and
virtual objects involves many steps, like camera and HMD
calibration and modelling 3D objects. As is, it is an iterative,
trial-and-error process. This should be handled in a structured
and integrated way by adding tools that support the developer.

Since smart phones have an ever increasing potential as AR
devices, we would like to port our software to powerful cell
phone platforms.
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