SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

37

Creating 3D Scenarios with OGRE Creativity Labs

Paulo N.M. Sampaio', Duarte J.O. Teixeira®, Duarte M. Fernandes®

Salvador University (UNIFACS)!
Computing and Systems Research Center - NUPERC
41950-275, Salvador, Bahia, Brazil

email: paulo.sampaio@pro.unifacs.br

Abstract — Currently, there are several languages and tools to
provide the creation of 3D scenarios. However, the existing
approaches are not intuitive and require further knowledge of
the user. This paper introduces an application to allow the
creation of virtual scenarios with high graphical quality called
OGRE Creativity Labs (OGRE-CL). OGRE-CL provides OGRE
application developers with a graphical environment for the
rapid prototyping of 3D scenarios, and the subsequent automatic
generation of the respective OGRE code. With this tool,
developers can have their development time optimized since they
rather focus on the codification of the dynamics and strategies of
the application being developed without spending much time with
the design of its graphical components.

Keywords-component; 3D, OGRE, Virtual Reality, XML,
Authoring Tool, Virtual Scenarios, OGRE-CL

L INTRODUCTION

Once 3D application developers have available the set of
3D objects to be deployed in their application, they can apply
different languages and tools available for the development of
virtual worlds. Nevertheless, the existing solutions are not
intuitive and require from the developer a deeper knowledge of
their components, representation and structure in order to be
able to create a virtual environment. Furthermore, most of the
existing solutions still lack the possibility of creating more
complex virtual scenarios with: a high graphical quality; the
possibility to integrate multimedia presentations inside the
virtual world; the development of distributed applications
which are able to provide remote navigation or communication
tools such as VoIP (Voice over Internet Protocol), chat, etc.,
among other advanced features.

One of the existing solutions for the development of Virtual
Reality applications is the utilization of the graphical rendering
engine OGRE (Object-Oriented Graphics Rendering Engine)
[1]. OGRE is a scenario oriented 3D game engine written in C
++ which makes available a library of classes (APIs) for the
description of virtual worlds and objects in a high abstraction
level and graphical quality.

In order to understand the features of the existing OGRE
authoring tools, and to better determine the functionalities of
the application to be developed, it was important to carry out a
literature review. Some of the most promising OGRE editors
available are Ogitor [2], OGRE Editor Multi Scene Manager

ISSN: 2236-3297

Madeira Interactive Technologies Institute (M-ITI)*?
University of Madeira (UMa)
Funchal, Madeira, Portugal

email: duartejoacornelas@hotmail.com?,
dmf000@yahoo.com?

Project Environment [3] and OGRE — MOGRE Editor [4].
These applications are in general well conceived and simple in
order to allow the creation of virtual scenarios and they can be
found in different states of completeness, sometimes being able
to adapt themselves to new APIs and libraries. However, most
of these tools have a proprietary representation for the virtual
scenario created, and they do not allow exporting the respective
OGRE code for further implementations.

The main goal of this paper is to introduce and discuss the
development of OGRE Creative Labs (OGRE-CL), a graphical
authoring tool for providing the intuitive creation of OGRE
virtual scenarios. The development of OGRE-CL has been
based on the proposal of an XML-based language called
OGREML which is applied for providing the interoperability
of OGREML-compliant authoring tools. OGRE-CL is a
meaningful solution to OGRE application developers since this
tool allows the rapid prototyping of 3D environments, and the
subsequent automatic generation of OGRE code. OGRE-CL
allows developers to optimize the prototyping of their
applications since the time dedicated to the design of their
graphical interface is reduced, allowing developers to focus on
the programming of the dynamics and strategies of their
applications. Thus, OGRE-CL is helpful to reduce considerably
the development time of OGRE applications.

This paper is organized as follows: In the next section the
structure of OGREML is presented; After that, some OGRE-
CL’s implementation issues are discussed, followed by the
presentation of some functionalities of this tool; The automatic
generation of OGRE code is also discussed in the sequence,
and; finally some conclusions of this work are presented.

II. OGRE MARKUP LANGUAGE (OGREML)

According to the literature review, it was possible to verify
that there are few authoring tools for OGRE 3D environments.
Even though, these tools have a proprietary code and do not
allow the generation of the final OGRE code (C++ or C#). For
this reason, it was important to provide a solution for
generating OGRE code automatically, thus optimizing the
prototyping of OGRE applications.

38

SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

With this goal in mind, the XML-based language
OGREML (OGRE Markup Language) was proposed at
University of Madeira [5] as a common representation for the
description of OGRE 3D scenarios to be exchanged among
different OGREML-compliant development tools. OGREML is
composed of four major components: Ambient, Objects,
Multimedia and NetworkConfiguration. All these components
are gathered in the main block SceneConfiguration, as depicted
in Figure 1.

<SceneConfiguration>

</Ambient>

</Objects>

</Multimedia>

</Network>

</SceneConfiguration>

Figure 1. Main components of OgreML

The component Ambient contains all information about the
environment of the scenario, such as the color of ambient light,
fog, sky, plane and camera. This component also contains a
description of the sky, plane and values of position and rotation
of the camera.

The Objects component contains a description of all objects
in the scene and their attributes such as: id, position in the
scenario, scale and rotation, mesh file and if it can cast
shadows.

The component Multimedia defines synchronized
multimedia presentations that may consist of videos, images
and sounds, and they will be displayed in the virtual world after
the activation of a trigger [6].

The NetworkConfiguration represents the configuration of
different network services among distributed OGRE
applications, such as chat, VoIP and distributed navigation [7].

OGREML uses a simple description to represent all the
components of an OGRE 3D scenario, being at the same time
expressive since it supports most of the OGRE development
components. In the next section we present further details about
the implementation of OGRE-CL.

III. OGRE-CL: DESIGN AND IMPLEMENTATION ISSUES

Some of the main issues related to the implementation of
OGRE-CL are related to its requirements, architecture, and
implementation aspects.

The requirements are related to the functional and non-
functional features of a system to be developed [8,9]. Some of
the functional requirements defined for the development of
OGRE-CL are:

e create a 3D virtual scenario;
e open apreviously created virtual scene, and;
e Configure and edit a virtual scenario according to a set
of parameters supported by OGREML, such as:
- set the ambient color of the scene;
- set the shadow type used in the scenario;
- define the type of fog technique;

- add/remove lights to the scenario;

- change and define the light type
(specular/diffuse light);

- change light position/direction;

- define sky type;

- define the plane;

- define camera values;

- add/remove objects to the scenario;

- change position, scale and rotation of the
objects in the scene, and;

- insert and remove mesh files to/from the
library of objects.

The OGRE-CL architecture is divided into three sub-

modules (Figure 2): User Interface, OGRE-CLGUI and OGRE-
CL3D.

OGRE-CL

User Interface

OGRE-CL3D
(Mogre)

OGRE-CL
(GuI)

-

Figure 2. Architecture of OGRE-CL

The User Interface is responsible for receiving all the user
interactions and directing them to their respective module for
subsequent processing. The module OGRE-CLGUI is
responsible for handling the interactions with the user, opening
new projects, configuring the 3D scenarios and saving projects
in OGREML files. At last, The module OgreCL3D is
responsible for interacting with OGRE, applying the changes to
the virtual scenario. Besides setting the scenario, this module is
also responsible for managing wuser interactions. The
communication between OGRE-CLGUI and OGRE-CL3D is
done through pipes - an application sends a command, the other
application receives it, interprets it and, based on internal
processes, executes it.

OGRE-CL has been implemented using Visual Studio C #
2008 [10].

IV. OGRE-CL FUNCTIONALITIES

This section illustrates the utilization of OGRE-CL for the
authoring of 3D scenarios. After starting OGRE-CL, the initial
screen presented to the user is composed of two main parts
(Figure 3a): (1) the left column where all the configuration of
the scenario can be done (configuration area), according to the
OGREML scenario structure (e.g., Scene Configuration,
Objects, Multimedia and Network Configuration), and; the
right window, also called OGRE rendering window, where the
virtual scenario is presented.

ISSN: 2236-3297

SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

39

(2)

Figure 6. Application of a fog technique / Cloning an object

When the user creates a new project (virtual scenario)
with OGRE-CL, an empty rendering window is presented.
Initially, when creating a new scenario, we should configure
the main characteristics of this scenario (Scene
Configuration). Figure 3b illustrates the plane configuration.
After entering values and clicking on the "Apply" button, we
can see in the rendering window the presentation of the
newly created plane. At any time, these parameters can be
modified in order to customize the scenario.

ISSN: 2236-3297

Some of the functionalities of OGRE-CL illustrated
through Figures 3 to 6 are:

o Configuration of the ambient light color using a
palette of colors (Figure 4a);

e Addition of new objects from the library to the
scenario (Figure 4b);

e Manipulation of the 3D objects within the scenario
according to an X (red arrow), Y (green arrow) or Z
(blue arrow) axis, as depicted in Figure Sa;

40

SBC Journal on 3D Interactive Systems, volume 4, number 1, 2013

e Scaling an object’s size directly in the rendering
window (Figure 5b);
Application of a fog technique (Figure 6a), and;

e Cloning one or more objects in the scenario
simultaneously (Figure 6b).

As we can notice, OGRE-CL is an easy to use graphical
environment for optimizing the creation of OGRE
applications. With this tool OGRE developers are able to
quickly design the main virtual scenarios of their
applications, being able to further generate the respective C#
code related to the virtual scenarios conceived.

V. GENERATING OGRE CODE AUTOMATICALLY

The development of OGRE applications requires a
considerable programming effort from the OGRE developer
since all the code must be developed in C++ or C#. For this
reason, the development process of these applications is
rather complex and time-consuming since the OGRE
developer has to code all the virtual scenarios to be applied
in his application. After that, the developer is supposed to
implement all the dynamic aspects of his application, such as
the strategies, events handling, artificial intelligence, etc.

In order to facilitate the development of OGRE virtual
scenarios a generic solution was proposed for promoting the
interoperability among different OGRE authoring tools, and
further automatic generation of the respective code with the
description of the virtual scenarios. This solution relies on
the utilization of OGREML for the complete description of
OGRE virtual scenarios and further exchanging this
description among different OGREML-compliant tools.

OGRE-CL

Figure 7. Interoperability among OGREML-Compliant tools

For instance, virtual scenarios can be created using
OGRE-Creative Labs (OGRE-CL), and by means of
OGREML, be exported to Ogre Coder (OGRE-Coder), also
developed at University of Madeira [5] for the automatic
generation of C # code, as illustrated in Figure 7. The
integration of an authoring tool for the creation of virtual
scenarios (OGRE-CL) with OGRE Coder for the automatic
generation of C # code allows a more rapid prototyping of
OGRE applications.

VI. CONCLUSIONS

In this paper we presented the main aspects of the
development of a useful tool for the rapid development of 3D
scenarios, OGRE Creative Labs (OGRE-CL). The
development of OGRE applications attracts a large
community of interested developers in particular due its high
graphical quality and the amount of APIs available for
development. OGRE-CL provides a simple interface for the
composition of virtual scenarios based on OGRE. Also some
other important characteristics of OGRE-CL is that it relies
on an extensible library of objects (meshes) that can be used
to create the virtual scenarios, and; with the proposal of
OGREML, this language provides the complete description
of OGRE virtual scenarios, and promotes the interoperability
of OGRE authoring tools.

With the utilization of OGREML, OGRECL becomes an
interesting solution for OGRE developers since they can
minimize the time for designing the graphical interface of
their applications, and after that they can apply OGRE-Coder
to generate automatically the OGRE code related to his
scenarios. Another advantage of this approach is that it
encourages the team development since graphical designers
can work together with OGRE developers in order to
produce more appealing and effective OGRE applications.

REFERENCES

1. OGRE — Open Source 3D Graphics Engine. (2001). Last visited in
November 2010. http://www.ogre3d.org/

2. Ogitor SceneBuilder. Last visited in
http://www.ogitor.org/HomePage

3. OGRE Editor Multi Scene Manager Project Environment. Last visited in
November 2010. http://www.youtube.com/watch?v=TU_Tc4EBLHQ

4. OGRE - MOGRE Editor. Last visited in November 2010.
http://www.youtube.com/watch?v=xXJDvKzY 1 Us& feature=related

5. Fernandes, M.D. (2010). Basis for the Automatic Generation of OGRE
Virtual Scenarios (In Portuguese). M.Sc. Dissertation in Informatics
Engineering — University of Madeira, Madeira, Portugal.

6. Freitas, R. (2007). Multimedia Presentation in Virtual Environments (In
Portuguese). B.Sc. Dissertation in Informatics Engineering —
University of Madeira, Madeira, Portugal.

7. Cardoso, G. (2007). Uma Virtual — Basis for the development of
complex virtual environments (In Portuguese). B.Sc. Dissertation in
Informatics Engineering — University of Madeira, Madeira, Portugal.

November 2010.

8. Oberg, Roger. Probasco, Leslee. & Ericsson, Maria(2010). Applying
Requirements Management with Use Cases. Rational Software —
Technical Paper TP505. On November 8th 2010, from
http://www.wthreex.com/rup/papers/pdf/apprmuc. pdf

9. Malan, R.; Bredemeyer, D. (2009). Functional Requirements and Use
Cases. Bredemeyer Consulting - White Paper. 8/3/01 On November
8th 2010, from http://www.bredemeyer.com/ use cases.htm

10. Visual Studios 2010 Editions — Microsoft Visual Studio. Last visited on
November 2010. http://www.microsoft.com/visualstudio/en-
us/products/2010-editions

ISSN: 2236-3297

