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Abstract. The rapid advancement of Brain-Computer Interface (BCI) technology has facilitated its employment in
non-clinical contexts, including games. Electroencephalography (EEG)-controlled games merge the benefits of both fields,
as they can be employed in both serious and entertainment contexts due to their ludic and engaging nature, in addition
to being accessible to people with physical disabilities. Despite these benefits and the overlapping of different fields,
there is still a lack of representational schemes for these games, as current theoretical models can only represent BCI
systems and games separately. This work introduces a unified model for games that use EEG-based BCI controls, assisting
researchers in effectively developing and analyzing such games by providing a framework for instantiating their abstract,
structural and functional components. Its utility and representativeness were evaluated using a selection of EEG-controlled
games from existing literature, which demonstrated the model’s effectiveness in classifying and detailing these games.
Recurring attributes and descriptive values were also identified and organized based on the sample studies, showing how
the components of the model could represent the functioning and structure of EEG-based games.
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1 Introduction
The recent evolution of Brain-Computer Interface (BCI) tech-
nologies allowed the development of novel applications both
for clinical and domestic environments [Ferreira et al., 2013].
Games based on electroencephalography (EEG), a specific
modality of BCI, are being increasingly developed and ap-
plied in both contexts, especially because they can be played
potentially by any person regardless of physical impairments,
as the EEG signals are read and translated by the application
directly from the brain [Wolpaw et al., 2002].

In this context, EEG-based BCI are usually employed in
serious games, which are developed and used for any purpose
other than (or in addition to) entertainment [Laamarti et al.,
2014]. These games have potential to be employed in many
different fields and applications, such as being a treatment
option to help patients in rehabilitation [Lazarou et al., 2018],
helping in cognitive assessment and evaluation [Marçal et al.,
2022; Costa et al., 2025], and training cognitive functions
through neurofeedback [Friedrich et al., 2014; Vasiljevic and
de Miranda, 2019a,b; Monteiro and Adamatti, 2020]. How-
ever, given the evolution of BCI algorithms and the emergence
of consumer-grade EEG devices, these games are also starting
to be developed to be used solely for entertainment purposes
[Vasiljevic and de Miranda, 2020a], benefiting both healthy
and impaired players.

The development of BCI games raises challenges that are
related to both fields [Kerous et al., 2018; Sung et al., 2012].
From the perspective of BCI, the developer must ensure that
the system is precise enough to capture, process and identify
the target neural mechanism (and thus, the player’s intention)

accurately in real time. From the perspective of games, the
developer must also ensure the game flow, so that the player
is immersed into the game, have fun playing it and desire to
play it again, even if its purpose is not solely entertainment.
Thus, it is required domain over knowledge from many differ-
ent areas that are related to both games and BCI, including
Signal Processing, Machine Learning and Human-Computer
Interaction (HCI).

Despite the solid theoretical foundation derived from
these multiple fields, there is an absence of a formal and
comprehensive definition of a representative scheme for BCI
games. Existing models and schemes from the literature can
describe specific aspects of BCI-based systems or games, in
both general and specialized perspectives. However, these
models can only represent EEG-controlled games as a BCI
system or as a game—not as a whole, single entity, thus ne-
glecting the interconnected nature of these systems. To our
knowledge, up to the development of this work, there were no
model for representing the entirety of EEG-controlled games
and the specific components, attributes and features that con-
stitute them.

The definition of a consistent model for a given entity of
interest is important for several reasons. It can be considered
as a first step for unifying the terminology of the field, thus
providing a common framework for researchers and develop-
ers to collaborate and increase consistency in the development
of BCI games. It also facilitates the comparison of different
studies and approaches, since the games they employ can be
compared directly in a standardized manner. Moreover, given
the complexity of the design space for BCI games (consid-
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ering, for example, the range of possible control signals and
interaction paradigms) and the variety of user experiences
made possible by these games, a comprehensive and general
model could aid game designers, researchers and developers
to guide their design process, especially considering profes-
sionals coming from other fields.

In addition to these direct implications facilitated by a
standard model, a common framework for BCI games can
also influence in the advancement of the field by promoting
further research and innovation, since researchers can build
upon this model to adapt it for specific scenarios, and ex-
plore new experiment possibilities and game design ideas
with novel combinations of attribute values for components,
thus possibly leading to the discovery of more effective and
innovative interaction for BCI games. Finally, considering
ethical and privacy concerns associated with the acquisition
and use of information acquired directly from the brain [Bur-
well et al., 2017], a comprehensive model can help to identify
potential ethical concerns and improvement options in each
of its components. This could guide developers in creating
games that caters for user privacy, ensuring responsible and
ethical implementation of BCI technology in gaming.

In this sense, the main objective of this work is to de-
scribe a general model for EEG-controlled games, and to
demonstrate the usefulness and representativeness of this
model with BCI-based games from the literature. The pro-
posed model intends to unite concepts and vocabulary from
both fields into a single theoretical framework. This objective
is guided by the following Research Questions (RQs), which
also guided the development of the model:

• RQ1: Can EEG-based BCI games be described as a
single entity, as opposed of separate BCI and game sys-
tems?

• RQ2: Can this model represent both the conceptual,
functional and structural components of a BCI system
and a game simultaneously?

• RQ3: Is this model adequate in representing important
attributes of existing BCI-based games in comparison to
existing schemes?

These research questions are motivated by our hypothe-
sis that current schemes, by focusing on either BCI or games,
do not represent the intrinsic attributes of EEG-based games
that arise from the unification of both fields, especially at
the conceptual and structural levels (RQ1). These definitions
could help not only in characterizing, describing and classi-
fying existing systems with a finer level of details, but also
to provide a theoretical and architectural background for the
development of future EEG gaming systems, both for serious
and entertainment applications (RQ2). Moreover, the defini-
tion of this model does not disregard or aim at substituting
existing schemes for BCI or games, especially considering
the recent efforts to standardize the terminology of the field
of BCI. Instead, by unifying aspects of both fields, it is capa-
ble of not only representing the fundamental characteristics
proposed by these models, but also the emerging features that
are exclusive of BCI-based games (RQ3).

This work is organized as follows: Section 2 presents the
related work, including other models and how they are related

to our study; Section 3 describes the proposed model and its
development process; Section 4 presents a demonstration of
the model using games from the literature; Section 5 discusses
the results of the demonstration and the implications of the
model for the literature; and Section 6 concludes the paper.

2 Related work
Studies related to the current work present models, frame-
works or conceptual schemes regarding games, BCI systems
and BCI-based games. For both fields, there are examples
of abstract models and frameworks for representing those
systems in a general or specific manner, given that they can
be applied in a number of different contexts depending on
their purpose. It is reasonable to assume that there is a higher
number of models for representing games, given that the field
of games is relatively older than the field of BCI. We will
focus on describing those that are closely related or pertinent
to the scope of this work.

For the field of BCI, the studies from Mason and Birch
[2003] and Mason et al. [2005] are closely related to the
scope of our work. In the model presented by Mason and
Birch [2003], which was derived using concepts from related
fields such as HCI, the BCI system was described based on
its functional components, and was employed as a base for
constructing a framework and a taxonomy for BCI design.
This model and taxonomy were later updated and expanded
by Mason et al. [2005], using the Human Activity Assistive
Technology model as base for its construction. Thus, this
model considers BCI systems as an assistive technology, fo-
cusing on people with functional limitations that uses these
systems to overcome an ability gap and perform an action in
the environment.

More recently, Kosmyna and Lécuyer [2019] presented
a conceptual space for EEG-based BCI systems. The authors
described key concepts of BCI systems and their possible
values, divided into four axes with nine sub-axes. These axes
represent information about when the BCI system is used (i.e.,
the temporal features of the BCI system, such as whether its
commands are employed actively or passively by the user);
for what it is used (its application and employed neural mech-
anism); how it is used (multi-modal aspects of the system);
and where it is used (virtual, physical or mixed environments).
The authors demonstrate their conceptual space by instantiat-
ing a set of BCI-based systems from the literature, and found
that most systems are based on virtual environments, using
event-related (de)synchronization as neural paradigm, and are
synchronous (the user must wait for a trigger to use a BCI
command).

The functional model introduced by the IEEE P2731
working group is also a recent representational scheme for
BCI systems, which divides the system into specialized func-
tional modules, going from stages such as the data collection,
transducer and control interface [Easttom, 2021]. The model
is intended to serve as a base reference to unify the terminol-
ogy of BCI systems, by means of representing the functioning
of such systems in a general manner. The model itself is
also based on the classical closed-loop scheme, and details
each stage by means of describing the possible components
of each module and their instantiation values. The model
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also includes the user as one of its components, and considers
hybrid systems by representing other brain imaging methods
in addition to EEG, and other physiological signals such as
electromyography (EMG), electrooculography (EOG) and
electrocardiography (ECG) as input modalities.

As stated in Section 1, BCIs are usually (but not exclu-
sively) employed in serious games, given the intersection of
contexts and applications for both fields. Models and clas-
sification schemes for serious games are presented, for ex-
ample, in the works of Djaouti et al. [2011] and Lope and
Medina-Medina [2017], which present taxonomic schemes
for representing and classifying serious games, while McCal-
lum and Boletsis [2013] present a classification scheme for
the specific case of serious games for dementia. Considering
both fields, there are also studies that focus on representing
BCI-based serious games. Sung et al. [2012], for example,
present a methodology and development architecture for cre-
ating new EEG-based serious games, which define roles for
experts, game developers and designers in the development
process and unify methodologies from both fields.

Although these models can represent a wide variety of
BCI-based systems and their related concepts, to our knowl-
edge there are currently no models for representing the case
of EEG-controlled games. The BCI models presented in the
literature can represent systems in a general manner and as a
special case of assistive devices. However, specific compo-
nents related to the game part of the system may be lost in this
context. In the same sense, models for representing games,
both general and specific, are not able to represent the compo-
nents related to the capturing, processing and application of
EEG signals from the user to the game. As detailed in Section
1, the definition of a specific model for the field could provide
a standardized framework for representing EEG-based games,
thus facilitating the comparison of different implementations,
studies that employ them, and guide the development of new
BCI games.

In this context, the model proposed in this work draws
inspiration from related works of both fields, and was de-
veloped to close the gap between BCI and game systems by
representing both as only one entity. The terminology defined
in more general schemes was adapted to the context of both
BCI and games. Our proposed model is also integrated in
the sense that it integrates both structure and function in each
of its components, allowing it to be used, for example, as an
initial frame of reference for the system architecture of new
EEG-based games. It is also unified, in the sense of unifying
concepts, components and definitions of schemes from both
BCI and games into a single theoretical model.

The proposed model expands upon the concepts pre-
sented in previous frameworks by integrating the neural, in-
teractive and technical aspects of EEG-controlled games into
a unified scheme. The general framework proposed by Ma-
son and Birch [2003] and its later revision by Mason et al.
[2005], although provides a model for describing the oper-
ational flow of BCI systems, are primarily oriented toward
assistive and rehabilitation contexts, and do not explicitly ad-
dress entertainment-based applications such as games. The
conceptual space introduced by Kosmyna and Lécuyer [2019]
defines a set of dimensions for describing EEG-based BCIs
according to various aspects, serving as a descriptive, compar-

ative and taxonomic tool, but does not consider the integration
between aspects related to game-specific applications, such as
gameplay mechanics and their corresponding neural control
signals. Likewise, the IEEE P2731 model [Easttom, 2021]
focuses on standardizing terminology and functional modules
of BCI systems, but abstracts contextual aspects of their appli-
cations, such as in the context of entertainment and/or game
environments.

In comparison to existing frameworks, the proposed
model extends the classical closed-loop BCI architecture by
incorporating, in addition to the more general EEG acquisition
and processing components, elements related to game logic,
control mechanics, and feedback interfaces. This integration
provides a more complete and specialized representation of
EEG-controlled games, allowing for their description, com-
parison and design within a single conceptual and functional
model.

3 The MEG21 model for
EEG-controlled games

In this section, the proposed general model for EEG-
controlled games is presented, including its development pro-
cess and how its final version was derived. We start by con-
sidering the principles that were considered for constructing
the model, as they were the base for its initial derivation and
current structure. Then, we detail the development process
and the method for deriving its initial version, followed by
the iterative process of refinement for its final version. Each
final component is then described in sequence.

Our main goal was to construct an integrated model, in
the sense of joining both function and structure of BCI and
game components into a single scheme. This allows to con-
sider not only the commonly employed architecture of those
systems, in the sense of abstract and concrete implementa-
tion, but also the functions that these components perform
in the system and the relation between then, including pro-
cessing and transmission of input data, and the responses that
each component produces for the following as output after
transformation.

For presenting this model, we start by describing the
principles and theoretical foundation for its construction, fol-
lowed by its derivation process. We then detail this process
and describe each component individually. As the model is
also unified, considering that it unifies concepts and defini-
tions from various sources from the fields of BCI and Games,
we also present a list of sample studies that were employed
both for defining, refining and/or specializing the model’s
components.

3.1 Foundation and principles
The main methodological background for construction the
proposed model came from the fields of BCI and Games. As
the model is intended to represent EEG-controlled games,
theoretical knowledge from classic BCI works (e.g., Mason
and Birch [2003]; Mason et al. [2005]; Wolpaw et al. [2002])
and the analysis of various BCI games from the literature (e.g.,
Bos et al. [2010]; Kaplan et al. [2013]; Kerous et al. [2018];
Marshall et al. [2013]; Ferreia et al. [2012]; Ferreira et al.
[2014]), in addition to previous experience on both the devel-
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opment, evaluation of such games and their employment in
controlled empirical experiments [Vasiljevic et al., 2018a,b;
Vasiljevic and de Miranda, 2019b,a, 2024b], served as the
foundation for constructing and refining the model. More
specifically, in addition to the theoretical and related studies,
we started by analysing 82 games based on consumer-grade
devices, which were gathered from 87 studies from over 800
articles [Vasiljevic and de Miranda, 2020a]. We later ex-
panded this analysis to include BCI systems and games in
a more general sense, including BCI games based on non-
consumer-grade EEG devices, with over 600 studies analysed
for possible games (not considering studies that employed
games for EEG analysis, but that were not directly controlled
by the EEG signals). A sample collection of these games and
other secondary studies that were employed for defining and
refining the model, as well as the methods for searching and
selecting these sources, is provided next.

With the aim of being as general as possible, the model
was constructed for representing virtually any kind of game
that is controlled in any aspect using EEG. The main prin-
ciples (px) that guided the construction of the model were
that:

p1. The BCI system and the game system should be as less
dissociated as possible;

p2. The model should be general enough to represent as best
as possible any EEG-controlled game currently available
in the literature; and

p3. The model should be expandable and adaptable for spe-
cific situations and contexts.

These main principles were based on the proposed Re-
search Questions and their goals, as described in Section 1.
For deriving the current version of the model, we start by
considering a more abstract functional architecture for BCI-
based systems. Then, we simplify this architecture to the point
where it can be used for representing the specific case of EEG-
controlled games in the most general sense. Then, we apply
a reverse process of detailing this simplified architecture in
incremental steps, considering both structural and functional
components obtained from EEG-based games and other the-
oretical literature works from the fields of BCI and games,
and iterate this construction until all relevant components are
described.

More specifically, in this last stage, the model was refined
in an iterative, incremental process consisted mainly of fitting
games obtained from the literature in its components, and
thus identifying missing, important components that could
help describing those games more accurately. This process is
illustrated in Fig. 11, while the logic that guided its derivation
is described in the following subsection.

Fitting

New version 

of the model

Final version

of the modelIdentification of 

new components

Theoretical 

literature works

EEG-based 

games

Initial version 

of the model

Background Refinement

Figure 1. Development process of the model.

1All figures presented in this work are vectorial. This means that they
can be enlarged by the reader as required without loss of resolution.

3.2 Model derivation and construction
The model itself is based on the closed-loop neurofeedback
scheme for BCI-based systems (Fig. 2). In this scheme, the
BCI system is de-composed into six main steps represent-
ing its function: data acquisition, pre-processing, feature ex-
traction, feature classification/translation, application, and
(neuro)feedback [Wolpaw et al., 2002]. This scheme is largely
seen in a number of studies, in which the BCI system architec-
ture is based or adapted from it (e.g., Hasan and Gan [2012],
Koo et al. [2015], Lalor et al. [2005], and Tangermann et al.
[2008]), and resembles other BCI-based models, such as the
functional models of Mason and Birch [2003] and of the IEEE
P2731 working group [Easttom, 2021].

Pre-processing

EEG data acquisition

Neurofeedback

Feature extraction

ClassificationApplication

Person

Figure 2. Classic closed-loop neurofeedback architecture.

In a general sense, the classic BCI system can be seen as
a filter (or transducer), receiving and transforming an input
signal (the EEG data from the user) into an output control
signal (for the application to consume). The target application
then feeds the results of this control signal back to the user,
which in turn consciously or unconsciously alters his/her brain
electrochemical dynamics in response, and this change is
then captured by the EEG acquisition device, composing the
closed-loop architecture. Thus, the classic BCI closed-loop
architecture scheme from Fig. 2 can be simplified into the
following model (3):

EEG signal

Neurofeedback
Application

BCI transducer

Control signal

Person

Figure 3. Simplified closed-loop neurofeedback model.

In the proposed model and in the context of games, the
target application is the game itself, being directly or indi-
rectly controlled by the control signal provided by the BCI
transducer. The model is derived by an even more simplified
scheme (Fig. 4), in which the game and the BCI transducer
are seen as only one entity (based on principle p1 of the model,
as described in Section 3.1): the EEG-controlled game, which
receives an input from the player, and provides a feedback
based on its current internal state.

It is important to notice that, in this simplified scheme,
the input is not restricted to an EEG signal, nor is the feedback
restricted to a neurofeedback itself. The reason is that, in the
context of games, the application can be controlled not only
by the EEG signals, but by other forms of controls as well,
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EEG-controlled game

Input

Feedback

Player

Figure 4. Simplified EEG-controlled game model.

such as physical ones (e.g., mouse, keyboard, joysticks, and
gamepads), non-physiological ones (e.g., voice, eye move-
ments, and gestures) or other physiological ones (e.g., heart
rate, muscle activity, breathing rate, and electrodermal activ-
ity)2. In the same context, the feedback provided by the game
can not only represent the response to the EEG-based control,
but it can also represent the changes in the game world (and
in the objects contained in this world) that were caused both
internally by game itself, and externally by the physical and/or
physiological controls from the player(s).

These details are fundamental for the detailing of the
model. Every component of the simplified model can be
further decomposed into several parts: The input is com-
posed of the EEG input and other physical/physiological in-
puts; the feedback is composed of both the feedback from the
game’s virtual interface and/or the neurofeedback; and the
EEG-controlled game is an implementation that contains the
game logic, including the control mechanics and the game
world, and an interface to receive the input(s) and to provide
feedback to the player. This more detailed model is repre-
sented in Fig. 5.

Feedback

EEG input

Other (non-)physiological input

Input
Interface

Neurofeedback

Virtual feedback

Control interface

Virtual interface

Implementation

Game logic

Control mechanics

Game world

Sensory stimuli

Player

Figure 5. Detailed EEG-controlled game model (dashed lines represent
optional elements).

In this model, the optional components are marked with
non-continuous lines. The presence of optional components
contributes for a more adaptive scheme (based on principle
p3 of the model, as described in Section 3.1). Here, the other
physical and physiological inputs are optional, as the model
represents and focus on EEG-controlled games. The control
interface receives the input and translates it into control sig-
nals, which are employed as control mechanics in the game
logic to alter the game world. This change in the game world
reflects on the virtual interface, which presents its state to the
player in the form of a feedback. This feedback can be visual,
auditory or somatosensory (haptic/vibrotactile or thermal).

Although the virtual feedback is always present, as it
represents the game environment and the status of the game to
the player (assuming that a player cannot play a game without

2This is also the reason that the game component is referred as “EEG-
controlled” rather than “EEG-based” in this work, as the first term is a
generalization of the latter, that is, it can represent any game that is controlled
by EEG, including those that are based solely on this kind of control.

knowing at least its status in a finite amount of time), the
neurofeedback is optional, as the game can be played using
a passive BCI (e.g., passively adjusting the game difficulty
using the player’s emotions), and thus no neurofeedback is
explicitly provided. The sensory stimuli is another optional
element which was introduced based on both principles p2
and p3 of the model (as described in Section 3.1), as specific
control signals (e.g., SSVEP3 and P3004) require an external
stimulus to be generated and recorded by the EEG device.

Finally, the detailed model presented in Fig. 5 can be fur-
ther detailed to represent all components of an EEG-controlled
game. This allow for the instantiation of each of these compo-
nents in a very specific sense, as opposed to a more abstract
model. This complete general model can be seen in Fig. 6.
For this expansion, both the BCI and non-BCI inputs are de-
tailed and captured by the corresponding control interface.
The game world is also detailed based on the definitions of
games as a collection of game objects inserted in a game
environment, in which playable and non-playable characters
interact with. The feedback is also detailed to include sensory
modalities and the separation of BCI and non-BCI feedbacks.
Each of these components are detailed next and their descrip-
tion are summarized in Table 1.

In the complete model, the EEG input is captured in
the data collection step by sensors connected to an EEG
device, which transfers the acquired EEG data to the BCI
module in the control interface for the processing of this
data. This include the classic steps in a BCI system, that is,
pre-processing, feature extraction, classification, and sending
the classified control signal to the application (i.e., the game).

In regression tasks, where there is no need for a classifier
and the system translates the signal’s extracted features di-
rectly into a continuous variable to be employed by the game
(e.g., applying the theta/beta ratio to calculate the players’
level of attention, or alpha levels to estimate the player’s level
of relaxation), the module transmits the processed feature
translation directly to the game after the feature extraction
step. There can also be an intermediate, optional step for
feature selection before the actual classification, usually em-
ployed to increase the classifier’s accuracy.

The received control signals are then employed as con-
trol mechanics in the game logic, altering the game world
and its components, that is, the game environment, and even-
tual player characters, game objects, and Non-Playable Char-
acters (NPCs). Every component in the game world, with
exception of the game environment, are optional, as a game
can be designed with or without objects and characters, but not
without an environment in which the game logic occurs and
that the player can interact with it in any manner. If exists, the
player character can interact with both the environment and
its objects and with other non-playable, computer-controlled
characters, or even with other player characters, in the case
of multiplayer games. The NPCs, while being agents, can
perceive and/or perform actions in the environment.

In the same sense, the other physiological and non-
physiological data, labelled as “Non-BCI” for a more general

3Steady-state visually evoked potential. A potential that is evoked when
a visual stimulus, such as a blinking light, is presented at a steady rate.

4A positive potential that is evoked approximately 300 ms after an odd-
ball stimulus.
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term, are handled by their own modules and control their own
mechanics within the game logic. They are also optional com-
ponents, given that the game can be designed to be controlled
solely with EEG controls. All these changes, performed by
the player or by the game itself, are then updated in the game’s
virtual interface, which is composed by the game world inter-
face, the neurofeedback interface, and the stimuli generator.

The game world interface is used to represent all com-
ponents of the game world, including the player character
and the NPCs. This interface can contain the neurofeedback
interface and the stimuli generator, or these components can
be separated, having their own interfaces (e.g., the stimuli
generator or the neurofeedback can be contained in a separate
screen or a device connected to the subject’s body). While
the game world interface and the neurofeedback interface
provide feedback for the player, the stimuli generator pro-
vides a sensory stimulus, in accordance with the previously
presented model in Fig. 5. There is also a representation for
storage, since data from the EEG and non-EEG signals, their
processing, and game events may be stored for use in online
playing or offline analyses.

3.3 Component sources
As aforementioned, several sources from primary and sec-
ondary studies were employed for both the initial version of
the model and for refining it to its current version. Table 2
presents a group of these sources and the components that
were defined, refined or specialized based on them, including
whether the component was proposed by unifying concepts

that are related to both BCI and games. Sources employed for
defining components were mostly employed in the derivation
and construction of the initial version of the model. Sources
employed for refining the model were employed in the inter-
active refinement cycle as shown in Figure 1, while sources
employed for specializing were employed in latter stages of
refinement or demonstration.

We sampled sources from all of these stages of construc-
tion and refinement for composing Table 2. For defining
components, we listed several characteristics that were con-
ceptualized or reported in secondary and primary studies. For
refining, we further joined similar concepts in broader cat-
egories or divided into more specific components. We later
specialized the components by considering how they could be
described using common and recurring classification values
found in primary and secondary studies, further refining the
model to its current state. Note that some sources are not from
the context of games, even when helping in defining game-
related components (e.g., BCI control mechanics within the
game, abstracted from the control for a general application).
Also, due to the iterative nature of the refinement process,
the same source could be employed for defining, refining or
specializing different components of the model.

The selection of studies to base the construction of the
model was performed in two parts. First, we employed all
studies that were analysed from our previous systematic liter-
ature review on games using consumer-grade EEG devices
[Vasiljevic and de Miranda, 2020a] and its related works. As
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described in Section 3.1, these included 82 games from 87
primary studies. As these studies are restricted to the scope of
consumer-grade devices, we later perfomed another structured
search in major scientific databases, including Scopus, Web of
Science, and Google Scholar. As with the systematic review,
the search strategy combined terms related to the field of BCI
(i.e., BCI, brain-computer interface, brain-machine interface,
BMI, EEG, electroencephalogram, mind-controlled, brain-
controlled, neurofeedback, and biofeedback) and application
context (i.e., game, entertainment, gaming, and videogame),
but without terms that would filter technology (for consumer-
grade devices) or time, as was with the systematic review.

Studies were included if they (i) explicitly employed EEG
signals as part of the interaction or adaptation mechanisms
of a game, (ii) provided sufficient methodological detail to
identify their components, and (iii) were written in English,
Portuguese, or Spanish. Exclusion criteria comprised review
papers, studies without EEG integration (or that would use
EEG for monitoring only, rather that actively or passively

controlling the game), and works focusing solely on invasive
recordings. The retrieved works were screened manually, and
non-excluded works were used for either defining, refining or
specializing components in an iterative manner, as described
in Section 3.1.

Since the goal of this step was not to conduct a review
but to construct a model with a sufficiently large base as
its foundation, secondary studies that were found during the
searches, including reviews, taxonomies, models, frameworks
and conceptual spaces were also analysed in both fields (BCI
and games) for possible definitions and components that could
be employed in the initial version of the model. The most
relevant of these studies are listed and described in Section 2,
as well as how they are compared to our proposed model. As
such, they are also listed in Table 2.

3.4 Ethical considerations
The use of BCI systems in gaming environments introduces a
set of ethical concerns that should be considered during de-

Table 1. All model’s components and their description.

Component Description

EEG data
collection

Sensors

The type and amount of sensors that were employed to capture the player’s EEG data. In the case
of EEG, active or passive electrodes are usually employed. These electrodes can be wet (i.e., they
require a saline or conductive substance to help lowering the impedance) or dry, and are generally
placed strategically on the scalp depending on the neural mechanism that the researcher intends
to identify.

EEG device

The biosignal amplifier and/or head-mounted device that was employed to receive the EEG
data from the sensors. The captured data is usually amplified and pre-processed before being
used by the feature extraction and/or classification algorithm. Depending on the device (e.g.,
consumer-grade EEG devices), the device can also perform the pre-processing and feature
extraction/classification steps.

Control
interface

BCI control
signal

The EEG-based control signal or underlying neural mechanism that was employed as a control
command to the game. Examples of these control signals are the SSVEP, P300, motor imagery,
and cognitive states, such as attention, relaxation and emotions.

Non-BCI
control

Any other non-BCI control, such as physical/analogical/digital controls (e.g., mouse, keyboard,
joystick) and other biophysical signals.

Control
mechanics

BCI
How the EEG-based control is employed to change or to interact with the game world. This
include moving or acting with a game character, interacting with objects and/or non-playable
characters from the game world or altering the game environment.

Non-BCI Similar to the BCI control mechanics, but applied to other, non-BCI controls, if they exist.

Game
world

The game world is composed of its environment, and eventual player characters, non-playable characters (NPCs) and
game objects. Depending on the game rules, the player can act through a player character or directly to the game and its
objects.

Player(s)
character(s)

The players’ controllable characters in the game world (if it exists), including its amount (single
player, multiplayer), and how the player interacts or controls it.

Environment The environment that the game takes place. This environment can be virtual (i.e., in a virtual,
simulated world) or physical (i.e., in the real world, using physical objects or machines).

Virtual
interface

The virtual interface is responsible for providing the player(s) with feedback from the game, as well as external stimuli
and neurofeedback. This include the game world interface, responsible for the virtual feedback that updates the player
about the status of the game world; the neurofeedback interface; and the stimuli generator. Note that the latter two can
both be included in the game world interface, or be separated (e.g., an external device used to generate visual or auditory
stimuli that is separated from the game screen).

Neurofeedback (NF)
interface

Provides the specific feedback that updates the player about his/her internal mental state and/or
regarding the result of the signal processing algorithm. This can be, for example, a numerical
value, a change in the virtual interface (e.g., an interface element that visually changes according
to the classification result, or the movement of an object/character in the game world), a sound, a
vibration etc. Note that this feedback may also be embedded in the virtual feedback.

Stimuli
generator

Generates external stimuli to evoke specific brain responses, which are required for exogenous
control signals (e.g., P300 and SSVEP). These stimuli can be visual, auditive or somatosensory
(e.g., thermal and vibrotactile).
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sign, development, evaluation and employment of these games
in clinical, research and entertainment contexts. These involve
ethical aspects related to collecting and processing neural data
(as in the EEG Data Collection component), adapting game-
play based on inferred cognitive or emotional states and other
mental processes, such as motor or speech imagery (as in the
Control Interface and Control Mechanics components), and
providing neurofeedback to players (as in the Virtual Interface
component). As such, explicitly addressing these ethical con-
cerns is should be a priority for researchers and developers for
guiding the responsible application of such technologies in
interactive and entertainment systems, especially for clinical
and/or empirical research.

The acquisition of EEG data raises unique ethical chal-
lenges due to the inherently sensitive nature of neural informa-
tion. Unlike other physiological signals, data from the brain
can be more directly decoded for inferring aspects of cogni-
tive states, such as attention, and emotional content, such as
feelings of anger, fear or sadness. Ethical implications include
the risk of privacy violation, such as the use of recordings for
purposes not originally consented to, and potential inference
of sensitive states [Sun and Ye, 2023]. It is possible, for ex-
ample, to infer whether a player is feeling anxious or stressed,
or whether they showed increased attention or interest for a
given visual stimulus or scene, which can cause embarass-
ment for the player. In a more general sense, this data could
also be used for discrimination, for example, neural signatures
showing a predisposition for neurological conditions, such as
dementia [Ienca et al., 2022], especially given the possibility
of false positive or negative results.

To address these concerns, developers and researchers
should adopt data minimization (collect or store only what is
necessary) and anonymization practices. This is particularly
important in the context of studies using EEG-based signals
with public repositories or open access to their data, regard-
less of the application domain of games, since one could
link these sensitive information to specific individuals [Ienca
et al., 2022]. It is also important to apply informed consent
procedures specifying how EEG data (or other physiological
modalities) will be processed and stored, and communica-
tion with players about the scope and limits of the use of
their neurological or physiological data in general. These
recommendations align with recent governance frameworks
for brain data that emphasize mental privacy protection and
ethical employment of EEG data in interactive applications,
especially considering recent international regulations [Ienca
et al., 2022; Ienca and Malgieri, 2022].

BCI controls and dynamic adjustment mechanics in
games introduce further ethical considerations because they
directly link players’ cognitive or emotional states to in-game
outcomes, which is also related to the aforementioned con-
cerns regarding risks of privacy violations. In addition, sys-
tems that adapt gameplay based on cognitive states influence
the player experience in ways that may not be fully transpar-
ent or controllable by the user. For example, users could not
feel in control of a game based on EEG signals, even if their
performance in said game is positive [Vasiljevic and de Mi-
randa, 2019b]. This raises issues of autonomy, agency and
explainability [Sun and Ye, 2023], that is, players should be
aware of how their brain signals influence game behaviour

and have control over which adaptations occur.
The game design, in this context, should include feed-

back to users about how their brain signals affect game me-
chanics, and opt-in or opt-out controls for adaptive features
[Sun and Ye, 2023]. This is specially important for passive
controls, such as changing difficulty or game scenarios base
on players’ emotions, as the mechanic itself may depend on
the user not focusing on that particular mental process.

Finally, while neurofeedback can support cognitive train-
ing and therapeutic applications through self-regulation, it
may also overstate the accuracy of inferred states when used
in entertainment or non-clinical contexts. Ethical issues there-
fore include ensuring that feedback is accurate, beneficial and
non-manipulative, and that users clearly understand the limita-
tions of possible neurofeedback effects [Livanis et al., 2024].
This is particularly relevant when games provide real-time
adaptive responses based on inferred mental states such as
attention or relaxation, where incorrect feedback may cause
frustration, misinterpretation of brain activity or unrealistic
expectations about mental control [Gordon and Seth, 2024;
Livanis et al., 2024]. In this sense, game developers and re-
searchers should employ validated neurofeedback controls
(or aligned with specific hypothesis about their effects, if
possible) and explicit their limitations.

4 Model demonstration
The method to demonstrate the model is similar to the ap-
proaches employed by Mason and Birch [2003] and Kosmyna
and Lécuyer [2019], by means of demonstrating its usefulness
through the representation of a set of works that describes
EEG-based systems/games using the model, and instantiating
each of its components. Tables 3, 4 and 5 present the result
of this demonstration, with games listed in alphabetical order.

Games were selected from studies using different game
genres, control styles and EEG-based control signals to pro-
vide more diversity in the data. All positions in the Sen-
sors subcomponent are based on the 10-20 international sys-
tem and its extended versions. Optional values that were not
present in the game were marked as “N/A" (not applied). Sim-
ilar classification values may have slightly different descrip-
tions, for illustrating different ways of objectively classifying
instances.

4.1 Summary and category values
As can be seen from Tables 3 to 5, some characteristics of the
games can be described with recurring, commonly applied
values. These values can be summarized according to each
component, allowing for subdividing them based on general
categories, briefly described in Table 1, and refined through
the demonstration. Each of these recurring categories will be
presented and detailed next, grouped by the components of
the model. These values also help in defining other details
in the description that may be relevant in specific contexts,
which were omitted in the demonstration for providing a less
implementation-specific description of the BCI game system.

4.1.1 EEG Data Collection
An objective description of the Sensors component would in-
clude their type, number and location. Although this location
is usually described by means of the standard 10-20 System
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Table 2. Sample collection of sources (in alphabetical order by author) that served as base for defining (■), refining (▲) or specializing (♦)
the model’s components. Not all sources provide new or updated information in a given stage of definition or refinement (□).

EEG data collection Control interface Control mechanics Game world Virtual interface
Source Sensors EEG device BCI control Non-BCI control BCI Non-BCI Player(s) character(s) Environment NF interface Stimuli generator

Abdessalem and Frasson [2017] ■ ■ ■ ■ ■ ■ ■ ■ □ □
AbuRas et al. [2018] ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ □
Ahn et al. [2014] ■ ■ ■ □ ■ □ □ □ □ ■
Ali and Puthusserypady [2015] ▲ ▲ ▲ □ ▲ □ ♦ ▲ ▲ ▲
Alchalabi et al. [2018] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ □
Amini and Shalchyan [2023] ♦ ♦ ▲ □ ▲ □ ♦ ♦ ♦ ▲
An et al. [2016] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ♦ □
Antle et al. [2018a] ■ ■ ■ ■ ■ ■ ■ ■ ■ □
Antle et al. [2018b] ▲ ▲ ▲ ▲ ▲ ▲ ■ ■ ■ □
Arrambide et al. [2019] ♦ ♦ ♦ ♦ ▲ ♦ ♦ ♦ ♦ □
Beveridge et al. [2016a] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ♦ ♦
Beveridge et al. [2016b] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ♦ ♦
Blandón et al. [2016] ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ □
Bonnet et al. [2013] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ■ □
Bos et al. [2010] ■ □ ■ ■ ■ ■ ■ ■ ■ ■
Chen et al. [2017a] ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ □
Chen et al. [2017b] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ♦ ♦
Choi et al. [2017] □ □ ■ ■ ■ ■ ■ ■ ■ ■
Coogan and He [2018] ▲ ▲ ▲ □ ▲ □ □ ▲ ▲ □
Cruz et al. [2018] ▲ ▲ ▲ □ ▲ □ ▲ ▲ ▲ ▲
Easttom [2021] ♦ ♦ ♦ ♦ □ □ □ □ ♦ ♦
Fernandez et al. [2016] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ □
Ferreira et al. [2013] ■ ■ ■ ■ ■ □ ■ ■ ■ ■
Ferreira et al. [2014] □ ■ ■ ■ ■ ■ □ ■ ■ ■
Finke et al. [2009] ▲ ▲ ▲ □ ♦ □ ♦ ♦ ♦ ▲
Gurkok et al. [2016] □ □ ■ ■ ■ ■ □ ■ □ □
Hasan and Gan [2012] ▲ ▲ ▲ □ ▲ □ ♦ ▲ ▲ ▲
Heintz and Law [2015] □ □ □ ■ ■ ■ ■ ■ □ □
Henrik et al. [2011] □ ▲ ▲ ■ ▲ ■ ▲ ▲ ▲ □
Hjorungdal et al. [2016] ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ □
Hong and Khan [2017] ■ ■ ■ □ ■ □ □ ■ ■ ■
Horie and Nawa [2017] ♦ ♦ ♦ ▲ ♦ ▲ ▲ ♦ ♦ □
Israsena et al. [2015] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ □
Joselli et al. [2014] ■ ■ ■ ■ ■ ■ □ ■ ■ □
Kaplan et al. [2013] □ □ ■ □ ■ □ ■ ■ ■ ■
Kerous et al. [2018] ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Koo et al. [2015] ▲ ▲ ▲ □ ▲ □ □ ▲ ▲ ▲
Kosmyna and Lécuyer [2019] ■ ■ ■ ■ ■ □ □ ■ ■ ■
van de Laar et al. [2013] ▲ ▲ ▲ ▲ ▲ ▲ ■ ▲ ▲ □
Laamarti et al. [2014] □ □ □ ■ ■ ■ ■ ■ □ □
Lalor et al. [2005] ▲ ▲ ▲ □ ▲ □ ■ ■ ▲ ▲
Lance et al. [2016] □ □ ■ □ ■ ■ □ ■ ■ ■
Leeb et al. [2013] ▲ ▲ ▲ ♦ ♦ ♦ ♦ ▲ ▲ □
Leite et al. [2018] ▲ ▲ ▲ □ ▲ □ □ ▲ ▲ ▲
Li et al. [2016] ▲ ▲ ▲ □ ▲ □ □ ▲ ▲ □
Li et al. [2017] ▲ ▲ ▲ □ ▲ □ □ ▲ ▲ □
Li et al. [2021] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ♦ ♦
Lim and Ku [2018] ♦ ♦ ♦ □ ♦ □ □ ♦ ♦ ♦
Liu et al. [2016] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ □
Lope and Medina-Medina [2017] □ □ □ ■ ■ ■ ■ ■ □ □
Maby et al. [2012] ▲ ▲ ▲ □ ▲ □ ♦ ▲ ▲ ▲
Marshall et al. [2013] ■ ■ ■ □ ■ □ ■ ■ ■ ■
Mason and Birch [2003] ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Mason et al. [2005] ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
McMahon and Schukat [2018] ♦ ♦ ♦ □ ♦ □ □ ♦ ♦ □
Mehta et al. [2010] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ♦ ♦
Mühl et al. [2010] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
Muñoz et al. [2016] ♦ ♦ ♦ ♦ ▲ ▲ ▲ ♦ ♦ □
Murphy et al. [2018] ♦ ♦ ♦ ♦ ♦ ♦ □ ♦ ♦ □
Nicolas-Alonso and Gomez-Gil [2012] ■ ■ ■ ■ □ □ □ ■ □ ■
Nijholt et al. [2009] ■ ■ ■ ■ ■ ■ ■ ■ ■ ■
Obbink et al. [2012] ▲ ▲ ▲ ▲ ▲ ▲ ♦ ♦ ▲ ▲
Ochi et al. [2017] ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ □
van der Pal et al. [2018] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ □ □
Parafita et al. [2013] ▲ ▲ ▲ □ ▲ □ ▲ ▲ ▲ ■
Paszkiel et al. [2021] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ▲ □
Prapas et al. [2023] ♦ ♦ ♦ □ ♦ □ ♦ ♦ □ □
Putri et al. [2019] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ♦ □
Ramadan and Vasilakos [2017] ■ ■ ■ □ □ □ □ ■ ■ ■
Reinschluessel and Mandryk [2016] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ □
Scherer et al. [2016] ▲ ▲ ▲ □ ▲ □ □ ▲ ▲ □
Schoneveld et al. [2016] ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ □
Serrano-Barroso et al. [2021] ♦ ♦ ♦ □ ♦ □ ♦ ♦ ♦ □
Škola and Liarokapis [2018] ▲ ▲ ▲ □ ▲ □ ▲ ▲ ▲ □
Song et al. [2017] ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ □ □
Sourina et al. [2011] ▲ ▲ ▲ □ ▲ □ ▲ ▲ ▲ □
Stein et al. [2018] ▲ ▲ ▲ ■ ▲ ■ ▲ ▲ ■ □
Tangermann et al. [2008] □ □ ♦ □ ▲ □ ♦ ♦ ▲ □
Vasiljevic et al. [2018a] ■ ■ ■ □ ■ □ ■ ■ ■ □
Vasiljevic et al. [2018b] ■ ■ ■ □ ■ □ ■ ■ ■ □
Vasiljevic and de Miranda [2020a] ■ ■ ■ ■ ■ ■ □ ■ ■ ■
van Vliet et al. [2012] ▲ ▲ ▲ □ ▲ □ ♦ ▲ ▲ ▲
Vourvopoulos et al. [2016] ▲ ▲ ▲ □ ▲ □ □ ▲ ▲ □
Wang et al. [2019] ■ ■ ■ ■ ■ □ □ ■ ■ ■
Wolpaw et al. [2002] ■ ■ ■ ■ ■ ■ □ ■ ■ ■
Yeh et al. [2018] ▲ ▲ ▲ □ ▲ □ ▲ ▲ ▲ □
Zhou et al. [2017] ♦ ♦ ♦ □ ♦ □ ♦ ♦ □ □
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Table 3. Demonstration of the model and its components.
αWoW [van de Laar et al., 2013]

EEG data
collection

Sensors: Four wet electrodes, placed at positions P1, P2, CP7, and CP8.
EEG device: An Emotiv Epoc.

Control interface BCI control: Relaxation level, calculated using a FFT of the α frequency band.
Non-BCI control: Mouse and keyboard.

Control
mechanics

BCI: Activates a specific ability that the player can cast to change the shape and powers of its avatar.
Non-BCI: Controls the movement of the character and the casting of abilities.

Game world Player character: The player controls a humanoid avatar that can shape-shift into a bear, and interacts with multiple other players, each with their own avatars, usually humanoid.
Environment: Virtual, three-dimensional, massive multiplayer and online open world.

Virtual interface
World interface: PC monitor display, with a three-dimensional view of the world and third-person view of the player character.

NF interface: Embedded in the game’s graphical interface. A bar with a numerical threshold value that indicates whether the player reached the required cognitive state to activate the related ability.
Stimuli generator: N/A.

Aiming Game [Henrik et al., 2011]
EEG data
collection

Sensors: Not informed (up to 14 saline electrodes, given the employed device).
EEG device: An Emotiv Epoc.

Control interface BCI control: Emotion (arousal), represented with a value ranging from 1 to 5.
Non-BCI control: Mouse.

Control
mechanics

BCI: Dynamically adjusts the game difficulty, distorting the aim and blurring targets.
Non-BCI: Used to point and click the target airplanes in the screen.

Game world Player character: A single player with no in-game avatar.
Environment: A virtual, 2-dimensional picture of the sky, with moving targets.

Virtual interface
World interface: A PC monitor screen, showing the virtual environment and the player’s aim.

NF interface: A bar, divided into five segments, shows the player’s current level of arousal.
Stimuli generator: N/A.

AmbuRun [Abdessalem and Frasson, 2017]
EEG data
collection

Sensors: Up to 14 saline electrodes.
EEG device: An Emotiv Epoc.

Control interface BCI control: Emotion recognition, specifically, frustration and excitement.
Non-BCI control: An analogic, wireless gamepad with directional and action controls.

Control
mechanics

BCI: The passive recognition of emotions provide passive control of the speed of an ambulance and game difficulty (number of obstacles).
Non-BCI: The gamepad controls the movement direction of the players’ avatar.

Game world Player character: A three-dimensional ambulance carrying a health patient.
Environment: An infinite road in a desert, with obstacles such as other cars and trucks.

Virtual interface
World interface: A FOVE virtual reality headset, which shows the road and a third-person view from the top of the ambulance.

NF interface: N/A.
Stimuli generator: N/A.

Bacteria Hunt [Mühl et al., 2010]
EEG data
collection

Sensors: 34 active Ag/AgCl electrodes, positioned at sites Pz, Oz, O1, O2, and 30 others.
EEG device: A BioSemi ActiveTwo, sampling at 512 Hz.

Control interface BCI control: SSVEP and alpha band power. SSVEP is classified using a combination of power in harmonics of the target frequencies and threshold logic, while the final alpha band power is obtained after
averaging and scaling values after a 512-point FFT.

Non-BCI control: Keyboard, using the arrows and Ctrl keys.
Control
mechanics

BCI: Alpha band power controls the speed of the targets, thus increasing or decreasing the game difficulty. SSVEP is employed to trigger the eating mechanics and gaining points.
Non-BCI: The arrow keys from the keyboard moves the player’s character in the corresponding direction. In a non-BCI game match, the Ctrl key also serves to trigger an action in the game.

Game world Player character: A single player controls a two-dimensional representation of an amoeba.
Environment: A two-dimensional white environment with the player’s avatar and targets, represented by images of bacteria scattered across the screen.

Virtual interface
World interface: A computer screen showing a top-down view of the game world and its objects, along with classification results and player score.

NF interface: A graph representing a recent history of alpha band power and SSVEP classification, positioned at the top of the game screen.
Stimuli generator: When at a certain range of a target, the stimuli appears above it to elicit SSVEP responses.

BrainArena [Bonnet et al., 2013]
EEG data
collection

Sensors: Two GAMMACaps with eight active electrodes positioned over the parietal region.
EEG device: Two g.USBAmp amplifiers.

Control interface BCI control: Motor imagery, classified using a LDA classifier with band power features extracted using CSP filters.
Non-BCI control: N/A.

Control
mechanics

BCI: The player must perform the indicated imagined movement to move a ball into the target goal.
Non-BCI: N/A.

Game world Player character: Two players, with no avatar to represent them in the game.
Environment: A black scenario with three feedback gauges, two goals, a ball and instructions for the current imagined movement to be performed by each player.

Virtual interface
World interface: A PC monitor screen, showing all elements of the game world for both players.

NF interface: Three gauges in the game screen indicating the intensity of the recognized motor imagery command (left, right), one for each player and one for the cumulative result of the identified command.
Stimuli generator: N/A.

Catching fruit game [Ali and Puthusserypady, 2015]
EEG data
collection

Sensors: Three gold plated electrodes, placed at positions Oz, Fpz, and Fz or A1 for reference.
EEG device: A g.tec g.USBamp amplifier.

Control interface BCI control: SSVEP, classified using autocorrelation and threshold logic.
Non-BCI control: N/A.

Control
mechanics

BCI: Focusing on the right or left stimulus moves the player’s character to the corresponding direction.
Non-BCI: N/A.

Game world Player character: A two-dimensional, virtual ninja character holding a plate above its head, controlled by a single player.
Environment: A mix of two- and three-dimensional virtual environments, with a 3D classroom and a 2D game on the class board.

Virtual interface
World interface: A computer screen, showing a frontal view of the 3D classroom with the 2D game on the background. A different view may be presented depending on the stage.

NF interface: The movement of the player avatar serves as feedback for the classified movement.
Stimuli generator: Two squares, embedded in the game screen, flickering between black and white at 7 and 9 Hz.

Competitive balance game [Putri et al., 2019]
EEG data
collection

Sensors: 2, 16 or 32 electrodes.
EEG device: A g.USBamp amplifier.

Control interface BCI control: Relative alpha power, measured as a percentage to the power of the 2–30 Hz frequency band.
Non-BCI control: N/A.

Control
mechanics

BCI: Each player must maintain their relative alpha power at least 10% higher that the opponent’s to balance the scale to their side.
Non-BCI: N/A.

Game world Player character: Two players, with no in-game avatar.
Environment: A virtual, 2D view of a seesaw representing the balance between each player’s relative alpha power.

Virtual interface
World interface: A PC monitor screen sharing the view of both players.

NF interface: Two vertical bars at the lateral of the central seesaw, showing the percentage of the relative alpha band of the corresponding player.
Stimuli generator: N/A.

Connect Four [Maby et al., 2012]
EEG data
collection

Sensors: A 32-channel ActiCap system with nine silver chloride electrodes.
EEG device: A BrainAmp amplifier.

Control interface BCI control: P300, calculated with a bayesian classifier after spatial and temporal filtering.
Non-BCI control: N/A.

Control
mechanics

BCI: Used to select a target column in a game of Connect Four with two players.
Non-BCI: N/A.

Game world Player character: The players have no avatar, but can be represented by their pieces, each with a different color.
Environment: A virtual, two-dimensional Connect Four game board.

Virtual interface
World interface: PC monitor display showing the board and the time left to make a move.

NF interface: A rectangle appear over the selected column to indicate the classification result.
Stimuli generator: Each column of the game board flashes in sequence to evoke the P300 potential.

GokEvolution [Serrano-Barroso et al., 2021]
EEG data
collection

Sensors: A single dry sensor at site Fp1.
EEG device: A NeuroSky MindWave device.

Control interface BCI control: Concentration level, measured using the NeuroSky’s eSense metric.
Non-BCI control: N/A.

Control
mechanics

BCI: Staying concentrated above a certain threshold for a given period of time increases the player’s concentration gauge which, when full, makes the player’s avatar evolve. The process is repeated until
the final stage of evolution.

Non-BCI: N/A.

Game world Player character: A single player, represented by the avatar of a famous 2D Japanese character that changes his hair color each time he evolves.
Environment: A two-dimensional scenario showing a fighting arena, with the players’ avatar on the center and other interface elements scattered across the screen.

Virtual interface
World interface: A mobile phone or tablet, showing the game scenario and the character at its center, a clock, EEG device and its status.

NF interface: A horizontal bar at the top of the scenario shows the player’s cumulative current attention level.
Stimuli generator: N/A.
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Table 4. Demonstration of the model and its components (continuation).
Hangman BCI [Hasan and Gan, 2012]

EEG data
collection

Sensors: Nine electrodes, positioned over the sensorimotor cortex.
EEG device: A 64+2 channel Biosemi cap.

Control interface BCI control: Motor imagery, using a LDA classifier as a initial state for a GMM algorithm.
Non-BCI control: N/A.

Control
mechanics

BCI: Used to move the cursor (left and right) and select a letter in a Hangman game.
Non-BCI: N/A.

Game world Player character: Single player, with no avatar (the hangman is not considered a player character).
Environment: A 2-dimensional graphical scenario with the hangman and the possible letters.

Virtual interface
World interface: PC display, showing a two-dimensional view of the virtual environment.

NF interface: The chosen letter and the confidence in the classification result appear in the game interface.
Stimuli generator: N/A.

Maze game [Botacim et al., 2021]
EEG data
collection

Sensors: 12 EEG sensors positioned at sites P7, PO7, P5, PO3, POz, PO4, P6, PO8, P8, O1, O2, and Oz.
EEG device: A BrainNet36 (Lynx Ltda.) device.

Control interface BCI control: SSVEP, classified using Goertzel Transform.
Non-BCI control: N/A.

Control
mechanics

BCI: Each selected stimulus corresponds to one of the four cardinal directions to move the character (up, down, left, and right).
Non-BCI: N/A.

Game world Player character: A 2D robot face.
Environment: A flat two-dimensional maze.

Virtual interface
World interface: A mobile device, showing a top-down view of the 2D maze.

NF interface: The direction of movement of the character indicates the chosen stimulus.
Stimuli generator: Four targets in the mobile device’s screen, alternating between black and green at different frequencies.

MindBalance [Lalor et al., 2005]
EEG data
collection

Sensors: Two silver chloride scalp electrodes, placed at positions O1 and O2.
EEG device: Biopac biopotential amplifiers.

Control interface BCI control: SSVEP, using two PSD estimation methods: squared 4-second FFT, and FFT of autocorrelation.
Non-BCI control: N/A.

Control
mechanics

BCI: The SSVEP command is used to choose the direction of the character movement (left or right) to regain balance in a tightrope.
Non-BCI: N/A.

Game world Player character: Single player, controlling a three-dimensional humanoid-like creature.
Environment: A virtual, three-dimensional scenario with a platform and a tightrope.

Virtual interface
World interface: PC monitor display, with a 3D view of the environment and a third-person view of the character facing the camera.

NF interface: The character animation serves as feedback of the selected movement direction. Auditive feedback is also provided.
Stimuli generator: Embedded in the game screen. Two squares with checkerboard patterns flashing at two different frequencies (17Hz and 20Hz) to elicit SSVEP responses.

MindGame [Finke et al., 2009]
EEG data
collection

Sensors: 10 electrodes placed over the parietal and occipital regions.
EEG device: A Mindset24 EEG amplifier.

Control interface BCI control: P300, using PCA as method for feature extraction and FLDA as classifier.
Non-BCI control: N/A.

Control
mechanics

BCI: Used to select a target tree in the game world. The player must reach all trees to win the game.
Non-BCI: N/A.

Game world Player character: Single player, controlling a two-dimensional cat avatar.
Environment: A virtual, 3D room with a checkerboard-styled floor and 2-dimensional trees.

Virtual interface
World interface: A display, showing the whole scenario and a third-person view of the character.

NF interface: The direction and number of steps of the character serves as feedback for the selected target.
Stimuli generator: Each target tree in the game world also serves as stimulus, flashing consecutively.

MindGomoku [Li et al., 2021]
EEG data
collection

Sensors: A 32-channel Electro-Cap, using all electrodes except A1 and A2.
EEG device: SynAmps2 amplifiers.

Control interface BCI control: P300, classified using a simplified Bayesian convolutional neural network.
Non-BCI control: N/A.

Control
mechanics

BCI: Employed to select a 2D coordinate in a two-step process to place a piece in a Gomoku board.
Non-BCI: N/A.

Game world Player character: A single player, with no in-game avatar. The player’s pieces may be considered their representation on the game board.
Environment: A virtual, two-dimensional graphical interface divided into two halves, one for displaying the P300 selection screen, and another for the game board.

Virtual interface
World interface: A standard computer screen displaying the virtual environment.

NF interface: The current chosen coordinates are visually presented on the game interface, expressed through a letter and a number, corresponding to the position of the piece to be placed on the board.
Stimuli generator: Two grids displayed in sequence, one showing letters from ‘A’ to ‘M’, followed by the other showing digits from ‘0’ to ‘9’, with each symbol flashing randomly to serve as a P300 speller.

Mental War [Vasiljevic et al., 2018a]
EEG data
collection

Sensors: A single dry electrode, positioned at site Fp1.
EEG device: A NeuroSky MindWave.

Control interface BCI control: Attention level, directly measured using the MindWave’s eSense metric.
Non-BCI control: N/A.

Control
mechanics

BCI: The intensity of the attention metric is directly proportional to the force that the character uses to push a rope in a tug-of-war match.
Non-BCI: N/A.

Game world Player character: Single player, represented by a human cartoon avatar.
Environment: A 2-dimensional graphical scenario that changes according to the game’s difficulty.

Virtual interface
World interface: A PC monitor display, showing a two-dimensional view of the world and a third-person view of the player character.

NF interface: A vertical bar embedded in the game interface, showing the player’s current attention level.
Stimuli generator: N/A.

Mind the Sheep! [Obbink et al., 2012]
EEG data
collection

Sensors: Five electrodes, positioned at sites PO3, O1, Oz, O2, and PO4.
EEG device: A Biosemi ActiveTwo system.

Control interface BCI control: SSVEP, using a canonical correlation analysis algorithm.
Non-BCI control: Mouse.

Control
mechanics

BCI: Used to select a target dog in the game world.
Non-BCI: Used to point to the location to which the selected dog must move.

Game world Player character: Several dogs from the game world serve as player-controllable characters.
Environment: A virtual playground representing a meadow, with obstacles and fences.

Virtual interface
World interface: A PC LCD monitor screen, with a top-down view of the game world.

NF interface: A circle around the selected dog serves as feedback for the classification result.
Stimuli generator: Each of the three possible target dog flashes simultaneously at 7.5, 10, and 12 Hz.

Motion-onset evoked potential (MoEP) infinite runner [Amini and Shalchyan, 2023]
EEG data
collection

Sensors: 12 electrodes, placed at sites Cz, TP7, CPz, TP8, P7, P3, Pz, P4, P8, O1, Oz, and O2.
EEG device: A 32-channel EEG-Bayamed recording device.

Control interface BCI control: Motion-onset evoked potentials, classified using various methods, including Stepwise Linear Discriminant Analysis (LDA), LASSO-LDA and spatial-temporal discriminant analysis.
Non-BCI control: N/A.

Control
mechanics

BCI: The player must choose one amongst five lanes to move their character. The path is chosen by focusing on the target stimuli above each lane.
Non-BCI: N/A.

Game world Player character: A single player represented by a three-dimensional adult human avatar.
Environment: A virtual, three-dimensional road with a flat two-dimensional image on the background.

Virtual interface
World interface: A standard computer display showing a third-person view of the character running on the scenario.

NF interface: Embedded in the game interface. Each running lane has an arrow indicating the selected choice after classification.
Stimuli generator: Five geometric objects, one above each possible choice of running lane, which generate stimuli based on four paradigms for MoEP: translation, rotation, expansion, and contraction.

Motor imagery infinite runner [Prapas et al., 2023]
EEG data
collection

Sensors: Four dry electrodes positioned at TP9, AF7, AF8, and TP10.
EEG device: A Muse 2 EEG headband.

Control interface BCI control: Left-right hand motor imagery and blinking, classified using a multi-layer perceptron with OpenViBE.
Non-BCI control: N/A.

Control
mechanics

BCI: The left and right imagined movements of the hand makes that player’s character slide to the left or to the right, respectively. Blinking makes the character jump.
Non-BCI: N/A.

Game world Player character: A single player controlling an anthropomorphized fox-like animal avatar using an armour, sword and shield.
Environment: A three-dimensional continuous street with coins scattered across.

Virtual interface
World interface: A computer monitor, showing a third-person, three-dimensional, top-down back view of the character.

NF interface: The movement of the character serves as indicator of the classified command.
Stimuli generator: N/A.
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Table 5. Demonstration of the model and its components (continuation).
NeuroBall [Paszkiel et al., 2021]

EEG data
collection

Sensors: 14 saline electrodes, positioned at sites AF3, AF4, F3, F4, F7, F8, FC5, FC6, T7, T8, P7, P8, O1, O2, and referenced to two ground electrodes at P3 and P4.
EEG device: An Emotiv Epoc+.

Control interface BCI control: Concentration, obtained using the Emotiv’s Cognitiv Suit.
Non-BCI control: N/A.

Control
mechanics

BCI: The player must concentrate and imagine cognitive functions (e.g., “push”) to control their avatar in the game environment.
Non-BCI: N/A.

Game world Player character: A single player controlling a three-dimensional red ball.
Environment: A three-dimensional virtual scenario simulating a plains environment, surrounded by a fence, and divided into four levels, containing wood boards, obstacles, rocks, vegetation, and mountains.

Virtual interface
World interface: A standard computer monitor, showing a third-person view of the red ball.

NF interface: During training, the Emotiv’s Control Panel provides visual feedback using a virtual cube. During game playing, the player’s avatar movement serves as feedback for the EEG-activated action.
Stimuli generator: N/A.

Neurofeedback Space [Machado et al., 2019]
EEG data
collection

Sensors: Seven dry EEG sensors positioned at sites F3, F4, C3, Cz, C4, P3, and P4.
EEG device: A Quick-20 (Cognionics, USA) EEG wireless headset.

Control interface BCI control: Attention, acquired using spectral features with a SVM classifier.
Non-BCI control: N/A.

Control
mechanics

BCI: The player increases or decreases the speed of the character by 10% each second based on their attention state.
Non-BCI: N/A.

Game world Player character: A 2D spaceship.
Environment: A two-dimensional scenario representing space, with stars and coins.

Virtual interface
World interface: A computer monitor, showing a top-down view of the spaceship in space.

NF interface: The increase or decrease in speed of the spaceship indicates the player’s attentional state.
Stimuli generator: N/A.

Pinball [Tangermann et al., 2008]
EEG data
collection

Sensors: 64 sensors (implied by the number of channels).
EEG device: Not informed.

Control interface BCI control: Motor imagery, with CSP filters to extract power features to a LDA classifier.
Non-BCI control: A lever.

Control
mechanics

BCI: A low-level command is used to control the left and right paddles of a pinball machine, using the respective imagined movement (left hand or right hand).
Non-BCI: The player must pull the lever to launch a new ball.

Game world Player character: Single player, which controls two paddles.
Environment: A physical pinball machine.

Virtual interface
World interface: The machine itself serves as a physical, auditory, and visual interface.

NF interface: The movement of the paddles serve as feedback for the classified command.
Stimuli generator: N/A.

Spacecraft game [Parafita et al., 2013]
EEG data
collection

Sensors: 12 passive electrodes, placed at positions Fz, Cz, CPz, C3, C4, Pz, POz, P3, P4, OZ, P07, and P08.
EEG device: A g.USBamp amplifier, sampling EEG signals at a 256 Hz rate and applying a 0.1–30 Hz band-pass filter and a 50 Hz notch filter.

Control interface BCI control: SSVEP, classified using a correlation method using phase tagging with a reference signal.
Non-BCI control: N/A.

Control
mechanics

BCI: Focusing on the left or right stimuli moves the player’s avatar to the corresponding direction, which aims at avoiding obstacles.
Non-BCI: N/A.

Game world Player character: A spacecraft controlled by a single player.
Environment: A virtual three-dimensional space environment with a long lane with obstacles, the player’s avatar and a black background.

Virtual interface
World interface: A laptop screen showing a third-person view of the player’s avatar from the back, along with two arrows on the sides for SSVEP stimulation.

NF interface: The displacement of the spacecraft to the corresponding direction serves as feedback regarding the classification decision.
Stimuli generator: Two arrows, embedded in the game interface, one pointing to the left and the other to the right, flickering at the same frequency within the 3–5 Hz with an offset of 180 degrees.

Thinking Penguin [Leeb et al., 2013]
EEG data
collection

Sensors: A cap with five electrodes, placed at position Cz and four orthogonal sites.
EEG device: A 16-channel g.Tec biosignal amplifier.

Control interface BCI control: Motor imagery, detected using a LDA classifier for ERS and ERD frequency bands.
Non-BCI control: A joystick (and a push-button in non-BCI gameplay).

Control
mechanics

BCI: Used to make the character jump to catch fish.
Non-BCI: Controls the left-right movement of the character.

Game world Player character: A three-dimensional penguin avatar.
Environment: A virtual, three-dimensional snowy mountain.

Virtual interface
World interface: A 3D virtual reality environment, projected in the walls of a four-sided room.

NF interface: The jumping of the penguin serves as feedback for the detection of the desired motor imagery.
Stimuli generator: N/A.

Tower defence game [van Vliet et al., 2012]
EEG data
collection

Sensors: Up to 14 electrodes.
EEG device: Emotiv Epoc, with 14 passive, saline electrodes, or an ActiCap system with eight channels sampled with active sensors.

Control interface BCI control: SSVEP, classified using a correlation threshold with a Stimulus-Locked Inter-trace Correlation algorithm.
Non-BCI control: N/A.

Control
mechanics

BCI: Used to choose a location for placing towers in a tower defence game. Each location is highlighted in sequence, and the player must focus on the target stimuli when the chosen location is selected.
Non-BCI: N/A.

Game world Player character: A single player with no in-game avatar. The player is represented by the towers they place in the game map.
Environment: A virtual, three-dimensional arena composed of paths in which the enemies will walk through, and pre-determined locations that the player can place towers to attack the enemies.

Virtual interface
World interface: A computer screen showing a top-down view of the game environment, and other information regarding the game status.

NF interface: A horizontal bar at the top of the game shows the classification output of the classifier.
Stimuli generator: A square in the game interface that flashes at a given frequency during the tower placing phase of the game.

VR Maze [Koo et al., 2015]
EEG data
collection

Sensors: Eight electrodes, positioned at the occipital-parietal region.
EEG device: A g.Tec g.MOBIlab+ device.

Control interface BCI control: SSVEP, detected using a canonical correlation analysis algorithm.
Non-BCI control: N/A.

Control
mechanics

BCI: Used to select a target tile destination for the player to move.
Non-BCI: N/A.

Game world Player character: A single player controlling a sphere.
Environment: A virtual, three-dimensional grid, with objects or empty spaces in each tile.

Virtual interface
World interface: A monitor or an Oculus Rift head-mounted virtual reality device.

NF interface: The movement of the sphere in the grid serves as feedback for the selected tile.
Stimuli generator: Each tile perpendicular to the sphere flashes at a different frequency as stimulus.

Wild Jumper [Gonçalves et al., 2023]
EEG data
collection

Sensors: A single dry electrode at position Fp1.
EEG device: A NeuroSky MindWave device.

Control interface BCI control: Concentration and meditation levels, measured using the NeuroSky’s eSense metrics.
Non-BCI control: Left/right controls (presumably with a keyboard).

Control
mechanics

BCI: Concentration and meditation levels control the overall difficulty of the game, while also controlling the horizontal and vertical speed of the character.
Non-BCI: Moves the character horizontally.

Game world Player character: A single player controlling male human character.
Environment: A three-dimensional continuous street with various obstacles and coins scattered across.

Virtual interface
World interface: A monitor, showing a third-person, three-dimensional, top-down back view of the character.

NF interface: The speed of the character, number of obstacles and their spacing between each other serves as indicator of the current levels of attention and/or meditation.
Stimuli generator: N/A.

Zen Cat [Vasiljevic et al., 2018a]
EEG data
collection

Sensors: A dry electrode at position Fp1.
EEG device: A NeuroSky MindWave device.

Control interface BCI control: Meditation, using the EEG device’s meditation score.
Non-BCI control: N/A.

Control
mechanics

BCI: Meditating above a given threshold, which depends on the difficulty and player position, makes the player’s avatar levitate towards the top of the vertical scenario.
Non-BCI: N/A.

Game world Player character: A two-dimensional cat cartoon avatar.
Environment: Several different two-dimensional scenarios that depends on the current difficulty and player position. Each scenario starts at the ground, and goes up to the sky and universe.

Virtual interface
World interface: A computer screen, showing the players’ avatar and the 2D scenario from the front.

NF interface: A vertical bar in the game interface shows the player’s current average meditation.
Stimuli generator: N/A.
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and its extensions (i.e., 10-10 and 10-5), more general and
descriptive values can also be employed, that is, over which
cerebral lobe the sensors are placed, or the standard placement
of a given head-mounted device.

For the EEG device, important attributes that can be
described are the brand or model and manufacturer of the
device, which can be further complemented by pre-processing
capabilities, for example, band-pass filters and sampling rate.
Note that although some consumer-grade EEG devices have
a fixed number of sensors, not all of them were necessarily
employed in the collected games, and thus were described
in all of their extensions in both sub-components. When
all sensors are employed, their location can be omitted if a
default spatial configuration is guaranteed. A summary of
these attributes is shown in Figure 7.

EEG data
EEG device

Data acquisition

EEG signals

Sensors

Sampling rate

Type

Quantity

Brand, model

Manufacturer

Filtering

Impedance

Location

Figure 7. Recurring descriptive values of the EEG Data Collection compo-
nent.

4.1.2 Control Interface
For BCI controls, it may be relevant to describe the employed
control signal, its nature, and how it was processed. It may
also be important to distinguish between open and closed-box
implementation of the control signals, since consumer-grade
devices usually provide proprietary metrics for endogenous
cognitive-based commands. For non-BCI controls, a detailed
description depends on the complexity of the employed con-
trol. For example, some games employed mouse and keyboard
to control the movement of a character. This movement can
be performed in many ways, although it is common to use the
mouse to aim and trigger specific actions, while the keyboard
is employed for directional controls.

The recurring descriptive values of this component are
listed in Figure 8.

Control interface

Classification 
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Non-BCI 

control  signal
Non-BCI control module
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Feature extraction

Regression model

Classifier model

Number of classes

Estimation metric

Extracted features
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Integration

Devices

Hyperparameters

Paradigm

Nature

Hyperparameters

Figure 8. Recurring descriptive values for the Control Interface component.

4.1.3 Control Mechanics

Although the control mechanics varies depending on the game
genre, employed control signal and platform, a few recurring
values were observed for the collected studies and related
works. For the dependence on the control signal, exogenous
controls are usually employed for selecting one amongst sev-
eral targets. Motor imagery is usually employed for one-
dimensional movement, with few occurrences of mental im-
agery also being used for one- or two-dimensional controls.
Sustained attention and other cognitive-based tasks were usu-
ally employed for reaching a target threshold value for a given
period of time and trigger an action, such as scoring, reach-
ing the next stage or one-dimensional movement. Emotion
recognition was only employed for passive dynamic difficulty
adjustment. Non-BCI controls also depends on the specific
controller device, although the target mechanics are the same
as the BCI ones, as they objectively controls the same elements
in the game world through different means. The identified
control mechanics for both BCI and non-BCI controls are
listed in Figure 9.

Non-BCI control signal

Changes

BCI control mechanics

Non-BCI control mechanics

BCI control signal

Control mechanics

Control mechanics

Movement

Target Threshold

Target selection

Dynamic difficulty adjustment

Active or passive control 

Direct action

Figure 9. Recurring descriptive values for the Control Mechanics component.

4.1.4 Game World

The description of the game world depends on the empha-
sis that one aims to achieve. A complete description would
include the number and description of each player’s char-
acters, possible non-playable characters and possible game
objects and scenario. For the demonstration of the player’s
character, the focus was on describing the number of play-
ers and how they are represented in the game’s virtual world.
This included dimensionality and overall characteristics of the
player’s avatar, or whether there is none. For the environment,
the dimensionality and overall description of the scenario and
its objects were also emphasized. User interface and heads-up
display (HUD) elements may also be described accordingly.
Figure 10 represents these characteristics.
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Figure 10. Recurring descriptive values for the Game World component.

4.1.5 Virtual Interface
Since the virtual interface is the mean by which the player
receives feedback regarding the game status, its description
tends to be more objective, in the sense of describing the game
platform and visualization means. Although not shown in
the examples, this virtual interface for the game world could
be composed solely of haptic or auditive elements. The vast
majority of games employ either a two- or three-dimensional
graphics interface, with a predominance of two-dimensional
games. There is an increasing number of games being devel-
oped for three-dimensional graphics, especially with the use
of game engines that have libraries for commonly employed
EEG devices. This also include games using exogenous con-
trol signals, such as SSVEP and P300, which depends on the
visualization channel to be evoked.

The neurofeedback interface, although usually given ex-
plicitly with a user interface element, was also provided in an
implicit manner through the player avatar and other game ob-
jects, including the cases in which the BCI control was made
in a passive paradigm. For the stimuli generation, although
there are examples of games using external generators, the
vast majority of exogenous-based games found in this study
embedded this generation in game elements, either specific or
imbued in the scenario amongst other game objects. Figure 11
shows a summary of the attributes of these interfaces and stim-
uli generators. Note that some attributes, for example, size,
color, shape, may only be applied to visual-based stimulus.
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Figure 11. Recurring descriptive values for the Virtual Interface component.

5 Discussion
For answering the research questions proposed in Section 1,
we discuss the proposed model in relation to the collected
studies, its demonstration, the comparison to related stud-
ies, and its current limitations. For RQ1, we showed how
the integration of both BCI processing application and game
system could be achieved by the derivation process of the
model, that is, by simplifying the classical BCI neurofeed-
back loop and considering it as a single entity encapsulating
an application. By instantiating this application as a game, we
showed how both the functional and structural components of
an unified BCI game system can be represented by performing
the inverse process, that is, going from this overly simplified
scheme and detail each of its parts considering the theoretical
backgrounds of both BCI and games.

This derivation process, along with the detailing of each
component shown in the demonstration, are also important in
the context of RQ2, as it shows that these components can be
represented and described simultaneously, regardless of sys-
tem platform, EEG processing and classification algorithms,
control signal, hybrid controls or game genre, for example.
The principles that guided the derivation of the model also
helped in defining the recurring objective and descriptive
values for each of these components, as shown in Section 4.1.

In this sense, the demonstration of the model wielded
interesting results about its ability to represent and compare
games from the literature. The individual representation of
each game gives an overview of its contents and allow for the
extraction of its concept and design from this description. The
open aspect of the description of each component, as opposed
to more closed and pre-defined classification values, also
gives the researcher or developer more freedom to emphasize
on specific aspects that s/he finds pertinent. Thus, although
a brief summary of each component was provided for each
game for the purpose of demonstrating its representativeness,
a more detailed description is also possible.

For RQ3, as the proposed model is based on the classic
neurofeedback loop and described the traditional EEG signal
processing steps, its BCI aspects resembles most representa-
tive schemes of EEG-based systems, as they were the base for
its construction and derivation process. It has the advantage,
however, of also representing the details about the game itself,
as both aspects are seen as only one entity, in contrast with
other BCI models and representations in which the BCI im-
plementation is taken as a separate software or hardware, or
in which the game (or any other application) is abstracted and
only receives the control signal to consume. The downside
of this generalist approach for the representation of games
is that some details about its implementation (including the
implementation of the BCI module) may be lost, for example,
in which platform the game is intended to run, its genre, the
details of the feature extraction and translation steps and so
on.

However, although not exhaustively shown in the demon-
stration, some specific details about the signal processing
algorithm could also be represented in the BCI Control com-
ponent depending on the goals of the researcher, as shown
in the summary of recurring descriptive values. Information
about the pre-processing steps (e.g., filters and de-noising
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techniques) or the feature extraction/classification algorithms
could help in the comparison of different implementations
for the detection and employment of the same neural mecha-
nism. The same could be applied to game-related components,
such as details about the game architecture (e.g., local or net-
worked) or the game genre, which can be described implicitly
through the appropriate components.

In the same sense, the values obtained from the demon-
stration show that it is possible to group common classified
values, for example, the employed EEG device or the virtual
interface, which seem to have a limited number of possible
values, at least for atomic information, such as whether the
interface is virtual or physical; auditive, somatosensory or
graphical; and its dimensions. This could allow not only for a
pre-defined list of classification values for such specific com-
ponents, but also to classification schemes based on these
values, such as the CoDIS Taxonomy [Vasiljevic and de Mi-
randa, 2024a], developed using the model’s components as its
theoretical foundation. This taxonomy separates these clas-
sification values in a more direct fashion, as opposed to the
descriptive nature of the model’s components, allowing for an
objective comparison of games from the literature. However,
as games are fundamentally different from one another, open
descriptions are still required to fully describe the concept
of the game, making both the model and the taxonomy as
complementary descriptive schemes.

Lastly, it is also important to note that the proposed
model, although not directly a system architecture frame-
work, can be used as a base for the development of new EEG-
controlled games and their software architecture, as its com-
ponents and their connections are an abstraction and can be
instantiated in numerous ways, using any supported and avail-
able technology. A similar approach has been employed, for
example, by Sung et al. [2012], in which the authors built
a framework for EEG-based serious games based on their
proposed model. The model itself was built around both the
functional and structural components of existing games, thus
it mirrors some of its system architecture.

We envision this design and implementation application
of the model as an incremental and comparative process, in
the sense of using it to describe related studies, comparing the
instantiation values for their components (e.g., which sensors
were employed, using which EEG device, to provide which
BCI controls, etc.), and adapting these values for the task
at hand. For example, one could aim at conduct an experi-
ment employing an EEG-controlled game using attention as
a secondary control (e.g., for controlling the difficulty of the
game). A first step would be to select games with Attention
as Control Interface / BCI Control, non-empty Control Inter-
face / Non-BCI, and with Control Mechanics / BCI used for
controlling game difficulty, either passively or actively. If no
existing games would be sufficient for one’s goal, a new game
could be developed by instantiating the other values of the
model, including the components described in Table 1 and
the category values detailed in Section 4.1.

5.1 Limitations
The demonstration of the model also showed some of its limi-
tations. As aforementioned, the first limitation is related to the
extension of the described data, which allows for an overview

of the game and how it is played with the BCI controls, but
may lack some details about the employed signal processing
algorithm and the game, such as its platform and number
of players, which have no specific component to represent
them and must be implied through the description of related
components. The player(s) from Fig. 6, for example, could
be a component itself, representing the number of players
and the target audience for the game, since the information
regarding number of players and their mode of interaction are
described separately and indirectly as part of the Player Char-
acter component. This approach was not employed in the
current model as it is intended to represent EEG-controlled
games, and the player is technically not a part of the game
itself. However, although the model could be expanded to
represent such details more precisely, it could be argued that
the player should be considered a component of the model,
instead of an element that participates in its function.

Another limitation is related to the independence of each
component in relation to each other. Some components appear
to provide less contribution to the general understanding of
the game without the complement of other components; for
example, the Player Character component provides a very
specific information that, although generally necessary for the
context of the Control Mechanics and the Virtual Interface,
could be implicitly represented through other components.
Merging these information into other general components
could, however, increase the difficulty in extracting specific
data from each game in order to compare them (or to describe
the concept of a new game), as too much information would
be gathered into a single component.

Finally, although the proposed model was developed
based on an extensive analysis of EEG-based games from
the literature and its demonstration based on methods from
related works, it could be further validated with experts from
the field. Such evaluations, conducted with specialists in
BCI, game design and user experience, could assess the clar-
ity, completeness and practical relevance of the model when
applied to different design and research contexts.

6 Conclusion
This work presented a general and unified model for EEG-
based BCI-controlled games. The model is also integrated, as
it is intended to represent such games by describing their func-
tional, structural and abstract components, the connections
between them and their constituting parts in a single represen-
tational scheme. The proposed model unifies concepts and
components from both BCI and games, which were collected,
analysed, refined and specialized from various related models
and classification schemes from both fields.

To demonstrate its usefulness and representativeness, a
set of EEG-based BCI games from the literature was described
using each of the components from the model. The demonstra-
tion showed that the model is capable of representing aspects
both from the classic EEG signal processing steps based on
neurofeedback applications, and from the game itself, provid-
ing an overview of the game, how the player interacts with
it and how it is played using both the BCI and non-BCI con-
trols. We also summarized common description attributes
and characteristics of the collected games, showing possible
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default values for instantiating each component in a system-
atic manner, which may serve as base for future classification
and standard EEG-based game descriptions.

The principles that guided the construction of the model
allow for its adaptation to different contexts and applications,
and for it to evolve and expand with new components depend-
ing on the needs of the researcher and on the context it is
inserted. It is expected that, as the model evolves, it will be
able to represent not only EEG-controlled games, but also
studies involving those games and the contexts in which they
are being applied, facilitating its employment in the compar-
ison of different BCI-based studies, for example, in meta-
analyses for comparing the performance of different signal
processing algorithms for the classification of EEG signals,
or the effects of playing EEG-based serious games in subjects
for clinical trials. This adaptability and expansion can also
guide researchers and developers in exploring new combina-
tions of BCI and non-BCI controls, leading to novel and more
effective interaction between players and game systems.

In the same sense, the proposed model can also help
researchers in the design and development of new EEG-
controlled games, and guide future studies that employ those
games. The separation of components and the representation
of their structure and functions can also aid in identifying
and isolating possible focus points for improvement, espe-
cially considering system performance, interaction design
and user privacy. Future works, in this sense, involve using
the model as a base for the design and development of new
EEG-controlled games, as well as conducting and comparing
primary studies involving those games, while also validating
these designs with specialists. In addition, a more general
system architecture for EEG-based games could be developed
using the model as foundation.
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