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Abstract—CPUs and GPUs have been evolving rapidly over
time regarding their capabilities and processing power. This has
opened many new possibilities for interactive and real time sys-
tems, such as more sophisticated scene realism, more precise and
complex artificial intelligence, and better physical simulations.
However, these improvements come at a cost: increase of energy
consumption. Energy management in interactive and real time
architectures have not been receiving much attention over the
years, but this issue is likely to become important in the near
future due to the increasing energy demand and consumption
required by top-notch game applications (especially regarding
the mobile and portable consoles). In this paper we introduce
the concept of intelligent energy management for games and
interactive systems and address the aforementioned issue through
these contributions: 1) an investigation of works related to
energy management (in general); 2) implementations of feasibility
tests for energy management on GPUs; and 3) a novel game
architecture with energy management, using multiple GPUs.

Keywords—energy management, parallel computing, multi-thread,
GPGPU, game loop models, real-time systems, multiple GPUs.

I. INTRODUCTION

Computer games have become very sophisticated regarding
rendering enhancements, modeling, animations, artificial intel-
ligence, and physics simulations. A condition that contributed
to this scenario is that available processing power of multicore
CPUs and GPUs has been increasing greatly over the last years.
Another condition is the development of sophisticated GPU
architectures has led also to the GPGPU paradigm, where real-
time applications (as games and simulations) adopt GPUs for
general computation, allowing the inclusion of new features
in games and real time simulations, such as Monte Carlo
Methods [1], artificial intelligence [2], crowd simulation [3],
fluid simulation [4], and ray casting [5].

In order to coordinate the correct execution of all game
activities, a game architecture employs at its core a structure
known as the game loop. The game loop is responsible to keep
the “heart beat” of a game, and thus providing the illusion that
all activities in a game are happening simultaneously. This
“illusion” is a peculiarity of interactive real-time applications.
We say that these applications have real-time requirements
because if these applications are not able to process their tasks
on time, the user experience will not be good enough — in

fact, user experience could be severely impaired, thus breaking
the “illusion” that the game provides. The literature presents
some works that address the nature of game loop models, such
as: Dalmau [6], Valente et al. [7], Dickinson [8], Watte [9],
Gabb and Lake [10], Joselli et al [11], and Mönkkönen [12].

As games became more sophisticated, the activities that a
game loop coordinates have greater hardware requirements in
terms of processing power (regarding CPUs and GPUs). These
requirements come at a cost — increased energy consumption,
as well as energy waste, high hardware power requirements,
and thermal management requirements. Hence, this is an issue
that game architectures will have to address in the near future.

Considering non-gaming applications, research on energy con-
sumption and thermal control has been receiving more atten-
tion over the last years. In the energy consumption area, an
example is the development of techniques as Dynamic Voltage
Scaling (DVS), which enables applications to manipulate the
processor clock frequency to reduce energy consumption and
processor temperature as a consequence ([13], [14], and [15]).
In the thermal control area, an example is research on dynamic
thermal management ([16], [17]), which has become necessary
for these new multicore hardware. Thermal management is
important because if the system temperature increases too
much, the hardware can be severely damaged.

Until recently, custom energy management on GPUs was
impossible because the hardware did not provide the means to
implement it. This situation started to change with the latest
nVidia GPU series (codenamed “Kepler” [18]), which enables
developers to implement different thermal management poli-
cies through a library named NVML (nVidia Management Li-
brary [19]. Previous generations of nVidia GPUs implemented
thermal management automatically through the graphics device
driver, which works well when the system has only one GPU.
However, in a system with more GPUs, there is some energy
waste resulting in unnecessary temperature increase. In these
cases, the automatic thermal management policy implemented
by GPU device drivers usually sets up the GPU clock to the
highest possible value whenever the GPU is working. When
the GPU is idle, the driver sets the GPU clock to the lowest
possible value. Using this policy generates energy waste when
the system has two or more GPUs, and some GPU needs
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to wait for another one to finish processing before carrying
on running tasks. In this case, a good strategy is reducing
GPU clocks in order to balance GPU processing times, thus
balancing hardware usage and lowering system temperature
and energy consumption.

When it comes to game architectures, we have not been able
to find works that address energy management in games. In
order to help in filling this gap, in this paper we provide these
contributions: 1) an investigation of works related to energy
management (in general); 2) implementations of feasibility
tests for energy management on GPUs; and 3) a novel parallel
game architecture that uses multiple GPUs and applies energy
management .

We start by investigating how energy management has been
applied to general applications (non-games). These energy
management strategies are concerned only with CPUs.

We provide feasibility tests to study how energy management
works on recent GPUs. These tests serve as a proof of concept,
since we wanted to know if it was worthy to explore energy
management on GPUs and integrate it in a game architecture.

Our novel game architecture consists of a game loop with
integrated GPU thermal management. The “game loop” rep-
resents the central core of game, being a structure respon-
sible for coordinating the execution of various game tasks
(rendering, receiving input, physics simulations, game logic,
among others). Our architecture integrates multiple GPUs as
resources in the game loop, making it possible to use GPUs
for rendering and GPGPU activities. Our architecture is based
on heuristics that make it possible to implement different GPU
energy management strategies. We want to be able to achieve
an acceptable FPS (frames per second) rate for the application,
while providing automatic energy management. For example,
an acceptable FPS application rate is about 30 frames per
second. We provide two specific test cases for this architecture.
The first one addresses a physics problem and the second one
regards adaptative Bézier tessellations.

This work is organized as follows: Section II presents an
overview on game loop models and related works, as well
as works related to energy management. Section III presents
our game loop architecture. Section IV discusses the two test
cases. Finally, Section V presents the conclusions.

II. RELATED WORK

This section provides an overview on game loop architectures
and related works. We also provide related works to energy
management in general. The works related to energy man-
agement concern non-games applications and focus on CPU
energy management. We have not been able to find works that
discussed game architectures that applied energy management
schemes, although the topic is very important for games and
virtual simulations that run in mobile phones.

A. Game Loop Architectures

Games and real time simulation processes tasks typically fall
into three general stages: data acquisition, data processing,
and presentation. Data acquisition means gathering data from
available input devices as mice, joysticks, keyboards, touch
screens, and motion sensors. The data processing part refers

to interpreting user input, applying simulation rules (the sim-
ulation logic), physics simulation, artificial intelligence simu-
lation, and related tasks. The presentation refers to providing
feedback to the user about the current simulation state, through
images and audio.

This subsection provides an overview on various ways to
organize the execution of these tasks. This overview presents
basic game loop models (Subsection II-A1), game loop models
that use parallel computing (Subsection II-A2 and II-A2a), and
game loop models for mobile devices that use cloud services
(Subsection II-A2b).

1) Basic Game Loop Models: The simplest possible game
loop model corresponds to an architecture with three steps:
gathering player input, game update and rendering. In this
model, the game runs the three tasks sequentially, as fast
as possible. This model is useful for platforms with fixed
hardware configuration. A drawback of this model is that when
running the game or simulation in machines with different
configurations, the user will perceive the game as running
faster in more powerful machines, and running slower in less
powerful machines. Tasks are organized sequentially and there
is no parallelism. This model is known as the “Simple Coupled
Model”. Figure 1 depicts this scheme.

Figure 1. Simple Coupled Model.

A strategy applied in the past ([20],[21]) to solve the main
drawback of the Simple Coupled Model was to force a
synchronization step at the end of the game loop. For example,
the game loop could try to enforce an specific update rate (e.g.
30 frames per second). However, this strategy fails if the game
is unable to run all the tasks before the enforced deadline, thus
creating lags and disrupting the user experience.

Another strategy to solve the main drawback of the Simple
Coupled Model is to make the simulation stages independent
of the host machine hardware capacity (i.e. uncoupling these
stages). Examples of uncoupling the simulation stages (e.g.
game logic update, physics, artificial intelligence) are defining
a simulation time unit for some stages (like physics) and
forcing some specific stages to run at fixed frequency (like
game logic).

The game loop models that apply these uncoupling strategies
are known as “uncoupled models”. The literature presents
Single-Threaded Uncoupled Models ([7], [8]) and Multi-
Threaded Uncoupled Models ([7], [10], [12]).

The Single-Threaded Uncoupled Model ([20], [21]) uses the
time elapsed between consecutive game loop executions as an
input to the update stages, thus defining a simulation time unit.
As a consequence, the simulations runs correctly (at the same
“speed”) in machines with different capacities. A powerful
machine would run the loop more often (using a lower delta
value), which means it would provide a better experience to
the user (more smooth animations, for example). A machine
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with low processing power would still provide the correct
result, even if this means less presentation quality. The main
difference of Single-Threaded and Multi-Threaded Uncoupled
Models is that the single-threaded ones avoids dealing with
issues related to concurrency.

The Single-Threaded Uncoupled Model tries to considering
the elapsed time in the main loop of the game execution by
feeding the update stage with a time parameter, as Figure 2
presents this scheme. Existing engines such as Cocos2D [22]
adopts this model.

 render

read player
input

update(t)

t=calculate
elapsed timeout

Figure 2. Single-Thread Uncoupled Model.

Although these are working solutions, time measuring may
greatly vary in different hardware devices due to many reasons
(such as process load), making it difficult to be reproduced
faithfully. For example, a network module implementation and
program debugging [8] may be easier to implement if the loop
uses a deterministic model. Another issue is that running some
simulations too frequently, like AI and the game logic, may
not necessarily correspond to better results.

In order to address these issues, some researchers proposed
Fixed-Frequency Uncoupled Models ([7], [20], [21]). These
models feature another update stage that runs at fixed fre-
quency, besides the time-based one. The work by Dalmau
[6] presents a similar model, although not naming it explic-
itly. Those works describe the model using a single-thread
approach. Figure 3 llustrates the Fixed-Frequency Uncoupled
Model, where the “run game logic” stage runs at a fixed
frequency and the “update” stage runs as fast as possible.

An interesting consequence regarding the Fixed-Frequency

run game logic

update(t)

 render

read player
input

t=calculate
elapsed timeout

Figure 3. Fixed-Frequency Uncoupled Model.

Uncoupled Model is that it makes the game execution de-
terministic, which makes it possible to attain reproducibility.
There are some game functionalities that can take advantage
from game execution determinism, such as replay feature,
program debugging, and network module implementation [8].

2) Parallelism in Game Loops: The advances in CPU and GPU
architectures brought into view the issue of parallelism. The
earlier single-threaded models were more useful at the time
when multicore CPUs and GPGPU programming were not
widely available or used. More recent game loop models try to
take advantage of these resources, by parallelizing game tasks.

However, dealing with concurrent programming introduces
another set of problems, such as data sharing, data synchro-
nization, and deadlocks. Also, as Gabb and Lake [10] state, not
all tasks can be fully parallelized due to dependencies among
them. For example, the system is unable to render a character
in the correct state before computing the logic and updating
the overall state. Hence, serial tasks represent a bottleneck to
parallelizing simulation computation. The remaining of this
subsection explores game loop models that apply parallelism
using CPUs and GPGPU. In particular, the architectures that
use GPGPU are the basis upon which we developed the
architecture that includes energy management (Section III).

a) Multi-thread Models for CPUs: Rhalibi et al. [23] present
a different approach for real-time loops by taking into consid-
eration dependencies among game related tasks. Their model
divides the loop steps into three concurrent threads, creating
a cyclic-dependency graph to organize the ordering in game
related processing. Each thread divides the rendering and
update tasks according to their dependency.

Mönkkönen [12] presents multi-thread game loop models that
are grouped into two categories: function parallel models
and data parallel models. The first category correspond to
models that present concurrent tasks, while the second one
concerns models that try to process data entirely in parallel, if
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possible. As an example (first category), Mönkkönen proposed
the Asynchronous Function Parallel Model, which does not
wait for task completion to perform its job. The Asynchronous
Function Parallel Model runs the render stage using the last
completed game state, even if the update stage is still comput-
ing the next one. As an example related to the second category,
there is the Synchronous Function Parallel Model [12], which
processes the game physics in a separated thread while the
main thread process the characters animations. Figure 4 depicts
this approach.

Player input render

Update
AILogic Physics Animation

Update
AILogic Physics Animation

Update
AILogic Physics Animation

Figure 4. Data Parallel Model.

The Synchronous Function Parallel Model [12] proposes to
allocate a thread to all tasks that are (theoretically) independent
of each other. For example, performing Physics simulation
while calculating animation. Figure 5 illustrates this model.
Mönkkönen states that this model is limited by the amount of

 render

read player
input

animation

run game logic

physics

Figure 5. Synchronous Function Parallel Model.

available processing cores, and the parallel tasks should have
little dependency on each other.

The Asynchronous Function Parallel model [12] uses a ded-
icated thread to process specific kinds of tasks (such as AI)
or tasks that have high interdependencies. In this model, each

thread runs in its own loop. The model is deemed as asy-
chronous because tasks do not wait for the completion of others
to perform their job. Instead, the tasks use the latest computed
result to continue processing. For example, the rendering task
would use the latest completed physics information to draw the
objects. While this measure decreases the dependency among
tasks, the task execution should be carefully scheduled for this
scheme to work nicely. Unfortunately, this is often out of the
scope of the application. Also, serial parts of the application
(like rendering) may limit the performance of parallel tasks
[10].

physics

game logic

render

Figure 6. Asynchronous Function Parallel Model.

b) Game Loop Models using GPGPU: The models that this
subsection presents use the GPUs as extra co-processors for
general computation. Usually, this strategy applies to process-
ing tasks as math problems and physics simulations.

The first game loop model that integrated the GPU for GPGPU
tasks used GPUs as math co-processors in real-time applica-
tions (as games and physics simulations) [24]. The model by
[24] corresponds to a simple coupled model that includes a
dedicated GPGPU stage. Figure 7 illustrates this scheme.

Zamith et. al [25], [26] improved the previous game loop
model by adding these functionalities: 1) the GPGPU stage
is responsible for computing game physics; 2) the GPGPU
stage and the other stages are uncoupled, running in separate
threads. The idea of using a Multi-Thread Uncoupled Model
is based on [10]. The architecture by Zamith et. al [25], [26]
implements a static load balancing scheme, using a Lua script
to allocate tasks on processors. Figure 8 presents the Multi-
Thread Uncoupled Model with a GPGPU stage.

Joselli et. al [11] present a Multi-Thread Uncoupled Model
with an automatic load balancing scheme that also inte-
grate GPGPU. The automatic load balancing approach uses
heuristics to define task allocation on processors (considering
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update

 render

read player
input

GPGPU

Figure 7. Simple Coupled Model with an GPGPU stage.

update(t)

 t=calculate
elapsed timeout

read player
input

render

GPGPU

Figure 8. Multi-Thread Uncoupled with GPGPU.

hardware with multicore CPUs and programmable GPUs). This
load balancing scheme is able to work dynamically, moving
tasks between processors during the application lifetime to
guarantee task load balance.

3) Game Loop Models for Mobile Devices that Use Cloud
Services: Joselli et. al [27] present a Multi-Thread Uncoupled

Model for mobile devices that uses cloud computing. The
general idea that [27] proposed is to have a game application
to use remote computers to process services that have higher
processing power requirements, such as image recognition and
speech recognition. As a consequence, the game application
will be able to run on mobile devices that do not have the
processing power required to process the services that the
cloud provides.

The architecture by Joselli et. al [27] provides modules to
access cloud services (image and speech recognition), net-
working, social networks, input, rendering, AI processing, and
publishing player achievements to social networks. Figure9
illustrates this model.

Figure 9. The Cluster Architecture.

B. Energy Management and Thermal Control

There are several works in the literature that explore Dy-
namic Voltage Scaling (DVS) techniques to implement energy
management as a result of reducing temperature. DVS is a
technique that enables to reduce processor temperature by
manipulating processor clock frequency through software [13]
[14], [15].

Applications that use DVS are real-time applications that solve
an optimization problem — to maximize CPU idle time while
minimizing energy consumption and maintaining real-time
requirements. In order to accomplish this goal, the algorithm
applies a policy and reduces or raises the processor clock
through DVS. The kinds of tasks that exist in these applications
are usually recurrent – they are processed several times during
the application lifetime. As a result, it is possible to analyse
task behavior according to clock frequency changes.

Our game loop architecture employs an idea similar to DVS
through nVidia’s NVML library. The main difference is that
our architecture applies the idea to GPUs, while works related
to DVS apply the idea to CPUs only. This section explores
some of these works.

Trevor et. al [28] analyse four algorithms related to energy
management and thermal control that employ DVS techniques:
FLAT, COPT, PAST, and AVG. These algorithms use different
policies to change processor clock as means to optimize
energy consumption. Trevor et. al [28] wanted to compare
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the algorithms to learn about how much energy they could
save. The FLAT algorithm defines a fixed value for voltage to
use during the entire application. The COPT algorithm takes
advantage of a task performance history to learn about how
much energy a task usually requires, in order to adjust the
processor clock to meet the energy requirement. The PAST
algorithm uses the last CPU idle time value as basis to calculate
a CPU clock value that is able to improve energy consumption
and keep the task real-time requirements. The AVG algorithm
is similar to the PAST algorithm. The main different is that
the AVG algorithm uses an average of all CPU idle times as
basis to calculate the new CPU clock value.

Kim et. al [29] propose a DVS optimization algorithm. This
algorithm aims at minimizing the time spent computing pe-
riodic tasks. In this algorithm, each task has a priority and a
deadline. The tasks are organized in a queue data structure that
defines the task priorities. When a task reaches its deadline,
the algorithm moves the task to the end of the queue. While
a task is running, the algorithm analyses the task to define the
appropriate processor voltage value to use in order to achieve
the optimization goal.

Another work by Kim et. al [30] proposes another DVS
optimization algorithm, focused on preemptive task control.
In their model, the tasks have different priority levels. This
algorithm changes processor voltage values to achieve two
goals: 1) to reduce the elapsed time of a lower-priority task
before it is time to process a higher priority task; 2) to delay
running a higher-priority task so as a lower-priority completes
execution without being preempted.

Xiaobo et. al [31] developed a DVS algorithm to manage
processor energy consumption in a system that has a mem-
ory energy management system controlled by hardware. This
memory management system is independent and cannot be
controlled through software. Xiaobo et. al [31] consider their
results satisfactory as they are able to raise the CPU processor
clock and still have benefits in total energy consumption,
because their approach takes into consideration the effects
of the independent memory management system on energy
consumption.

Zhang et. al [32] propose a DVS algorithm composed by two
parts: The first part is pre-computed (off-line) while the second
one runs on-line. In the first part, the algorithm analyzes a log
file containing task information to learn about the average task
running time and task priority. In the second part (on-line),
the algorithm uses the task information to calculate the clock
frequency in order to minimize energy consumption while
meeting the task real-time requirements.

III. THE PROPOSED GAME LOOP

This work proposes a parallel game loop architecture for one or
multiple GPUs that provides a module to manage GPU energy
consumption. This work extends the architecture first proposed
by Joselli et. al [33], which yields an efficient automatic load
balancing scheme for game tasks among GPUs.

Before going further, it is necessary to define two concepts:
1) a “task” is something that the game needs to process using
either the CPU or the GPU. For example, processing artificial
intelligence, physics, and rendering; 2) an “idle state” in the

Figure 10. Parallel game loop model with multiple GPUs.

CPU or GPU happens when there is nothing to process. In this
state, a task does not exist.

Some game related tasks (as reading input devices, playing
audio, and applying force feedback effects on joysticks) can
be performed only by CPUs. Other kinds of tasks (as intense
mathematics calculations), can be performed either on CPUs
or GPUs. Finally, some tasks are processed only by GPUs, as
rendering.

The proposed architecture comprises one main thread and
several secondary threads. The main thread is responsible for
reading player input, running the Energy Manager, and ren-
dering. The secondary threads correspond to behavioral tasks
(as tasks related to AI and Physics). Some update tasks run
on GPU (GPGPU task). In order to guarantee data consistency
for rendering, the architecture uses a synchronization scheme
based on semaphores. Figure 10 illustrates the architecture.

The architecture assigns a CPU thread to each GPGPU task.
As GPGPU tasks are not able to access main memory (due
to GPU hardware limitations), the CPU thread stores a copy
of some game data (as player input and physics simulation
data) to share with the GPGPU task. Figure 10 also illustrates
this one-to-one relationship. The reader should refer to [26]
for more details on this approach.

The Energy Manager (EM) represents the core of the proposed
architecture. The EM is responsible for monitoring the GPU
temperatures and adjusting GPU clocks to avoid wasting
energy, managing all the different tasks, and synchronizing
all threads and data exchange. The EM adjusts GPU clock
frequencies (processor and memory access) and synchronizes
all threads. The EM itself is also a task run by the CPU.

The EM synchronizes all threads (including the main one)
each time the game loop runs to share player input data
among the threads (Sync threads A in Figure 10). The EM
performs another synchronization step to gather data from
each GPGPU task thread for the render task, so the rendering
process happens correctly and consistently (Sync threads B in
Figure 10).
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When a task that requires heavy GPU processing is running
(e.g. rendering), the EM observers energy consumption of other
GPUs (dedicated to other tasks) and reduces the clocks of these
GPUs when it detects that these GPUs are idle. Otherwise, if
the EM detects that a GPU is not running a task at that cycle,
it adjusts the GPU clocks (memory access and processor) to
obtain better performance.

In parallel architectures, a thread could finish processing before
another one. Consequently, it is possible that some threads
enter the idle state while others do not. A strategy to solve
this problem is to keep all threads occupied through a load
balancing scheme. The architecture provides this strategy as it
is an extension of Joselli et. al [11].

Typically, GPUs are fast enough to process all their game
tasks and wait for game rendering. If the graphics card driver
controls the GPU temperatures automatically, it adjusts the
GPU clocks (memory access and processor) to the highest
possible value when they are active. Therefore, a good strategy
is to apply an energy management policy that reduces GPU
clocks (and consequently, system temperature).

The EM employs heuristics to decide when it should change
the GPU clock frequency (memory access and processor).
Our architecture provides a default heuristic to accomplish
this task. However, it is possible to define other heuristics
through Lua scripts, if desired. This makes it possible to test
different energy management heuristics without rebuilding the
application.

Next subsection details the default heuristic that the Energy
Manager applies.

A. The Default Energy Manager Heuristic

The heuristic accepts two input parameters, each one being
a high-precision floating point value (double). The first one
is a double value representing rendering elapsed time. The
second one is a double value representing the GPU task elapsed
time, for a given thread i. The heuristic produces one output
parameter, an integer number with three possible values: −1,
which informs that the EM should reduce the GPU clock
frequency; 1, which informs the EM to increase the GPU clock
frequency and 0, which informs the EM to maintain the current
GPU clock frequency.

The heuristic compares performance of a single GPU (running
a GPU task) with the rendering GPU. If a GPU is faster than
the rendering GPU, the heuristic determines that the GPU
should have its clock reduced. If the GPU is slower than
the rendering pipeline, the heuristic determines that the GPU
should have its clock increased. Otherwise, the heuristic does
nothing.

The architecture needs to run the heuristic periodically to
evaluate the system in order to perform energy management.
Games are dynamic applications with tasks that game tasks
can be processed very quickly (e.g. a simple particle system).
If the architecture fails to run the heuristic in reasonable
time, energy management can become inefficient. Thus, we
empirically chose to run the heuristic every 10 frames in the
beginning. Choosing an interval much higher than this value
could make the heuristic miss valuable information about task
performance. By the other way, using values much lower than

10 (like at every frame) could be costly and become a burden
to the application.

The EM is responsible for running the heuristic for all GPUs
(running GPU tasks) in the system. The metric that the
heuristic uses to compare performance is the mean elapsed
time for the past 10 frames (for both GPU and render tasks). As
the GPU configurations could possibly change, it is necessary
to wait some time for the new configurations to take effect.
Hence, the heuristic waits for 10 frames before running again.
Algorithm 1 presents the heuristic pseudocode.

Algorithm 1 Energy Manager Heuristic Algorithm
if frameCount == 10 then

meanElapsedTimeRender = getMeanRenderElapsed-
Time(frameCount)
meanGPGPUelapsedTime = getMeanGPGPUElapsed-
Time(frameCount)
if GPGPUelapsedTime < elapsedTimeRender then

return -1
else

if GPGPUelapsedTime > elapsedTimeRender then
return 1

else
return 0

end if
end if

else
if frameCount == 20 then

frameCount = 0
end if

end if

IV. TESTS AND RESULTS

This section describes the tests we have performed to inves-
tigate the feasibility of our architecture. We have conducted
two tests.

The first test is a benchmarking to learn about the new
functionality that the Kepler GPU series offer related to energy
management. We were interested to know if following this path
would be convenient.

The second test solves a physics simulation on the GPU using
our architecture. This physics simulation corresponds to an
explosion (sound wave propagation) that travels through an
environment with large obstacles, a problem that requires high
processing power.

The test platform is an Intel i7 with four physical cores of
3.60 GHz, 8GB RAM memory and two GPUs: nVidia K20
and nVidia GTX480. The GTX480 runs the render task and
the K20 runs the GPGPU task.

Both tests use NVML library API calls [19] to change memory
access and clock frequencies in the K20 GPU. This API
works by providing both values in one call, as a value-pair.
Currently, there is a hardware limitation as the possible values
to use are limited. The NVML offers functions to query the
possible value-pairs according to the GPU model. For example,
currently the K20 GPU accepts the following value-pairs:
2, 600/758, 2, 600/705, 2, 600/666, 2, 600/640, 2, 600/614
and 314/314 (memory/processor clock frequency).
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The remaining of this section discusses the two tests.

A. Test: Benchmarking

We implemented a benchmark to answer the following ques-
tion: If we changed the GPU clocks, what would be the
performance gain or loss considering the nature of the task.
In this case we consider tasks that require more memory
accesses versus tasks that require more processing power. We
were interested in learning about GPU thermal and energy
consumption with different kinds of tasks.

Our benchmark is based on four applications that ship with
the nVidia SDK [34]. We extended these applications in two
ways: i) by implementing functionality to record a log file
containing the temperature and clock values at each step; and
ii) by having the applications accept parameters that indicate
the memory and processor clock values to use. Nowadays,
these applications work only with the K20 GPU, as changing
memory and processor clocks is a functionality first introduced
in the Kepler GPU series. New mobile GPU chips are being
announced with this kind of technology.

The selected applications are: cdpAdvancedQuicksort, cd-
pLUDecomposition, radixSortThrust, and cdpBezierTessella-
tion. The cdpAdvancedQuicksort application implements a
parallel quick sort algorithm. The cdpLUDecomposition appli-
cation runs a parallel LU decomposition. The radixSortThrust
application implements a parallel version of the radix sort
algorithm. The cdpBezierTessellation application dynamically
generates a tessellation pattern of Bézier surfaces, which makes
it possible to perform tessellation of complex models in real
time [35].

We selected these specific applications because:

• they demand high computation power;

• the sorting algorithms demand more memory access
than GPU processing;

• the LU decomposition as well as the bezier tessellation
require more GPU processing than memory access;

• these specific applications are simpler to extend than
other ones that exist in the nVidia SDK;

The original applications are able to run the algorithms with
different domain sizes. For our benchmark, we selected the
same domain size for all applications (8,192 elements) because
this is the maximum value that the cdpLUDecomposition
application accepts. (the other three applications accept higher
values).

The tests consisted in running each application 1,000 times,
using different clock frequencies. The tests recorded the GPU
temperature and elapsed times (memory transfer and GPU pro-
cessing) for each clock frequency. We decided to execute each
application 1,000 times because the processor temperature
does not change immediately after changing clock frequency.
This is a behavior that Hefner and Blackburn [36] suggested
and we were able to confirm it. However, changing clock
frequencies affects immediately the elapsed times of memory
transfer and GPU processing.

1) Results: Table I presents the benchmark results. Column
memory/GPU indicates the clock frequencies of memory ac-
cess and GPU processor, respectively. Columns memory and
GPU represent the elapsed time of memory transfer and GPU
processing, in milliseconds. All values in Table I represent the
averages of all 1,000 runs.

The test results in Table I demonstrate that the applications
that require more GPU processing (cdpLUDecomposition and
cdpBezierTessellation) are the most affected when the GPU
processor clock changes. The results also demonstrate that the
applications that require more memory access (as the sorting
algorithms) are more impacted by changes in memory access
clock than in changes in GPU processor clock. The other two
applications (cdpLUDecomposition and cdpBezierTessellation)
that require more processing power than memory access are
more influenced by changes in GPU processor clock.

We classify these tests in three groups: tests related to changing
the memory access clock, tests related to changing the GPU
processor clock, and test related to GPU temperature behavior.
The next subsections analyse these tests.

2) Tests Related to Memory Access Clock: Figure 11 displays
memory access elapsed times of sorting algorithms (cdpAd-
vancedQuicksort, radixSortThrust) when memory access clock
changes. Figure 11 illustrates that changing memory clock
does not impact memory access performance for these appli-
cations.
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Figure 11. Memory access elapsed time of cdpAdvancedQuicksort and
radixSortThrust.

Figure 12 display the results about memory access regarding
the cdpLUDecomposition application. This figure illustrates
that despite the 2, 600Mhz clock frequency being significantly
higher than the 314Mhz frequency, the performance gain
(1.07) was not also significantly higher.

Figure 12 illustrates the elapsed time to run the cdpBezierTes-
sellation application using different memory access clock fre-
quencies. By changing the memory access clock frequencies,
we were able to attain a performance increase of approximately
11%. However, this performance increase came at the cost of
increasing the memory access clock in approximately 731%.

3) Tests Related to GPU Processor Clock: Figure 13 illustrates
the GPU processing elapsed time using different clock values,
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TABLE I. APPLICATION BENCHMARKING PERFORMANCE

cdpAdvancedQuicksort cdpLUDecomposition radixSortThrust cdpBezierTessellation
memory/GPU memory GPU memory GPU memory GPU memory GPU

2,600/768 0.032 3.003 0.030 8,020.080 3.036 80.845 0.097 3.051
2,600/705 0.032 3.005 0.030 12,147.500 3.026 81.123 0.097 3.073
2,600/666 0.032 3.013 0.030 16,315.200 3.014 80.397 0.097 3.086
2,600/640 0.032 3.010 0.030 20,500.800 3.032 80.453 0.097 3.091
2,600/614 0.032 3.048 0.030 24,715.400 3.038 81.583 0.097 3.103

314/314 0.032 3.079 0.032 28,861.500 3.060 80.233 0.108 3.118
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Figure 12. Memory access elapsed time.

for these applications: textitcdpAdvancedQuicksort, radixSort-
Thrust. It is possible to notice in Figure 13 that the GPU
processing time is almost constant regardless of clock value.
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Figure 13. GPU processing elapsed time of cdpAdvancedQuicksort and
radixSortThrust.

Changing the GPU processor clock frequency directly affects
the performance of this application. We expected this behavior
as cdpLUDecomposition requires high computational power.
Figure 14 illustrates that the cdpLUDecomposition perfor-
mance changes linearly as processor clock changes.

Figure 15 illustrates how different GPU clock frequencies
influence the performance of cdpBezierTessellation. We were
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Figure 14. GPU processing elapsed time (cdpLUDecomposition).

able to improve the performance of this application in 11
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Figure 15. GPU processing elapsed time of cdpBezierTessellation.

4) GPU Temperature Behavior: In the GPU temperature be-
havior test, we wanted to observe how the temperature would
change when we ran the benchmark applications. We were
particularly interested in learning about how much time it
would take for the GPU hardware temperature to rise and
stabilize at the peak value. We wanted to use this information
to help in evaluating if it is feasible to use temperature variation
as data for managing energy consumption. If the time elapsed
to reach the peak temperature is too long, using temperature
variation to manage energy consumption would be infeasible,
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as at the time the peak temperature is reached, the system
would already have consumed too much energy.

The starting condition for this test was the GPU temperature at
30 degrees Celsius. This was the temperature in an idle state,
just after powering up the system. This test used these values
for the memory access and processor clocks, respectively:
2,600 and 768. These values are the maximum supported
values for the test hardware. The test consisted of a batch
of 1,000 runs for each benchmarking application. Figure 16
illustrates a chart with temperature variations for all four
applications.

Figure 16 illustrates that the GPU temperature takes almost
10 milliseconds in order to achieve the maximum temperature.
For example, the cdpAdvancedQuicksort was the slowest one
to reach temperature stabilization (in 7.5 milliseconds) ending
at 45 degrees Celsius, while the radixSortThrust application
was the fastest to reach temperature stabilization (2 millisec-
onds), ending at 47 degrees Celsius. The cdpLUDecomposition
reached temperature stabilization in 3 milliseconds, ending at
50 degrees Celsius. Finally, cdpBezierTessellation achieved the
peak temperature (45 degree Celsius) after 2.8 milliseconds.
These results illustrates that the temperature does not take
much time to reach the peak value, which makes it feasible to
use temperature variation as input for an energy management
scheme.
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Figure 16. GPU temperature as a function of time.
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B. Test: The Physics Simulation - Shock-wave Explosion

The second test corresponds to a shock wave simulation that
models how a shock wave (originated from an explosion)
travels through an environment with large obstacles, such as
a city with tall buildings. The application used the resulting
amplitude field to render the propagation of a shock-wave-like
effect at each frame step. Although this example is not a game,
the shock-wave simulation requires solving a physics model in
real-time, which is a common feature found in current games.

Solving these kinds of simulations through an analytical so-
lution becomes impossible depending on the medium selected
for the simulation. This is the case of our test. In these cases
it is necessary to use approximative techniques to solve the
simulation. In this regard, we selected Finite Difference Meth-
ods (FDM) [37]. Generally speaking, it is not possible to solve
FDMs in real-time due to high computing demands. However,
due to the high processing power of GPUs, processing FDMs
in real-time becomes possible. The reader should refer to [37]
for implementations details about solving FDM on GPUs (that
also applies to the physics simulation that this test solves).

1) Test Scene Description: The outdoor environment was
represented by a lattice with larger cells, using Reynold’s
boundary condition [38] to simulate domain continuity. The
buildings were represented by zeroing the velocity of the cells
that intercepted the visual models at the ground level. The
kernel parameters for this experiment are: ∆h = 1.0 meter,
∆t = 0.0033 seconds, and the domain was variable from
128 × 128 points to 4096 × 4096, doubling the square size.
As ∆h = 1.0, the scene follows the same proportion. In other
words, for each simulation the test doubles the square size,
starting from 128× 128 meters to 4096× 4096 meters. Domain
sizes larger than 4096 × 4096 are infeasible to process using
our test hardware.

Figure 18 display the test scene geometry and the evolution
of the shock-wave propagation effect in time. The wave prop-
agation starts in (A) and ends in (D). The buildings interfere
in the wave propagation. Parts (A) and (B) omit buildings to
help in visualizing wave reflection. Parts (C) and (D) present
the complete scene.

2) Results: Figure 19 illustrates that changing clocks in GPUs
responsible for the GPGPU tasks does not influence the
rendering elapsed time. This result suggests that the rendering
task is the heaviest one in our example.
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Figure 19. Render task elapsed time.
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A B C D

Figure 18. Test scene geometry and the evolution of wave propagation effect in time. Parts (A) and (B) omit buildings to help in visualizing wave reflection.
Parts (C) and (D) present the complete scene.

Figure 20 illustrates a pattern: when the processor clock value
changes (while keeping the same memory clock value and
domain size), the elapsed time does not change significantly.
Changes in elapsed time are significant only when the memory
access clock also changes.
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Figure 20. Update task elapsed time.

Figure 21 illustrates a similar pattern as Figure 20. For a given
domain size, the temperature does not change significantly
when the processor clock value changes (while keeping the
same memory access clock). The GPU temperature changes
more significantly when the application varies the GPU mem-
ory access clock.
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Figure 21. The GPU temperature.

When using 2, 048×2, 048 as the domain size, the test perfor-
mance is 33 FPS, which we consider a reasonable FPS rate.
On the other hand, the test performance is worse when using a
larger domain (4, 096×4, 096), resulting in approximately 8, 3

FPS. Figure 21 illustrates these results (the FPS is calculated as
1
X where X is the time in seconds that Figure 21 represents).

These results demonstrate that there is energy consumption
reduction while not hindering application performance. How-
ever, we were not able to know the specific amount of saved
energy as the NVML library does not provide an API to query
this information.

V. CONCLUSION AND FUTURE WORKS

The rise in processing power regarding current multicore CPUs
and programmable GPUs makes it possible to have more
sophisticated games and real-time simulations. However, such
hardware requires more energy to operate, thus elevating en-
ergy consumption. In cases where energy is a scarce resource,
this issue is highly important (e.g. for devices that use batteries,
such as mobile phones).

In current GPUs, the driver is responsible for managing the
clock frequencies. We observed that the driver usually raises
the GPU clock frequencies to the highest possible values when
it perceives that the processing load increases. However, the
driver usually maintains these high clock frequency values
for the lifetime of the application even if the processing load
lowers. This default behavior opens up the possibility to energy
waste.

As new GPUs (the Kepler GPU series) enable indirect energy
management through changing GPU clocks, we considered
that using this functionality for energy management in games
and interactive applications could be a promising idea. We
first approached the idea by conducting a benchmark test to
explore this functionality. We believed the test results were
interesting enough to start exploring this functionality in a
game architecture.

The benchmark results suggest that applications have unique
behaviors regarding GPU processing. As examples, some tasks
in applications require more memory access, while other tasks
demand more processing power. In this sense, an energy
management strategy must take into account the nature of
tasks. In case of games, a challenge is to develop strategies
that change clock frequencies dynamically in a simple way,
while keeping real-time and interactivity requirements.

The new GPUs (Kepler architecture) do not provide direct
ways to measure energy consumption. Due to this issue,
we use an indirect way to know if energy consumption has
risen or lowered — monitoring temperature variation. Using
temperature variation is feasible because the time it takes
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for the GPU hardware to reach and stabilize at the peak
temperature is not very long.

Although its possible to affect the behavior of new GPUs (Ke-
pler series) programmatically, the current API has limitations.
For example, the current API requires the developer to provide
a pair of values (memory clock, processor clock) to change the
GPU behavior. In this regard, it is not possible to change each
variable separately. As a consequence, we are unable to analyse
the impact of each variable in isolation. Another problem is
that the new GPUs accept only a set of predefined clock values.

In this sense, this paper proposed a scheme to manage GPU en-
ergy consumption in games through a multi-thread game loop
model. Although we have not tested the proposed architecture
with a real game, we tested the architecture with a game-
related task (a physics simulation) that has high processing
demands, while being able to keep real-time requirements. Our
architecture also makes it possible to define heuristics through
Lua scripts. This enables testing different energy management
heuristics without rebuilding the application.

Research on energy management for games is scarce. We
were not able to find works related to this topic in the
literature. Additionally, the Kepler GPU series represent the
first generation of GPUs that enables energy management. In
this sense, our work represents a first attempt at proposing a
solution for this area. With this being said, research on energy
management for games is a novel area that has a long and
promising road ahead, which requires further investigation. It
is well known that hardware assemblers are focusing lot of
effort for increasing and optimizing energy management. We
believe that intelligent real time management of energy will
become an important issue for future games and interactive
applications.
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architecture for the gpu used as a math coprocessor in real-time
applications,” Comput. Entertain., vol. 6, no. 3, pp. 1–19, 2008.

[27] M. Joselli, M. Zamith, J. Silva, E. W. G. Clua, B. Feijó, R. LEAL,
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