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Abstract—Crowd Simulation is very important in many
virtual reality applications, because it improves the sense of
immersion of the users by making the population of agents in
the environment to move as real crowds do. Recently, models
for simulating crowds, in which each agent is equipped with
a synthetic vision system, have shown interesting results
regarding the natural manner in which the agents navigate
inside the environment thanks to their visual perception. In
this article, we propose an upgrade to the agent’s visual
system with a panoramic view in order to allow an agent
to expand its vision beyond the limit of 180◦ imposed by
the common projection provided by rendering APIs. Also,
we analyze different parameters, which are used to define
the field of view, to investigate the influence they have on
the agent’s behavior. The impacts that those changes may
cause on the efficiency of the algorithms are also analysed.
A visible change on the agent’s behavior is achieved by using
the technique, with a slight loss of performance.

Keywords-crowd simulation; synthetic vision; panoramic
vision; collision avoidance

I. INTRODUCTION

An important characteristic in a virtual reality environ-
ment is the credibility it gives to the spectator or to the user
that is interacting with it. The more credible the environ-
ment is, the greater the users’ sense of immersion will be.
Many aspects contribute to improve the immersion, from
the realism of the modeled environment to the addition of
autonomous virtual avatars (agents) that will interact with
such environment. More specifically, researchers from the
Crowd Simulation field have dedicated their efforts to
simulate the behavior of a diversity of autonomous agents
in virtual environments.

Several crowd simulation models have been proposed
in recent years. A recent class of agent-based algorithms
equipped with a synthetic vision intends to simulate
crowds through the use of a visual perception system
based on the human vision system. That kind of model is
also referred to as velocity-based model for using dynamic
information, such as the velocity, to predicting movement.
Models based on synthetic vision have received some
attention as much for simulating the human visual percep-
tion simulation as for presenting results that are visually
pleasant.

This work has two important contributions. The first is
an analysis of the influence of the field of view on vision-
based crowd simulation models. This analysis is motivated
by the absence of such studies in models of this type up
to now. The first vision-based model for crowd simulation
[1], for instance, uses arbitrary values to define the field of

view of its agents. The second contribution consists of the
implementation of a panoramic field of view that allows
vision-based models to use a field of view of up to 360◦.

The study analyzes the influence of several variables
involved in the definition of the field of view, not limited
only to the horizontal angle, but examining the vertical
angle and the visual orientation as well. The obtained
results demonstrate that the usual parameters of the field
of view used in [1] and [2] seem appropriate to solve
the proposed problem. Notwithstanding, with increasing
angle, you gain the power of simulating new situations
with non-humanoid agents, or situations in which the
agents have peripheral vision.

The remainder of the article is organized into five
sections. In Section II, the works related to the study
are presented. In Section III, the algorithm used for the
panoramic vision is presented, as well as its integration
to the models proposed by Ondřej [1] and Dutra [2] is
described. In Section IV, the methodology of the analysis
is presented. In Section V, the results of the analysis
are exposed and discussed. Finally, in Section VI, some
conclusions are made and future works is discussed.

II. RELATED WORKS

The main objective of Crowd Simulation is to determine
the movement of multiple agents that results from a
collective behavior. This subject has received attention
for many different purposes, from games and movies
industry to civil engineering, and a great number of
solutions can be found in the literature [3], [4], [5].
These solutions can be classified into macroscopic and
microscopic approaches regarding the crowd movement.
Macroscopic approaches handle the global flow of the
crowd, not depending on local interactions between agents.
Models based on guidance fields [6], [7], [8], [9], [10]
are the most representative examples of such approach.
On the other hand, microscopic approaches model local
interactions among the agents, and how they affect the
movement of each other. However, global patterns might
emerge on local simulations as a consequence of the local
interactions between the agents.

A huge amount of microscopic algorithms has been
proposed. Local interactions can be modeled based on:
examples [11], [12], rules [13], [14], [15]; or forces, as it
is done in particle systems [16], [17]. Recently, velocity-
based approaches have received increasing attention. Such
models anticipate the danger by extrapolating the agents’
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trajectories in order to detect possible collisions in the near
future [18], [19], [20], [21], [22], [9], [23], [24].

A specific category of approaches equips each agent
with a synthetic vision (SV) system. SV models mimic
the way humans foresee future risks of collision and how
they react to those risks. Those algorithms are inspired
by the literature that acknowledges the importance of the
human vision system in the action-perception loop used
for locomotion [25], [26], [27]. In pioneering works, the
field of view of an agent could be modelled as a geometric
area [13] or a volumetric representation of the scene [28],
where the agents would interact with obstacles found
within their field of view. The first explicit simulation of
locomotion resorting to an agent’s synthetic vision was
introduced in [29]. The first approach to use synthetic
vision for crowd simulation was proposed by [1]. That
model transforms the visual input of each agent into
images containing information that allows it to detect the
risk of collision with any obstacle or agent in the scene.
Agents will react to the stimulus by turning to avoid a
future collision when detected with anticipation, and by
reducing its speed to avoid imminent collisions. Ondřej’s
model is purely reactive, where the agents react only to
the most imminent danger. An approach that takes into
account a wide range of solutions was introduced in [2].
That work describes a gradient-based model for steering
agents with synthetic vision, where a cost function, used to
evaluate the agent’s current situation, has to be optimized
at each step in order to adapt the agent’s motion, so it
avoids collisions and moves toward the goal.

Models based on SV [1], [30], [2] have presented good
results and represent a great advance for the crowd simu-
lation area. Nevertheless, there are still some questions to
be investigated for this kind of model. The visual system is
way more complex than what is presented in those works.
In fact, multiple variables can influence the visual system.
Considering only the field of view, we can see that both
the horizontal and vertical fields of view can be changed
by movements of the eye or the head. In those models, it is
possible to notice that the parameters of the field of view
were defined in an arbitrary way, where the authors used
the horizontal angle of 150◦ and the vertical angle of 80◦

with the vision rotated by −40◦, whereas the literature
testifies that the human field of view is approximately
180◦ and 135◦ on the horizontal and vertical directions,
respectively [31], [32].

The literature acknowledges the importance of the field
of view to human navigation. Experiments with con-
strained field of view have resulted in: locomotion difficul-
ties, wider but slower movements with the head, difficulty
to keep the posture and difficulties on the environment
spatial representation [32]. The importance of the field
of view has also been studied from the user’s point of
view while navigating in virtual environments [33], [34].
However, its influence on the locomotion of autonomous
agents using models based on synthetic vision has not
been discussed. For this reason, we present in this work
a study of the influence of the agents’ field of view on

their locomotion using the models described in [1], [2].
Despite the existence of diverse variables to be analysed
on the vision, this study will focus on only three of them:
horizontal field of view, vertical field of view and the
vertical orientation of the vision. Finally, in order to allow
the use of horizontal angles equal or greater than 180◦

during the experiments, a panoramic vision system was
implemented based on PanQuake by Van Oortmerssen
[35]. That panoramic vision was applied to the agents used
by the models selected for the experiments.

III. PANORAMIC VIEW ON A MODEL BASED ON
SYNTHETIC VISION

Generally, the field of view of agents in virtual environ-
ments is based on the pinhole camera model. That kind
of model defines the vision as a frustum, to which planar
projections are associated. It is possible to see in Figure 1
that a field defined in that way is limited to angles lower
than 180◦. Moreover, distortions start to appear as the
angle increases due to the planar nature of the projection.

Figure 1. Example illustrating different projections of fields of view.
The image on the left shows the example of an horizontal angle of 150◦.
The image on the center shows an example with an angle of 180◦. In
this case, the planes near and far coincide, i.e., the frustum volume is
zero. The image on the right shows an example with an angle of 210◦.
The problem in that case is that the far plane is behind the agent’s head
causing undesired errors of projection.

Both [1] and [2] models for controlling autonomous
agents based on vision use a planar projection with field of
view of 150◦ × 80◦ (Figure 1 (left)). Moreover, that kind
of projection is limited to angles lower than 180◦. This
restricted field of view limits the model to simulating only
entities with narrow fields of view, where several different
entities with wide horizontal fields of view (greater than
180◦) found in nature, such as birds [36], are neglected.

That limitation motivated the addition of a panoramic
vision to this kind of model. Inspired by PanQuake [35],
the panoramic vision was adapted to render wider hor-
izontal field of view angles on the agent’s vision. The
approach is based on images and consists of rendering
the environment from multiple points of view (by rotating
the camera on the Y axis) and joining these images in a
panoramic view of the scene (Figura 2).

In order to describe the algorithm, two variables must
be defined. The first one refers to the desired projection
angle, and the second one to the number of slices (separate
rendering) used to define the panorama. The changes are
applied to the models at the moment the scene is rendered
at the point of view of the agent. Previously, the camera
was positioned at the agent’s “head”, and then set up.
Now, as we can see in Algorithm 1, after positioning, it is
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Figure 2. Panoramic view example. In this example, a panoramic field
of view of 280◦ is composed by 7 different projections of 40◦.

necessary to perform s different renderings (one for each
slice) (Lines 2 to 11) adjusting the viewport (Line 4) and
the frustum (Lines 6 to 9) for each one of them. All the
slices are rendered within different viewports in the same
image (Line 10). The function called at the Line 10 works
the same way as in the original models, but here it is called
once for each slice. Finally, the functions in lines 12 and
14 are executed the same way as in the original models.

Algorithm 1 Panoramic vision implementation.
1: for all agent a do
2: for all slice s do
3: sliceWidth← textureWidth

numberOfSlices

4: setV iewport(s× sliceWidth, 0,
sliceWidth, textureHeight)

5: sliceFoV ← fovX
numberOfSlices

6: projection← createFrustum(nearV alue, farV alue,
sliceFoV, fovY )

7: rotY ← 1
2
× (−fovX + (2× s+ 1)× sliceFoV )

8: projection← rotateY (projection, rotY )
9: setProjectionMatrix(projection)

10: texture(s)← renderV isionToTexture()
11: end for
12: processV ision(texture)
13: end for
14: doModelSecondLoop()

The same algorithm works for both SV models since the
agent’s camera set up is the same for them as well as the
organization of the rest of the algorithms. Their differences
lie in the shaders used for processing the motion variables
and in the processing step after rendering the agent’s
vision. That said, the input for the model’s algorithm that
will determine the agent’s behavior will be the same even
after we incorporate the panoramic vision.

In Figure 3, some implementation results are shown,
where the agent view is illustrated for different fields of
view, at the initial step of the circular scenario (Figure 3
(left)).

IV. METHODOLOGY OF THE ANALYSIS

The study performed in this work analyses the influence
of some of the fundamental characteristics to defining the
field of view of an agent equipped with a synthetic vision.
In addition to the usual characteristics such as: horizontal
angle, vertical angle and vision orientation; it is also
analysed a new characteristic acquired by the adoption of
the peripheral vision: the number of slices that composes
the vision.

Figure 3. The initial step for a circular scenario is shown on the left.
On the right, different fields of view are shown for the agent at the center
on the left image. Its horizontal field of view varies from 90◦ to 360◦,
and the vertical angle fixed to 80◦.

Figure 4 shows three types of trajectories regarding
two agents: diverging trajectories (on the left), parallel
trajectories (on the center) and converging trajectories (on
the right). In the first two trajectories, there is no risk of
collision, whereas in, the third one, the collision will occur
if both agents keep their current trajectories. The case on
the center image represents the turning point where the
agent might collide if it does any change toward the other
agent. The closer the agents are, the lower will be the
angle necessary for them to see each other (Figure 5).

Figure 4. (left) The angle between the trajectories of the agents is
greater than zero. They are getting away from each other. (center) The
angle between the trajectories of the agents is zero. (right) The angle
between the trajectories of the agents is lower than zero. They are in a
collision route.

Figure 5. The closer the agents are, the lower will be the angle necessary
for them to see each other.

Assuming that the agents have the same radius R, the
lowest angle necessary so that the two agents can see each
other is calculated from the configuration illustrated in
Figure 6. In that case, the agents are side by side and
the distance between their centers is equal to 2R. Given
that, the vision angle should be 2α and the value of alpha
is arccos

(
R
2R

)
= arccos

(
1
2

)
= Π

3 = 60◦. For this reason,
the vision angle should be at least 120◦ to ensuring that
at least one of the agents can see the other when there is
a chance of collision.

The angle of 150◦ used for the horizontal angle in [1],
[2] guarantees to the agent enough visibility so that they
can avoid each other. The remaining parameters: vertical
angle and vertical orientation, have the values 80◦ and
−40◦, respectively. Those values make the top part of
the frustum to be aligned with the height of the agents,
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Figure 6. In an extreme situation, where agents are side by side and
their radius are equals to R, 2α should be the lowest horizontal field of
view angle so that an agent can see the other by its side.

and the bottom part to have a coverage able to perceive
anything moving close to the observer. The tests performed
consisted of changing the initial values proposed by the
SV models, and studying the changes caused by it. For the
horizontal angle, the values of 50◦, 150◦ and 250◦ were
studied. The angle values were chosen this way in order to
evaluate three cases when it is: lower then the minimum
angle; between the minimum and 180◦; and, greater than
180◦. Each case was tested for 1, 4 and 16 slices.

V. RESULTS

In this section, the results obtained with the two models
are analyzed. Throughout the section, Ondřej’s model will
be referred as OSV and Dutra’s gradient-based model [1])
as GBM. The first results are shown in Figure 7 with
a scenario where two agents walk side by side, whereas
a third agent moves toward them, since they are on the
way to its goal. This scenario was chosen for requiring
an immediate perception from the agent’s surroundings
and for having obstacles that might cause collision in case
of any wrong movement. In that figure, it is possible to
notice that the number of slices has little influence on the
overall behavior of the agent. However, since the generated
images are actually projected from different angles, there
might be some cases where the trajectory of the agent is
significantly changed by the number of slices, specially
when the symmetry is very high and any noise can cause
the agent to take completely different actions. In those
special cases, even taking a different path, the agent will
continue respecting the interactions with the world and
behaving as expected with the model.

We analyzed also the influence of the horizontal field of
view while changing the number of slices. In this scenario,
there was no noticeable difference between the results with
different number of slices. However, the variation of the
horizontal view angle greatly changed the results, creating
different behaviors on the agents, as shown in Figure 8,
where multiple horizontal field of view angles were tested
with the SV models. When using the angle of 30◦ we
notice that the GBM with the default parameters have way
more anticipation capabilities than OSV. This caused the
agent to avoid the other two agents even with a narrow
field of view. In OSV, a collision occurred because the
agents were too close when they stopped seeing each other.
When the blue agent noticed the green agent’s presence, it
was already too late. Using the default angle of 150◦ the
two models behaved very similarly. But it is possible to
see that the agent using GBM goes a bit farther in order

Figure 7. In the first column (a), the initial configuration: two agents
(red and blue) walk in parallel, while a third agent (green) wants to move
through them with a greater speed. The X mark shows the goals of the
agents. By testing different number of slices (1, 4 and 16 from left to
right), there are almost no changes in the behavior of the agent. (b), (c)
and (d) were using OSV, whereas (e), (f) and (g) were using GBM.

to avoid the two obstacles. Using the angle of 270◦ it is
possible to notice a new behavior for both models. When
the blue agent noticed the approach from the green agent,
it started to reduce its own speed preemptively or to turn
around in order to avoid future collision. If the red agent
notice any movement on the blue agent, it will also move.

Figure 8. Multiple angles were tested for both models. (a) is the initial
scene configuration. (b), (c) and (d) are using OSV. (e), (f) and (g) are
using GBM. The horizontal field of view is 30◦ in (b) and (e), 150◦ in
(c) and (f) and 270◦ in (d) and (g).

The next parameter studied was the vertical field of view
of the agents, even not being modified by the addition
of a panoramic vision. The default values for OSV and
GBM are 80◦ of vertical opening and −40◦ of vertical
rotation. This means that the top plane of the frustum is
horizontal, whereas the bottom plane is almost parallel
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to the simplified agent mesh conical surface. Changing
the angles to make the bottom plane go away from the
agent’s body is possible, but there would be some cases
where the agent cannot see objects close to him, leading to
collisions. The top plane angle was modified by changing
the two angles. As expected, lowering the angle from the
top plane causes the agent to lose anticipation capabilities.
As we can see in Figure 9, in both models the narrow
vertical angle caused the agents to start their avoidance
movements quite later than when they were using the
default angle values. The values of the vertical angles
might be changed in order to simulate different situations,
such as agents with vision impairment, different species
of agents or event agents with different states of attention
where the head position might be relaxed and looking
down.

Figure 9. The image shows how the agents behave in a simple scene
varying the top plane inclination. In the first two columns, it is shown
the execution for the vertical angle of 40◦ and rotation of −60◦, both
for OSV and GBM. The last two columns represent the agent trajectories
when the angles have the default values of 80◦ and −40◦.

A. Performance

In order to conclude the study, an performance analysis
was made by measuring the frames per second rate (FPS)
of different parameters of the panoramic vision technique
applied to OSV and GBM. The parameters studied were:
number of agents in the scene, with values of 10, 50, 100
and 250; number of slices composing the vision rendering,
with values of 1, 2, 4, 8 and 16; angle of the horizontal
field of view, with values of 30, 90, 150, 270 and 360;
and, the two angles that define the vertical field of view,
with values of (40,−60), (80,−40) and (120,−20).

Three different scenes were used to testing the param-
eters. The first is the circle scene, where all the agents
are put equidistant from a common point, facing each
other. The objective of each agent is to cross the diameter
of the circle and reach the opposite side. The second

is the swapping groups scene. Agents are separated in
two groups, and the groups must swap their positions
by crossing at the center. Similarly, the crossing groups
scene consists of two groups, but they must cross in a
perpendicular path. These scenarios were a sample of the
different scenes used in [1], [2] to evaluate the agents’
behavior.

Figure 10. The different scenes used to testing the performance: circle
(left), swapping groups (center) and crossing groups (right).

All possible combinations of the mentioned val-
ues were made, each one defined as a tuple (e.g.
(OSV, circle, 50, 150, 80,−40, 4)). Then, they were sent
to each algorithm for running the simulation for 10 sec-
onds. The measured value of FPS of each execution was
stored and then plotted to different graphs to compare
how each parameter influenced the performance. The
FPS of each frame is 1frame

time in seconds . Since the time is
measured in milliseconds in the application, the following
formula was used to measure the average FPS over all the
execution:

FPS =
1

n

n−1∑

i=0

1000.0

time measurei
(1)

where n is the number of frames of the trial.
The analysis result is a dataset of tuples that contain

all the parameters as well as the average FPS measured.
Figure 11 shows how the different parameters affect the
performance of the algorithms. The top graphic shows
the performance impact caused by the number of slices
in the vision of the agent. It is possible to see that the
FPS is almost unchanged by the slices variation. Even
if the technique makes the algorithm perform multiple
rendering steps to generate a single image, the number of
computations used to generate the image is proportional
to the size of the buffer. Since the total buffer size does
not change, the overall execution time is only changed by
the overhead of calculating a new projection and setting a
new viewport for each slice. The number of objects being
rendered might also affect the performance of rendering
each slice, but due to the clipping algorithm, objects
that are outside the view frustum are left out of the
computation, avoiding multiple calculations for the same
object.

SBC Journal on Interactive Systems, volume 6, number 2, 2015 7

ISSN: 2236-3297



Figure 11. Results for the performance test. The graphics show the
influence of the number of slices of the vision (top), the horizontal angle
(middle) and the number of agents (bottom) on the FPS for each model.

The plot at middle shows how the horizontal angle
affects the performance. As expected, just changing the
angle value causes a minimal performance variation. The
time of rendering each frame might be affected by the
amount of vertexes contained in the scene, but since this
step is being computed in parallel by the GPU, the change
caused almost no variation on the plot.

The bottom graphic represents the FPS variation caused
by the amount of agents on the scene. Since for each agent

a new image of the scene must be rendered, it is expected
that the change of this parameter causes a greater impact
on the performance. It is possible to see that there is a
small variation between the samples from the same amount
of agents. This means that this dimension is the one that
defines the wide range of frames per second measured. If
all the data had been read with a fixed number of agents,
the variance achieved would have been lower.

The tests were performed on a desktop machine with
the following configurations: Intel(R) Core(TM) i5-2400
CPU @ 3.10GHz, 8GB of RAM and Video card GeForce
GTX750 2GB SC DDR5.

VI. CONCLUSION

In this work, the influence of the field of view on the
trajectory of autonomous agents was explored. The study
was performed with two models for simulating crowds
based on synthetic vision: OSV [1] and GBM [2]. In order
to realize the study,the visual system used by the agents on
both models had to be upgraded so as to handle horizontal
angles greater than 180◦. For that reason, a panoramic
vision algorithm [35] was integrated to the agent’s visual
system. The two biggest contributions of this work were:
the use of the panoramic vision by autonomous agents
in vision-based algorithms for crowd simulation, and the
analysis of the influence of the field of view in such type
of simulation.

For the study, experiments were executed with some
samples of the variables used to define the field of view
of the model. From the experiments, the conclusion was
that the value of the horizontal field of view used in
both OSV and GBM is appropriate to avoiding collisions,
given that two agents in a collision route are able to
see each other at time for avoiding a collision in the
near future, when having an horizontal angle greater than
120◦. It became evident that the chosen values for the
vertical angle and vertical rotation were adequate for the
specific situation, since with 80◦ and −40◦ respectively,
the agent was capable of seeing everything close enough
from its body, and below an horizontal plane over its head.
Since all obstacles in the simulation are contained in that
region, the agent is capable of seeing everything within its
horizontal field of view. However, it is worth to mention
that changing the vertical angle allows new situations with
restricted vision to be simulated. Notwithstanding, it was
also observed that increasing the number of slices did
not cause noticeable losses on the performance of the
application. With a slice count up to 16 it is possible
to have minimal decreases in performance and keeping
a good panoramic vision quality up to 360◦.

Increasing the size of field of view allowed develop-
ing new ideas to making the agent’s movement more
believable. A normal human being possesses a central
vision and a peripheral vision and the existing models
still do not take that into account. A new model could
then be developed taking into consideration the different
regions of the human field of view. Other possibilities
include studying the influence of the agent’s head rotation,
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allowing it change the direction it is looking while keeping
itself on its trajectory. Despite allowing more collisions to
happen, it would be possible to model a system that is
more credible, since collisions actually happen sometimes
in a real crowded environment.

Finally, there are different aspects to be studied related
to the simulation of visual perception. Other types of
projection, like the fish-eye view, common in sportive
photographic cameras due to its wide aperture, can also
be explored as alternatives to the panoramic view used
in this work. Furthermore, it would be interesting using
the synthetic vision to simulate the perception of different
species of agents, given that, for example, a human agent
possesses a different field of view configuration from a
bird agent [36], that has its eyes on the side of the head.
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