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Abstract—In computer vision, gradient-based tracking is usu-
ally performed from monochromatic inputs. However, a few
research studies consider the influence of the chosen color-to-
grayscale conversion technique. This paper evaluates the impact
of these conversion algorithms on tracking and homography
calculation results, both being fundamental steps of augmented
reality applications. Eighteen color-to-greyscale algorithms were
investigated. These observations allowed the authors to conclude
that the methods can cause significant discrepancies in the overall
performance. As a related finding, experiments also showed that
pure color channels (R, G, B) yielded more stability and precision
when compared to other approaches.

I. INTRODUCTION

Tracking algorithms based on descriptors often use images
in grayscale to detect and extract features [11][13][2]. One
of the reasons for using grayscale images instead of full
color images is to simplify the three-dimensional color space
(R, G and B) to a single dimensional representation, i.e.,
monochromatic. This fact is important because it reduces the
computational cost and simplifies the algorithms. However,
according to [10], the decision as to which color- to- grayscale
mechanism should be used is still little explored. Studies tend
to believe that, due to the robustness of the descriptors, the
chosen grayscale conversion technique has little influence on
the final result.

Several different methods are used in computer vision to
perform color-to-grayscale conversion. The most common are
techniques based on weighted averages of the red, green and
blue channels, e.g., Intensity and Luminance [7]. Moreover,
there are methods that adopt alternative strategies to generate
a more accurate representation with respect to brightness, such
as Luma and Lightness [9], although at first none of these
techniques has been developed specifically for tracking and
pattern recognition.

In [10], a case study is presented to demonstrate that there
are significant changes in tracking results for different color-
to grayscale conversion algorithms . The influences of these
methods were also presented using SIFT and SURF descriptors
([12] and [2], respectively), Local Binary Patterns (LBP)[15]
and Geometric Blur[3]. Nevertheless, the mentioned studies
did not examine the red, green and blue pure channels as
options for color-to-grayscale conversion.

Since color-to-grayscale conversion results are a function
of the three pure channels (R, G and B), converted images

lose part of the information they contained because a pixel in
the input image, formerly represented by three dimensions in
the color space, is then represented by a single one. Further-
more, there is no guarantee that the various color-to-grayscale
conversion techniques converge to the same grayscale intensity
value, i.e. the input image changes depending on the grayscale
conversion method. Having said that, this paper aims to repli-
cate the experiments on [10] and perform further experiments
using the R, G and B pure channels as grayscale conversion
techniques themselves.

II. METHODS

This section describes basic concepts involved in the exper-
iments and results presented in this article. It encompasses the
explanation of color system concepts, brightness correction,
color-to-grayscale conversion, SIFT and matching.

A. Color systems

Color-to-grayscale conversion algorithms all generate a
monochromatic representation as output of the original color
image. There are many color space representations, each one
designed for a specific purpose and with its own coordi-
nate system, for example, CYM[7], CYMK[7], RGBE[6],
RGBW[5], HSL[1], HSV[1] and HSI[1]. The most common
way of representing a pixel in a color space is RGB[7].

HSL and HSV are other common representations of points
in the color space. These color space representations are
cylindrical in shape and aim to rearrange the geometry of
the color space in an attempt to be more intuitive than the
cube-shape representation employed in the RGB model. The
representation of the color space in HSL, HSV and RGB
versions can be seen in Figure 1

B. Gamma Correction

Gamma correction is a nonlinear operation used to control
signal amplitude. In digital image processing, this operation
is used to control brightness and reduce gradient variation in
video or still image systems. Human vision, under common
illumination conditions (neither pitch black nor blindingly
bright) follows an approximate gamma function, with greater
sensitivity to relative differences between darker tones than
lighter ones. The gamma correction follows the power law[16]
according to the equation 1.
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Fig. 1. (a) HSL (b) HSV (c) RGB

x′ = Γ(x) = A ∗ xγ (1)

where x is the pixel intensity in the image matrix representa-
tion, A is a scalar and γ is the correction parameter. The usual
value for A and γ is 1 and 1/2.2 respectively[16]. The figure
2 displays examples of different A and γ. We denote gamma
corrected channels as R, G, and B. The gamma correction
may also be applied to a function output - for example,
the Luma algorithm corresponds to the Luminance algorithm
using gamma corrected input (R’, G’ and B’).

Fig. 2. Original figure at A = 1 and γ = 1

C. Color-to-Grayscale Conversion Algorithm

This section will briefly describe the color-to-grayscale
methods studied during this research. The most popular ap-

proach to the problem of conversion is the Luminance algo-
rithm, which approximates the image gradient to the human
vision perception[4]. Every grayscale conversion technique is
a function G that receives a colorful image as input R3mn and
outputs a monochromatic image Rmn. Assuming all digital
images used in this research are typically 8-bit per channel,
the discrete pixel values l respect a limit of L = 28 possible
levels of intensity, in other words, all values of the color input
and the grayscale output are located between 0 and 255. In this
scale, 0 represents black and 255 represents white. It is also
assumed that R, G and B stand for a linear representation
of the red, green and blue channels respectively. The color-
to-grayscale conversion produces a pixel matrix with values
between 0 and 255. The table I shows the conversion algorithm
used in [10].

TABLE I
COLOR-TO-GRAYSCALE ALGORITHM

GLuminance 0.21 ∗R+ 0.71 ∗G+ 0.07 ∗B

GIntensity
R+G+B

3

GV alue argMax(R,G,B)

GLightness
1

100
(116{(Y )− 16)

GLuster
argMax(R,G,B)+argMin(R,G,B)

2

GLuma 0.21 ∗R′ + 0.71 ∗G′ + 0.07 ∗B′

GGleam
R′+G′+B′

3

G′Luminance Γ(GLuminance)

G′Intensity Γ(GIntensity)

G′V alue Γ(GV alue)

G′Lightness Γ(GLightness)

G′Luster Γ(GLuster)

In addition to replicating the experiments, this paper also
extends the research adding six more grayscale conversion
techniques: the pure channels (R, G and B) and the pure
channels corrected by gamma function (R′, G′ and B′). The
idea is to evaluate tracking behavior using a grayscale that is
an actual output of the camera and not a function of the values
given by this camera.
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D. Scale Invariant Feature Transform

The image feature generation used in Lowe’s method trans-
forms an image into a large collection of feature vectors, each
of which describes a point, named keypoint, in the image.
These vectors are named as descriptors and they are invariant
to translation, scaling, and rotation, partially invariant to
illumination changes and robust to local geometric distortion.
Firstly, the keypoints locations are defined as maxima and
minima according to Difference of Gaussians (DoG) function
applied in scale space to a series of smoothed and resampled
images[12]. Low contrast candidate points and edge response
points along an edge are discarded using interpolations of the
samples and the Hessian matrix[12]. Dominant orientations are
assigned to localized keypoints. These steps ensure that the
keypoints are more stable for matching and recognition. SIFT
descriptors are then obtained by considering pixels around a
radius of the key location.

E. Feature matching

The SIFT descriptors are stored and indexed, and then they
are matched with the SIFT descriptors in the other image. The
best candidate match for each keypoint is found by identifying
its nearest neighbor in the database of keypoints from training
images. The nearest neighbors are defined as the keypoints
with minimum Euclidean distance from the given descriptor
vector. But in some cases, the second closest-match may be
very near to the first. It may happen due to noise or some other
reasons. In that case, the ratio of closest-distance to second-
closest distance is taken. If it is greater than 0.8, the match
is rejected. It eliminates around 90% of false matches while
discarding only 5% correct matches[12]. The non rejected
points are named a good match.

III. EXPERIMENT

The experiment performed in this paper aimed to study the
influence of grayscale conversion in descriptor-based tracking
behavior and its results. This work focused on the influence
of different grayscales on SIFT descriptors [12].

For each image chosen as template, four points were se-
lected as shown in Figure 3. These points were chosen because
they have no detectable feature characteristics, i.e. they could
only be estimated using homography calculation. Each tracked
template path was compared to a correspondent ground truth,
which specifies the real path of these four selected points along
the video frames.

The performance of different color-to-grayscale conversion
techniques was analyzed based on their ability to maintain
object tracking throughout the video. In other words, for a par-
ticular grayscale conversion algorithm, the number of frames
which established sufficient correlation between the template
and the actual scene was verified. This allows for homography
estimation and the identification of pre-established points in
the figure 3. These were the points compared to the ground
truth. Algorithms were ranked regarding their tracking stability
using the equation 2 as a score function.

Fig. 3. Points on groundtruth

s =
10

v

v∑

i=1

ni
Ni

(2)

where v is the number of tested videos, ni the number of
frames in the video i where SIFT obtained sufficient features
for homography calculation, and Ni the total number of frames
in the video i. The experiment is summarized in the algorithm
1.

Algorithm 1 Experiment Steps
Tgrayscale = Gi(Template)
Feature extraction of Tgrayscale
Generate SIFT descriptor using Tgrayscale
for All video frames do

Qgrayscale = Gi(Quadros)
Feature extraction of Qgrayscale
Generate SIFT descriptor using Qgrayscale
M = Amount of feature matching
if M ≥ 8 then

Pose estimation and corner points estimation
end if
Campare with the groundtruth

end for

IV. RESULTS

The experiment was performed using five videos for each
of the four templates, 20 samples in total. Each video had an
average time of 10 seconds recorded at 30 fps. The videos
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were named with the template initials followed by a number.
The templates used can be seen in Figure 4.

Fig. 4. (a) Template 1: Book, (b) Template 2: Spider-Man, (c) Template 3:
Green Lantern, (d) Template 4: Modified Green Lantern

To increase the experiment robustness, each video was
filmed randomly according to the following categories:
• Format

– .avi
– .mov

• Compression
– Raw
– MPEG-4

• Scene
– Moving
– Static

• Camera
– Microsoft - Lifecam 1393
– Canon T4I

• Ilumination
– Artificial (IRC 70%)
– Natural (Sun)

The set of all videos and specifications can be seen in table
II.

A. Good matching

To calculate the homography it is necessary to have at least
four correspondence points[8]. The first part of the experiment
is to verify whether all grayscales are capable of producing
enough good matching to calculate the homography. The

TABLE II
SAMPLES SPECIFICATIONS

Video Format Compression Scene Camera Illumination
B.1 .avi Raw Mov Lifecam Art
B.2 .avi Raw Est Lifecam Art
B.3 .mov MPEG-4 Est Canon Art
B.4 .mov MPEG-4 Mov Canon Art
B.5 .mov MPEG-4 Mov Canon Nat

SM.1 .avi Raw Mov Lifecam Art
SM.2 .avi MPEG-4 Mov Lifecam Nat
SM.3 .avi Raw Est Lifecam Art
SM.4 .mov MPEG-4 Est Canon Art
SM.5 .mov MPEG-4 Est Canon Nat
GL.1 .avi Raw Mov Lifecam Art
GL.2 .avi Raw Est Lifecam Art
GL.3 .mov MPEG-4 Est Canon Art
GL.4 .mov MPEG-4 Est Canon Art
GL.5 .mov MPEG-4 Mov Canon Nat

MGL.1 .avi Raw Est Lifecam Art
MGL.2 .avi Raw Est Lifecam Art
MGL.3 .mov MPEG-4 Est Canon Art
MGL.4 .mov MPEG-4 Est Canon Art
MGL.5 .mov MPEG-4 Mov Canon Nat

TABLE III
TEMPLATE 1: % OF FRAMES WITH ENOUGH GOOD MATCHING

Algorithm Videos
B.1 B.2 B.3 B.4 B.5

RED 100 100 100 100 100
GREEN 100 100 100 100 100

INTENSITY 100 100 100 100 100
GREEN’ 100 100 100 100 100

LIGHTNESS 100 100 100 100 100
VALUE 100 100 100 100 100

INTENSITY’ 100 100 100 100 100
VALUE’ 100 100 100 100 100
GLEAM 100 100 100 100 100

LIGHTNESS’ 100 100 100 100 100
LUSTER 100 100 100 100 100

RED’ 100 100 100 100 100
LUSTER’ 100 100 100 100 100

BLUE 100 100 100 100 100
BLUE’ 100 100 100 100 100

LUMINANCE 100 100 100 100 99,70
LUMINANCE’ 100 100 100 100 99,40

LUMA 100 100 100 100 98,79

percentage of frames with enough good matching for templates
1, 2, 3 and 4 are in TABLE III, IV, V and VI , respectively.

As you can see in TABLE III, IV, V and VI, all color-to-
grayscale algorithms are able to produce enough good matches
in a majority of frames. But the results in the next section show
that good matching does not mean good homography.

B. Homography

The first template studied was Figure a. The default color-to-
grayscale conversion algorithm in OpenCV[4] is Luminance.
Considering OpenCV is widely used in computer vision ap-
plications, it was expected that this algorithm would have a
satisfactory outcome. The results using the proposed score
metric are related in table VII.

Note in Table VII that the pure red channel obtained the
highest score (9.24) even in varying lighting, change of camera
and/or motion blur. The pure green channel had similar results
to the red in many cases with a score of 9.15. The algorithm
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TABLE IV
TEMPLATE 2: % OF FRAMES WITH ENOUGH GOOD MATCHING

Algorithm Videos
SM.1 SM.2 SM.3 SM.4 SM.5

GREEN 100 100 100 100 100
LUMINANCE 100 100 100 100 100

INTENSITY 100 100 100 100 100
GLEAM 100 100 100 100 100
LUSTER 100 100 100 100 100

RED’ 100 100 100 100 100
BLUE’ 100 100 100 100 100
BLUE 100 100 100 100 99,69

LUMA 100 100 100 100 99,69
VALUE 100 100 100 100 99,06

VALUE’ 100 100 100 100 99,06
RED 100 100 100 100 98,13

GREEN’ 100 99,75 100 100 100
LUSTER’ 100 99,75 100 100 100

LIGHTNESS’ 99,66 100 100 100 100
INTENSITY’ 99,66 100 100 100 100
LIGHTNESS 97,24 100 100 100 100

LUMINANCE’ 97,93 100 100 100 99,40

TABLE V
TEMPLATE 3: % OF FRAMES WITH ENOUGH GOOD MATCHING

Algorithm Videos
GL.1 GL.2 GL.3 GL.4 GL.5

LIGHTNESS’ 100 100 100 100 100
LUSTER 100 100 100 100 100

RED’ 100 100 100 100 100
BLUE 100 100 100 100 100

GREEN’ 100 100 100 100 99,69
VALUE 100 100 100 100 99,38

VALUE’ 100 100 100 100 99,38
GREEN 100 100 100 100 99,38

LUMINANCE 100 100 100 100 99,38
INTENSITY 100 100 100 100 99,38

LUMA 100 100 100 100 98,45
LUMINANCE’ 100 100 100 100 98,14

LUSTER’ 100 100 100 100 98,14
INTENSITY’ 100 100 100 100 97,52

GLEAM 100 100 100 100 97,21
RED 100 99,66 100 100 98,76

LIGHTNESS 99,33 100 100 100 99,69
BLUE’ 100 99,33 99,66 100 99,38

TABLE VI
TEMPLATE 4: % OF FRAMES WITH ENOUGH GOOD MATCHING

Algorithm Videos
MGL.1 MGL.2 MGL.3 MGL.4 MGL.5

LUMA 100 100 100 100 100
INTENSITY 100 100 100 100 100

VALUE 100 100 100 100 100
INTENSITY’ 100 100 100 100 100

VALUE’ 100 100 100 100 100
GLEAM 100 100 100 100 100
LUSTER 100 100 100 100 100

LUSTER’ 100 100 100 100 100
BLUE’ 100 100 100 100 100

LUMINANCE’ 100 100 100 100 99,69
LIGHTNESS’ 100 100 100 100 99,69

BLUE 100 100 100 99,38 100
RED 100 99,57 100 100 100

LIGHTNESS 100 99,57 100 100 100
RED’ 100 99,14 100 100 100

LUMINANCE 99,66 100 100 100 100
GREEN’ 100 99,14 100 100 99,69
GREEN 98,97 100 100 99,06 99,07

Luminance comes in third with a score of 8.69. As the

TABLE VII
TEMPLATE 1: % OF TRACKED FRAMES AND THE SCORE PROPOSED

Algorithm Videos Score
B.1 B.2 B.3 B.4 B.5

RED 92 100 100 70 100 9,24
GREEN 88 100 100 70 100 9,15

LUMINANCE 81 100 100 54 100 8,69
LUMA 75 100 100 46 6 6,55

INTENSITY 72 100 96 28 30 6,53
LUMINANCE’ 66 100 100 39 4 6,18

GREEN’ 71 100 100 26 9 6,12
LIGHTNESS 54 100 100 48 2 6,07

VALUE 26 100 64 5 91 5,70
INTENSITY’ 36 100 95 30 0 5,20

VALUE’ 26 100 40 4 88 5,16
GLEAM 41 100 85 18 0 4,88

LIGHTNESS’ 18 100 31 13 0 3,26
LUSTER 11 99 0 0 1 2,23

RED’ 1 100 0 0 0 2,03
LUSTER’ 2 62 0 0 0 1,28

BLUE 0 0 0 0 0 0
BLUE’ 0 0 0 0 0 0

Luminance is a weighted average of the three channels and
the blue channel achieved a score of 0, the Luminance may
have been influenced by the poor performance of the blue
channel.

Since the red channel had the best score and the blue one the
worst, template 2 was chosen essentially because it is a red and
blue image. Therefore, gradient difference is reduced, making
it harder to extract image characteristics. Consequently, SIFT
descriptors would perform badly. This template was used in
order to exemplify a case where a single pure channel would
not perform better than a function of all pure channels. The
results using template 2 are in table VIII.

TABLE VIII
TEMPLATE 2: % OF TRACKED FRAMES AND THE SCORE PROPOSED

Algorithm Videos Score
SM.1 SM.2 SM.3 SM.4 SM.5

GREEN 100 70 100 100 100 9,39
RED 79 25 97 100 100 8,02

BLUE 95 29 88 95 100 8,13
LUMINANCE 3 61 100 11 100 5,50

INTENSITY 2 55 98 0 100 5,09
LUSTER 5 42 100 0 100 4,94

LUMA 0 23 0 0 96 2,38
LIGHTNESS 1 2 0 0 100 2,07

GLEAM 0 3 0 0 100 2,06
GREEN’ 0 31 0 0 0 0,62

LUMINANCE’ 0 9 0 0 0 0,18
BLUE’ 0 0 1 0 0 0,03

VALUE 0 0 0 0 0 0
RED’ 0 0 0 0 0 0

INTENSITY’ 0 0 0 0 0 0
VALUE’ 0 0 0 0 0 0

LIGHTNESS’ 0 0 0 0 0 0
LUSTER’ 0 0 0 0 0 0

The first noteworthy information in table VIII is the red
channel performance, whose score decreased from 9.24 to
8.02, a drastic but expected result, as the template contained a
lot of red. Hence, no considerable gradient differences existed.
The green channel had the best performance in this test with
a score of 9.39. This result might seem counter-intuitive at
first, for the template used (figure 4b) was manipulated to
have no green intensity; however, it is important to note that
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all colors captured by CCD sensor models [14] (used in the
majority of current digital cameras) are composed of R, G
and B channels. That means that all pixels are composed by
a combination of those three colors. Other relevant results are
the blue channel performance (score 8.13) and the Luminance
performance (score 5.50). The overall outcome suggests that,
even when pure channels present good results, a function of
these three channels (such as Luminance) will not necessarily
present good results as well.

Template 3 was chosen in order to test the pure green
channel, and thus, this template will naturally have little
gradient difference in the green channel. For this test, it is
expected that the pure green channel tracking performance
would decrease as happened with the red channel in the
previous test using template 2. Template 3 results are shown
in table IX.

TABLE IX
TEMPLATE 3: % OF TRACKED FRAMES AND THE SCORE PROPOSED

Algorithm Videos Score
GL.1 GL.2 GL.3 GL.4 GL.5

RED 99 100 100 100 100 9,97
GREEN 91 100 26 100 88 8,10

INTENSITY 60 100 57 100 72 7,79
BLUE 92 100 13 100 66 7,44

LUSTER 83 100 33 100 49 7,28
LUMINANCE 19 100 4 100 15 4,77

VALUE 0 100 0 100 0 4,01
VALUE’ 0 100 0 100 0 4,01
GLEAM 0 9 0 56 0 1,30

LUSTER’ 0 44 0 3 0 0,94
INTENSITY’ 0 31 0 4 0 0,69

BLUE’ 0 21 0 2 0 0,47
RED’ 0 5 0 11 0 0,32

LIGHTNESS 0 0 0 13 0 0,26
GREEN’ 0 0 0 8 0 0,17

LUMA 0 0 0 7 0 0,15
LUMINANCE’ 0 2 0 5 0 0,13

LIGHTNESS’ 0 0 0 0 0 0

As shown in table IX, the red channel achieved the best
performance in the group, its score being 9.97, similar to the
test with template 1. As expected, the green channel had a
similar performance to that of the red channel in the tests,
its score decreasing from 9.39 to 8.10. Again, the traditional
Luminance approach still reached a lower score than all pure
channel approaches.

Based on the tests using templates 2 and 3, it was possible
to notice that the predominance of a single color in a tem-
plate may be prejudicial to SIFT descriptors and to feature-
based tracking. Furthermore, multiple channel mix functions
achieved a visibly lower performance when compared to pure
channel approaches.

As modern cameras usually adopt the CCD system, at least
one of the three primary channels should identify gradient
variations that allow for feature extraction and tracking. To
test this, an evaluation was conducted using a template that
essentially presented only one channel.

Template 4 was produced by editing template 3 - it kept
virtually none of its original blue and red intensities and
suffered a green intensity boost. After this modification, ex-
pected results were to undermine the performance of the green

channel and other green dependent approaches (Luminance for
example). Experiment results can be examined in Table X.

TABLE X
TEMPLATE 4: % OF TRACKED FRAMES AND THE SCORE PROPOSED

Algorithm Videos Score
MGL.1 MGL.2 MGL.3 MGL.4 MGL.5

RED 98 46 26 18 100 5,78
LUSTER 40 81 1 3 61 3,73

INTENSITY 5 95 0 1 73 3,49
BLUE 28 4 0 2 34 1,36

GREEN 0 0 0 0 67 1,34
LUMINANCE 0 0 0 0 23 0,45

RED’ 0 3 0 0 0 0,06
BLUE’ 0 0 0 0 0 0,01

VALUE 0 0 0 0 0 0
LIGHTNESS 0 0 0 0 0 0

LUMA 0 0 0 0 0 0
GLEAM 0 0 0 0 0 0
GREEN’ 0 0 0 0 0 0

LUMINANCE’ 0 0 0 0 0 0
INTENSITY’ 0 0 0 0 0 0

VALUE’ 0 0 0 0 0 0
LIGHTNESS’ 0 0 0 0 0 0

LUSTER’ 0 0 0 0 0 0

As expected, the results in Table X display the low score
achieved by all approaches, including the pure channels, as
template 4 had almost no gradient variation. Green channel
scores plummeted from 8.10 to 1.34, a predictable result given
the previous template manipulation, and the red channel had
the best result with a 5.78 score. Luminance scored 0.45, still
lower than all pure channel approaches, and was surpassed by
Intensity (score 3.49) because the green channel’s influence
on this method is lower.

The next step of the research was to evaluate the precision
of point estimation when compared to the ground truth. Figure
5 shows a path estimated using SIFT descriptors compared to
the ground truth. This analysis used the mean squared error
(MSE) technique for each template in each video as a metric
to evaluate tracking precision. Results are displayed in Table
XI.

TABLE XI
TEMPLATES 1,2,3 AND 4 EQM

Algorithm Templates
1 2 3 4

GREEN 1,33 1,23 1,18 8,47
RED 1,52 1,34 2,71 7,43

BLUE - 1,95 8,86 8,13
INTENSITY 2,44 1,79 1,53 9,51

LUMINANCE 1,5 2,02 4,67 5,37
LUMA 1,61 - - -

GREEN’ 3,23 - - -
LUMINANCE’ 5,35 - - -

INTENSITY’ 5,04 - - -
LIGHTNESS 6,57 - - -

GLEAM 8,65 - 31,67 -
VALUE’ 53,2 - 18,79 2,00

RED’ 46,25 - - -
VALUE 53,79 - - 2,00

LIGHTNESS’ - - - -
BLUE’ - - 54,73 -

LUSTER 9,89E+06 1,18 2,22 9,84
LUSTER’ 1,90E+07 - - -

As seen in Table XI, only the red, green, Luminance,
Intensity and Luster are able to calculate homography in all

SBC Journal on Interactive Systems, volume 6, number 2, 2015 35

ISSN: 2236-3297



(a)

(b)

(c)

(d)

Fig. 5. Left superior point estimated path on video MGL.5 y coordinate
(a)Pure red channel, (b) Pure green channel, (c) Luminance, (d) Intensity.

cases. Among these five algorithms, the pure channels red and
green perform better than the others because they are those
with the lowest mean squared error (MSE) and only obtained
inferior results in the synthetic case (experiment with template
4).

V. CONCLUSION

The initial results show a significant variation on SIFT
output and performance according to the grayscale method
used to process the input frame. After comparing results, one
can point out that pure channels (R, G and B) are better than
other approaches, generating numerically consistent outputs,
which proved to be very effective for tracking using SIFT
descriptors.

The computational cost to perform this type of tracking
is negligible compared to all the algorithms already imple-
mented, considering the absence of any test, operation or
adjustment beyond the direct assignment of the value of
the channels. Among primary channels, the top performers
were the red and green channel. The blue channel had an
unsatisfactory performance when compared to the red and
green channels.

VI. FUTURE WORKS

The next step in this research is to evaluate the influence
of light sources and camera sensor standards in the SIFT
descriptors. Other subjects of interest are the influence of
grayscale conversion approaches in other feature description
techniques as well as the implementation of a hybrid and
adaptive grayscale conversion, robust to color and lighting
variation.
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