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Abstract—In order to render realistic images, the reflectance
of surfaces must be simulated accurately. Generally, the ray
tracing rendering technique is used to make a material reflect
its surroundings, since it represents with great fidelity the
behavior of light. However, ray tracing is still a very costly
algorithm, so far mostly indicated in offline rendering scenarios.
This situation is even more challenging for scenes containing
3D deformable meshes, since their geometry and, thus, the
acceleration structures used, need to be updated in each frame of
the animation. In this paper, we present an extended version of
our hybrid algorithm that combines rasterization and a pure ray
tracing through the NVIDIA OptiX to render high quality fast re-
flections, including scenes with deformable models. Additionally,
we analyze and compare the performances of different NVIDIA
OptiX acceleration data structures for generating reflections of
static and deformable models in walkthrough animations. The
results show that NVIDIA OptiX acceleration structures reach
high frames per second for static objects. However, there is a
performance decay in terms of frames per second when dealing
with deformable models, since it becomes necessary to update
the acceleration structures to cope with changing geometry, but
even under these restrictions, we were able to achieve interactive
frame rates.

Index Terms—realistic rendering; reflections; raytracing; static
and deformable models; acceleration data structures

I. INTRODUCTION

Computer graphics technology has advanced to the point
where 3D models and visual effects (reflections, lighting, shad-
ows, etc.) can now be rendered with near-perfect photorealism,
particularly in offline rendering. However, a major challenge
remains in real time computer graphics, where realistic effects
must be computed at frame rate.

Regarding reflections, mathematical models are used to
describe the appearance of surfaces, being generally part of
a rendering engine [1]. This is a major computation task for
static objects and even more time consuming for deformable
models, since the 3D mesh vertices move in each frame and,
thus, need to be re-computed at each step of the animation.
Thus, fast and high quality solutions for calculating the amount
of light reflected from the visible object surfaces that arrives
to the synthetic camera through image pixels are fundamental
to realistic rendering.

The rendering engine or “renderer” is responsible for scene
rendering using rasterization, ray-tracing, etc. Traditionally,
graphical applications based on displaying still-rendered im-
ages prioritize visual accuracy, while real-time and interactive
applications value real-time performance. More recently, con-
sidered attention has been paid to develop new solutions that,
at the same time, are fast and can offer good visual quality [2].
The more frames per second (FPS), the smoother the motion
appears. With regard to real-time applications, 30 FPS is often
a reasonable value to create the illusion of movement while
displaying images.

In digital games, these images are normally generated by
rasterization [3], a method used to convert geometries formed
by vertices, edges and faces, in pixels. Rasterization is an
extremely fast process which takes advantage of APIs such
as OpenGL [4] and DirectX [4], benefiting directly from
hardware (GPU). The downside, however, is that many visual
effects generated by rasterization are only rough approxima-
tions to reflections, shadows, lighting, etc., since they are not
physically based, thus, they do not mimic realistically the
behavior of light in the real world.

Ray tracing [5] is a classical algorithm that simulates the
paths taken by rays of light as they traverse the scene and
interact with it. The use of ray tracing facilitates the simulation
of reflection effects, since they are already built into this recur-
sive algorithm. Its advantage over rasterization is the ability to
accurately generate sharp reflections, refractions and shadows
[6]. Although many optimizations have been made over the
years and processor power has increased tremendously, ray
tracing is still too performance intense to create high FPS
from a scene that constantly changes, but an advantage is that
it is also a highly parallelizable algorithm on the GPU. Due
to such features, libraries dedicated to GPU ray tracing have
been developed very recently, such as the NVIDIA OptiX [7],
whose ray tracing runs in parallel on the video card through
CUDA [8].

To simulate reflections in real-time, game engines use a
combination of cubemaps, created from Sphere Reflection
Capture with Screen Space Reflection (SSR) [9], [10]. Since
the SSR works only on screen space, it fails to calculate re-
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flections of objects that lie outside the view frustum or that are
occluded by other objects. Moreover, the reflections generated
by cubemaps are not realistic, since the synthesized reflections
on the objects in the scene come from the same point. Another
important limitation when using different cubemaps is the
generation of lighting seams between adjacent objects.

In previous work [11], we present a novel hybrid algorithm
for rendering high quality fast reflections of static objects in
3D walkthroughs. The algorithm combines SSR and a pure ray
tracing through the NVIDIA OptiX. The work presented in this
paper extends our previous work [11] by dealing with newly
implemented features in our hybrid algorithm, which currently
also includes not only static meshes but also deformable
models. When objects are deformable during animation, it
becomes necessary to adapt the acceleration methods to cope
with changing geometry. To address this problem, we need to
update the position of the vertices every frame in the OpenGL
and replicate them in the NVIDIA OptiX. However, to ensure
the correct functioning of the NVIDIA OptiX module, we
also need to rebuild the acceleration data structure [12] every
animation frame. Thus, further extending prior work [11], we
currently also focus on using, testing and comparing new ray
tracing acceleration structures using NVIDIA OptiX during
walkthrough animations, for generating reflections of static
and deformable models in different test scenarios.

II. RELATED WORK

Realistic Real-time graphics in 3D walkthroughs have been
promised for many years. Recently, many game engines
(which some are open-source) have been proposed and are
available to the gaming community. Some examples are
Blender [13], Unity [14] and Unreal [9] engines. Those
game engines have been offering new opportunities to anyone
interested in building visually realistic graphical applications
and, consequently, to advance the state-of-the-art in the field.

The simulation of reflections and refractions in the context
of graphical applications in real time has been possible using
environment maps and GPU, from the technique introduced
by Blinn and Newell [15].

In digital games and interactive 3D applications, it is very
common to use a cubemap at the center of the reflective
object and in accordance with the normal vectors of the
reflection point (the pixel that is being rendered at a given
time). A sampling is made in the cubemap [9]. Basically, the
cubemap consists of six textures generated from six cameras.
Each camera points to a different direction, having the same
origin. The visual results obtained using cubemaps are usually
convincing. However, since it is a very costly process where
it is necessary to render the scene six times from the point of
reflection, the cubemap is not generated by each object, nor
by each frame at runtime.

An alternative solution is to spread out reflection points in
the scene to be rendered and force reflective objects (which
are closer) to use the closest reflections for the calculations.
This approach also generates a reasonable result, however,
physically incorrect, since it is only an approximation. A

physically correct way to represent reflection would be to
generate it from the surface of the point (or pixel) that is
being rendered at a given time.

As regards refractions, Wyman [16] makes real-time re-
fraction look more realistic by introducing a simple, image-
space approach that easily runs on modern graphics cards. The
method requires two passes on a GPU and allows refraction
of a distant environment through two surfaces, compared to
current interactive techniques that are restricted to a single
surface. Sun et al. [17] also presents a technique for simulating
light through refractive surfaces using the GPU at interative
rates.

In a more recent work, Mara et al. [18] use a two-layer
deep g-buffer to simulate lighting effects such as mirror
reflections. Although their two-layer deep g-buffer captures
occluded objects, the reflected object still has to reside within
the camera’s view frustum.

In order to accelerate the process of simulating the re-
flection, new techniques have been proposed, such as Real-
Time Local Reflections or SSR [19], which simulates the light
behavior in a manner equivalent to the ray tracing technique by
ray marching in the zbuffer. However, it only works on screen
space. The algorithm performs similarly to a post-processing
image effect, that is, it is independent of the scene complexity
since it uses the g-buffer to do the calculations.

Recently, with the advance of GPUs and parallel processing,
researchers again turned their attention to ray tracing [20]
for interactive simulation of visual effects, at this time, in
the context of digital games and graphics applications in
real time [21] [22]. Carr et al. proposed the first ray tracing
algorithm on GPU. However, it actually runs only on GPU
the calculation of the intersection between rays and triangles
[23]. Subsequently, Purcell et al. presented a solution for the
generation of rays, traversal, intersection between rays and
triangles, shading and creation of secondary rays, all running
on separate GPU kernels [24].

Some techniques also use pre-computed maps to assist
and accelerate the processing of rendering scenes with ray
tracing, or cache data between frames [15], [25]. A graphical
application in real time generated with the ray tracing and path
tracing algorithms, with rates around 50-60 FPS, has also been
reported [26].

Though ray tracing can correctly simulate light reflections,
doing it in real time still remains a challenge and, even
greater, for deformable models. The most expensive task in
a ray tracer is the intersection test. It is a costly operation
which is potentially repeated a very large number of times
(for each pixel of the frame, we need to test all the triangles
from the scene). Most techniques to speed up renders are
based on acceleration data structures [12], which need to be
updated every frame of the animation. Basically, they are data
structures used to organize the objects in a scene, allowing a
reduction in the number of tests to identify a set of objects
on specific algorithms.The important characteristics of the
acceleration structures are construction time, memory use, and
ray traversal time.
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Wald et al. claim in [12] that there is no ideal acceleration
structure, able to show the same high performance for all
types of 3D scenes, being the developer’s responsibility, the
choice of the best structure for each scenario. However, the
Bounding Volume Hierarchy (BVH) structure is reported as
the most suitable for scenes with deformable objects or even
for dynamic scenes in general [27]. Lauterbach [28] presents
how the hierarchy maintenance problem can be addressed
using a deformable BVH algorithm that provides a very fast
hierarchy refitting to update an existing hierarchy between
frames. The described solution can be implemented as a
parallel algorithm capable to rebuild BVHs much quicker,
providing a fast solution to general dynamic models for ray
tracing. An approach to ray trace for animated scenes, with
frame rates ranging from 5 to 15 FPS is also presented in
[29]. It uses motion decomposition and fuzzy KD-trees for
3D scenes with deformable models. Wald et al. have built
a two-level BVH with a separate BVH per mesh [30]. Each
sub-BVH is constructed using a binned surface area heuristic
(SAH) kernel in the case of static meshes, and a refitting kernel
in the case of deformable models.

The NVIDIA OptiX library [7] has emerged to assist
programmers in developing more visually realistic graphical
applications with ray tracing in real-time in GPU. This library
does not necessarily focus on 3D scenes rendering. Actually,
it corresponds to a graphics pipeline for a shader-centric ray
tracing in which shaders or programs can be written and
inserted in different points of the pipeline and can be run
almost entirely on GPU. OpenRL library [31] has also emerged
to with focus on ray tracing programming using a OpenGL
inspired API, making it easier to learn for experienced graphics
programmers. Besides that, it is already integrated into Unity
5 [14]. Another library has recently been launched for Intel
CPUs, called Embree [32].

Very recently, the use of hybrid solutions combining ray
tracing and rasterization have also been explored. For example,
in [33], the reflection simulation is done by approximating
the SSR technique by using a bounding cube with, which
contains associated buffers to their faces representing the
scene, i.e., such information is used as a backup way to
correct the flaws generated by the SSR algorithm. Hakura
and Snyder [34] introduce a hybrid rendering. Actually, a
scheme that dynamically raytraces near geometry of reflective
and refractive objects. However, it approximates more distant
geometries by using hardware supported environment maps in
a preprocessing stage. Finally, the authors of [35] propose a
hybrid solution that uses a simple heuristic to ignore irrelevant
objects in the effects calculation phase using ray tracing. Also
in a hybrid form, Cabeleira [6] presents a solution in which
all global illumination effects are generated by ray tracing.
Part of the process is done on the CPU and another on GPU
level. In the end, all this information is combined to generate
the resulting image. Ganestam and Doggett [36] describe a
solution in which the visual effects of objects (that are located
close to the camera), stored in a customized Bounding Volume
Hierarchy (BHV), are processed by ray tracing and other

remaining objects that are distant from the camera’s field of
view are calculated by rasterization.

III. THE NVIDIA OPTIX LIBRARY

The NVIDIA OptiX library can implement many types of
renderers. It is a programmable ray tracing framework for
software developers. It is used to rapidly build ray tracing
applications that yield extremely fast results across NVIDIA
GPUs, with CUDA C/C++ programming. A call graph show-
ing the control flow through the NVIDIA OptiX ray tracing
pipeline is shown in Figure 1.

Fig. 1. The NVIDIA OptiX ray tracing pipeline.

This library presents mechanisms for expressing ray-
geometry interactions and does not have built-in concepts of
lights, shadows, reflectance, ambient occlusion or any other
feature for scene rendering.

Its main interests are ray generation, acceleration data struc-
tures and how to represent the scene and the rays path in the
scene. NVIDIA OptiX follows the same idea of OpenGL, which
means that it is possible to insert, at any time, customized
programs or shaders to inform what information should be
processed through the graphics pipeline.

Currently, there are 8 different types of programs that
can be used with NVIDIA OptiX [7], briefly described as
follows: (1) ray generation: the whole pipeline starts in this
program, where is implemented the creation of rays in the
scene; (2) intersection: responsible for the implementation
and collision detections between rays and scene geometries
(spheres, cylinders, planes, etc.); (3) closest hit: called as soon
as the scene traversal algorithm detects the nearest collision
point from the origin of the ray; (4) any hit: called when a new
ray is generated from the closest hit program, which collides
with any geometry (the creation of rays is finalized when
a secondary ray is generated for calculating shadows in the
scene); (5) miss: called when a ray does not collide with any
scene geometry; (6) exception: it is used to fix errors during the
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generation of rays (e.g., memory leaks or incorrect access of
index in the buffer); (7) selector visit: controls the traversal of
rays in the scene structure; (8) bounding box: responsible for
calculating the area associated with each primitive, enabling
the use of acceleration data structures on any geometry. Figure
1 illustrates the execution flow of an application that uses
NVIDIA OptiX.

The NVIDIA OptiX engine also offers some methods that
can be used to construct the ray tracing acceleration structure,
which is only valid with a correct pair of builder and traverser
(more details can be found in [7]). A builder can take one of
the following values: NoAccel (specifies that no acceleration
structure is explicitly built), Bvh (a standard bounding volume
hierarchy, useful for most types of graph levels and geometry),
Sbvh (a high quality Bvh variant for maximum ray tracing
performance, with slower build speed and slightly higher
memory footprint than Bvh), MedianBvh (a medium quality
Bvh with quick build performance, useful for dynamic and
semi-dynamic content), Lbvh (a simple Bvh with very fast
build performance, useful for dynamic content), Trbvh (a
high quality Bvh, very much alike Sbvh but with fast build
performance similar to Lbvh), and TriangleKdTree (a high
quality kd-tree builder, for triangle geometry only, that may
provide better ray tracing performance than the Bvh builders
for some scenarios).

In the work of [37], different test cases are presented and
compared to verify the robustness of the implementations of
existing structures and libraries for the process of generating
shadows at run time with the ray tracing.

IV. THE GENERATION OF REAL-TIME REFLECTIONS

In this section, we describe in general terms the simple
although effective hybrid solution we have proposed and
implemented to generate reflections (Figure 2) for static and
deformable objects in real-time.

Fig. 2. Rays of light from a point source.

Initially, the algorithm loads an obj file with the 3D scene
information to be rendered. Then, we create the g-buffer with
the diffuse color, worldspace, normal, z-buffer and reflection
information. More specifically, the reflection calculation con-
sists of two steps: (1) the classic SSR algorithm [19]; and (2)

a pure ray tracer. The complete execution flow diagram of the
rendering engine is shown in Figure 3.

During the first step, we generate two images, one that con-
tains the reflection result based on the reflection information
sampled from the g-buffer, as shown in Figure 3.b, and a mask
that represents in which parts of the image the screen-space
method for adding reflections failed, highlighted in Figure 3.c.
After that, we start the second step, in which the following
information is passed: the 3D scene geometry and the g-buffer.

The ray tracer verifies each pixel of the mask generated
during the first step, searching for pixels that have been marked
but were not calculated correctly. If any pixel satisfying this
situation is found, a reflected ray from the viewer’s eye is
calculated and ray traced, resulting in a new complementary
reflection image, as shown in Figure 3.d. As a result, the
reflection of objects that lie outside the screen-space or that
are occluded by other objects can be processed.

With the complementary image completion, our engine
combines this image with its screen-space version and applies
a Gaussian blur filter [38] to blur the reflection image and
minimize small artifacts that may appear due to the merging
process of the SSR with the raytraced reflections. We also
apply, in both steps, an attenuation to the reflection based
on the length of the reflection ray from the reflected surface
(making it fade out along the reflection) for generating a
polished visual result, shown in Figure 3.e.

The process to generate shadows is done just before the
simulation of reflections. Our algorithm uses a zbuffer cube-
map to calculate the shadows emitted from a point light. A
mask of pixels that are suffering occlusion of light is created,
i.e., an image with value 0 for pixels that are in shadow and
1, for otherwise. This mask can be seen in Figure 3.a. Finally,
all the lighting is calculated and merged with the reflection
and shadow masks, resulting in the final composition of the
scene.

For the deformable models, whenever the vertices of the
objects are modified, we replicate this change in both the
vertex buffers of the OpenGL and NVIDIA OptiX. Following
that, we rebuilt/upgrade the acceleration structure currently
being used. This process is performed at the beginning of each
frame, whenever necessary.

V. TESTS AND PERFORMANCE RESULTS

All the rendering tests were performed on an Intel Core i7
with 3.40GHz and 16GB of RAM, using an Nvidia GeForce
GTX 780 TI graphics card. More specifically, the performance
testings were divided into two phases and were conducted with
a walkthrough in the Sponza 3D scene from Crytek [39] with 6
additional mesh objects positioned in the middle of the central
corridor (4 armadillos and 2 T-rex dinosaurs, with 35k and
20k vertices each, respectively), which totalizes 330k vertices
in the whole scene.

In the first phase of the testings, we analyzed and compared
the performance of the acceleration structures (Lbvh, Bvh,
MediamBvh, and KD-tree) available in the NVIDIA OptiX
for generating reflections for static and deformable objects,
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Fig. 3. Execution flow diagram of our rendering engine.

Fig. 4. Floor plan of the scene used in the tests, showing the 3D meshes of
the armadillo and T-Rex dinosaurs, the light point position and the camera
path: (a) Frame 1800, (b) Frame 2100, (c) Frame 2300 e (d) Frame 4400.

by using two different versions of the 3D scene. The first
one, with 330k vertices (original mesh); and, the second, a
simplified version of the first scene, with 182k vertices (the
same scene with 4 armadillos and 2 T-rex dinosaurs, but now
with 3.5k and 7.5k vertices each, respectively). In the second
phase, we focused on the quality and performance of our
hybrid solution for generating scenes with reflections, shadows
and lighting in real time.

For our benchmark, we have used images with a resolution
of 1280 × 720 pixels and a camera in motion simulating a
FPS gameplay. The 3D scene contains 618,000 triangles and
21 different 512×512 textures. The floor reflection properties
were enabled and there is a point light source in constant

motion along the central corridor. Figure 4 features a floor
plan representation of Sponza, which illustrates the position
of the 3D scene elements and the camera path.

The walkthrough animation was defined in such a way
that the three halls of the Sponza are regions that belong to
the camera path. The path’s control points form a S-shaped
curve, modeled by a Catmull-Rom spline. The animation
along this path consists of 4,900 frames. To plot the results,
we consolidate the numerical values obtained by considering
intervals of 10 frames to calculate the average performance.

In Figure 5 we can analyze the result of the first comparative
test of the acceleration structures for the original mesh, where
all objects are static. We can see that NVIDIA OptiX can
achieve competitive results for all the acceleration structures
considered in our tests, since all of them, the Lbvh, Bvh,
MediamBvh, and KD-Tree structures, respectively, reach a very
similar average performance of 16ms, 15.6ms, 15.8ms and
15.3ms. In particular, for the static scene, the KD-tree had
a slightly better result, showing that it is a good acceleration
structure choice for static scenes.

For the second comparative performance testings of the ac-
celeration structures, we have applied a sine wave algorithm to
modify all the vertices of the two dinosaurs each frame during
the animation, that is, we had to update 40,000 vertices each
frame, requiring a rebuild of the acceleration structure each
frame, as shown in Figure 6. In Figure 7, we can note that there
is a considerable performance drop, with average rendering
time values of 85.4ms, 163.0ms, 94.7ms and 159.1ms for the
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Fig. 5. Comparison of different acceleration data structures for reflections of
static models in the walkthrough animation.

Lbvh, Bvh, MediamBvh and KD-Tree structures, respectively.
Considering the performance drop when using deformable

meshes, we reduced the number of polygons of each dinosaur
from 20k to 7.5k and of each armadillo from 34k to 3.5k,
and rerun the static scene testings with this more simplified
geometric version of meshes. In Figure 8, it is possible to
verify that the NVIDIA OptiX still reaches excellent results for
all acceleration structures, obtaining average values of 13.2ms,
12.4ms, 12.7ms, and 12.3ms, respectively, for the Lbvh, Bvh,
MediamBvh and KD-Tree structures.

Following that, we run the performance testings with de-
formable models and the whole Sponza scene, but this time
using the simplified geometric version of the armadillo and
dinosaurs objects. Figure 9 shows an improvement in perfor-
mance, with average values of 66.1ms, 96ms, 67.7ms, and
96.4ms for the Lbvh, Bvh, MediamBvh and KD-Tree structures,
respectively. The performance decay remains accentuated,
however, running the tests with a reduced vertex count on the
deformable meshes, the results become much more acceptable.

To verify the reconstruction processing time of the acceler-
ation structures in a more precise way, we ran strictly the ray
tracing test to process only the reflections of the deformable
dinosaurs meshes (i.e, the NVIDIA OptiX only processed the
dinosaurs for reflections). Figure 10 shows performance results
of 29.8ms, 49.8ms, 28.5ms and 49.9ms for the Lbvh, Bvh,
MediamBvh and KD-Tree structures, respectively. Performance
gains of approximately 55%, 48%, 57% and 48%, respectively,
for the Lbvh, Bvh, MediamBvh and KD-Tree structures were
obtained when compared with the performance testings done
with the simplified geometric version of the scene with two
deformable dinosaur meshes. Thus, we can conclude that
though this result may be acceptable, the reconstruction of the
NVIDIA OptiX acceleration structures are not recommended
to be rebuilt every frame in real-time applications.

Tables I and II show a comparative study we have conducted
to identify how similar the walkthrough frames generated
using the SSR technique and our hybrid solution are, when
compared to the rendering results obtained from the purely ray
tracing algorithm (which is considered in this work as a bench-
mark, since it generates the most accurate and realistic visual

results). Taking into account the visual similarity between the
images, to calculate the visual quality differences among them
in a quantitative manner, we used a simple technique of color
buckets, as follows. For each image, we test each pixel and for
each channel of this pixel, the obtained value is added to the
corresponding bucket (R, G or B). After processing the entire
image, the total value for each component is compared to the
total image value generated by the ray tracing. We obtain the
percentage value that represents how many pixels from one
image differ from the other. Using these results, we calculate
the level of similarity between the generated SSR and Hybrid
images, and the reference image (synthesized with ray tracing).

In Table I and II we can see that our hybrid solution gener-
ates visual quality results always very close to 100%, whereas
the SSR in some cases reaches around 97%. This difference
of 3% can not be considered, in anyway, as unrepresentative,
because the visual quality tests took into account the whole
picture and not just the image parts that are suffering reflection.

Figure 11 shows the acceleration structures behavior for
the majority of the performance testings we have performed.
We conclude that we can not affirm with 100% of certainty
that they always you have this behavior for any test scenario,
but we have obtained similar results with those presented by
the NVIDIA OptiX, showing that the KD-Tree structure is the
slowest to rebuild its structure and the Lbvh is the fastest, being
the reverse, respectively, also true for the rendering time.

For generating a comparative analysis of the performance of
our hybrid solution for static and deformable meshes against
other two solutions (one of them purely using SSR and another
using ray tracing), we created a chart that represents the frame
time need to be produced in each frame during the animation,
which is shown in Figure 12, using the simplified version of
the static scene and the KD-tree structure.

As we can see, our hybrid solution to render reflections
shows a better performance than the solution using ray tracing
and that, at several consecutive frames of the walkthrough, it
competes fairly with the SSR technique in both scenarios, even
though having a lower relative performance for deformable
meshes, it still reaches acceptable interactive frame rates.

In the FPS chart, there are three ranges of key frames
that show important characteristics and, thus deserve to be
discussed: (1) [207, 1443]; (2) [1649, 2576]; and (3) [3503,
4224].

In the first and third intervals, during the animation, the
camera is pointing to the side aisles of the scene. The reflection
generated on the corridor floor is made up of simple elements
that do not suffer occlusion, which helps the SSR to simulate
a large part of the reflections quickly, leaving little scene
portions to be rendered by the ray tracing algorithm. That is,
that makes our solution more competitive, since it reaches FPS
results close to those obtained using a pure SSR technique.

Most importantly, in the second interval, the camera is
pointed at the central corridor while it moves along the anima-
tion path where the armadillos and dinosaurs are positioned.
This is a very interesting take of the animation since those
characters attract great visual attention of the beholder.
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Fig. 6. Animation sequence showing some keyframes of the walkthrough with a camera zoom-in on the reflections produced around one of the deformable
T-rex dinosaur.

Fig. 7. Comparison of different acceleration data structures for reflections
of static models and two deformable T-Rex dinosaurs, in the walkthrough
animation.

Fig. 8. Comparison of different acceleration data structures for reflections,
with a simplified geometric version of the static scene, in the walkthrough
animation.

The floor reflections represent several objects, including
those that have complex geometries. This situation is very
common in animations and it is inevitable the occurrence of
occlusions of parts of objects. In such cases, the SSR algorithm
fails to represent the reflections efficiently, generating far too
many failures.

Our solution detects these SSR failures at runtime and
activates the ray tracing algorithm to solve them. Because of
this, our solution decays a bit in terms of FPS. However, even
then it still reaches a FPS far superior to the solution purely
implemented in ray tracing in both tests.

Fig. 9. Comparison of different acceleration data structures for reflections of
a simplified geometric version of the static scene and two deformable T-Rex
dinosaurs, in the walkthrough animation.

Fig. 10. Comparison of different acceleration data structures for reflections
including only the two deformable T-Rex dinosaurs and ignoring all the rest
of scene, in the walkthrough animation.

Based on these findings, we conclude that our solution
achieves frame rates per second higher than the rates obtained
purely with ray tracing. Moreover, we can also clearly note in
Figure 13 that the visual quality of the animation frames we
generate with our solution is very close to the quality of those
generated with ray tracing.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we analyze and compare the performances
of different NVIDIA OptiX acceleration data structures for
generating reflections of static and deformable models using
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Fig. 11. Default behavior of the acceleration structures, verified in our
performance testings using the NVIDIA OptiX.

TABLE I
IMAGE QUALITY RESULTS OF FOUR DIFFERENT FRAMES FROM THE

WALKTHROUGH SEQUENCE, IN TERMS OF REFLECTIONS, COMPARED TO
THE IDEAL CORRESPONDING IMAGES GENERATED BY THE RAY TRACING

WITH STATIC OBJECTS .

#Frame SSR Algorithm Our Solution (Hybrid)
(%) (%)

1800 99,18 99,76
2100 97,68 99,85
2300 98,58 99,96
4400 99,88 99,97

our new hybrid solution for simulating realistic reflections in
3D walkthrough environments.

Our comparative study shows that NVIDIA OptiX accel-
eration structures can reach high frames rate per second for
static objects. However, there is a performance decay in terms
of frames per second when dealing with deformable models.
Unlike for static models, the largest problem in ray tracing
of deformable models is not memory, but maintenance of the
acceleration structure. As hierarchies typically become invalid
when geometric objects move or deform, the bottleneck in
ray tracing shifts towards computing a new hierarchy after
each deformation. But even under these restrictions, we were

TABLE II
IMAGE QUALITY RESULTS OF FOUR DIFFERENT FRAMES FROM THE

WALKTHROUGH SEQUENCE, IN TERMS OF REFLECTIONS, COMPARED TO
THE IDEAL CORRESPONDING IMAGES GENERATED BY THE RAY TRACING,
WITH THE SIMPLIFIED GEOMETRIC VERSION OF THE Sponza SCENE AND

THE TWO DEFORMABLE MESHES OF THE T-REX DINOSAURS.

#Frame SSR Algorithm Our Solution (Hybrid)
(%) (%)

1800 98.75 99.66
2100 97.60 99.75
2300 97.55 99.93
4400 99.88 99,97

able to achieve interactive frame rates. The tests also show
that our hybrid solution presents quality results very close
to those obtained with a purely ray tracing algorithm, with
a competitive FPS, regardless of the animation moment. We
believe that it is still possible to make optimizations in the
rendering engine, for example, to support baking lighting and
shadow for lights and static objects, besides of calculating in
real time only what is really necessary to guarantee the visual
quality and performance of the animation.

As future work, we intend to expand our testings for highly
dynamic scenes with reflective objects and also to check the
possibility of applying some heuristics to consider (or not)
the use of the ray tracing algorithm. It may be possible with
a heuristic, for example, to make the ray tracing raytraces the
pixel only when needed. For example, if the camera is moving
very fast in a game, it is probably not fundamental to produce
extremely realistic reflections, since the player probably will
not be able to identify failures and gaps on the fly easily. That
is, it may be interesting to develop also an adaptive solution
for our hybrid algorithm directed by the player’s behavior. We
also plan to conduct more precise tests to ensure the quality
of the images generated by our solution, for example, using
some specific metrics such as SSIM [40] and RMSE [41].

In the near future, another improvement we plan is to
develop a customized ray tracer on GPU using CUDA. Ac-
cordingly, we also aim at including specific data structures into
our hybrid solution. Unfortunately, as a closed-source library,
the NVIDIA OptiX does not allow to customize the testing
codes, forcing the developers to use only the data structures
currently existing in the library.
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