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Abstract—Fuzzy Cognitive Maps (FCM) is a paradigm used to
represent knowledge in a simple and concise way, expressing
the grade of relation that exists between concepts and causal
relationships. Due to its flexibility, FCM has been successfully
applied in numerous applications in diverse research fields,
such as, robotics, medical diagnosis, decision problems in
information technology, games, and so forth. However, one
critical drawback is the determination of the weights in the
representation graph, which is generally done by an expert.
The present paper proposes a semi-automated method for
calibrating the weights in a solution for the problem of dynamic
game difficulty balancing (DGB) using Evolutionary Fuzzy
Cognitive Maps (E-FCM). The proposed algorithm adjusts
the weights in real time, ensuring an equilibrium between the
values generated according to the expert’s contribution (based
on a static analysis) and the changes produced in the values of
the concepts by the calibration process during the simulation
(a dynamic analysis).

Keywords-Automatic Calibration of Weights, Real-time Strat-
egy, Dynamic Game Difficulty Balancing, Evolutionary Fuzzy
Cognitive Maps

I. INTRODUCTION

Along the years, the survival of humanity has been chal-
lenged by many factors including, economical, socio-
political, ecological and others. Because of that, we as
humans have developed a logic reasoning as a part of a
critical thinking that takes part in decision-making processes,
which is able to analyze several factors and the relations
among them.

Due to the increasing complexity of the problems, taking
the right decisions can be, in most of the cases, difficult and
time-consuming. However, with the technology advances we
have been creating algorithms to simulate our reasoning
process, which currently are still not perfect but can help
us to understand and better control the high complexity
associated to usual decision problems.

One example of these algorithms is the Fuzzy Cognitive
Maps (FCM), proposed by Kosko [1], which is considered
a hybrid methodology because combines characteristics of
Artificial Neuronal Networks (ANN) and Fuzzy Logic [2].
FCM is a powerful tool to simulate complex systems,
representing them in a graph, composed of concepts and

causal relations, which describe the way the concepts are
related to each other. The causal relationships also measure
the degree to which one concept affects another, which is
represented by a weight.

Even though FCM have been applied in numerous research
fields and applications, such as: Robotics, for example for
navigation of robots [3], medical decision making [4], for
example, radiotherapy [5], risk management [6], banking
management [7], information technology [8], computer vi-
sion [9], controllers and supervisory agents of complex
systems [10] and so forth; however, in the literature, there
are few works devoted to the solution of one critical issue:
the determination of the weights of the causal relationships,
which is generally done by an expert.

The algorithms that focus on solving the fully automatic
calibration, as far as we are concerned, can be categorized
into three classes: the Hebbian learning based methods [11],
Neuronal Networks Based methods [12], and the Genetic
algorithms based methods [13]; we refer the interested reader
to the work in [14], where some of these methods are
compared.

The calibration of the weights in the FCM design step
can be performed in two ways: using expert-based methods
and performing fully automatic calibration. These two ap-
proaches have differences and characteristics that are briefly
delineated below:

« In expert-based methods, the calibration depends on the
experts’ subjective judgment, which can introduce some
errors in the simulation. Usually, the calibration is done
by computing an average of the experts’ judgments
using a deductive reasoning. In this approach, as it
is based on the expert’s own beliefs, it is easy to
devise a set of weights that is coherent with the static
behavior expected for the system. On the other hand,
it is not possible to guarantee that the system will
behave as expected during the simulation (the dynamic
behavior). This usually happens when the complexity
of the problem grows. As the number of concepts
and causal relationships increase, the experts cannot
consider the problem as a whole. They are obliged to
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Figure 1: TimeOver Game

group the concepts and causal relationships into parts
making difficult any global analysis and prediction of
how the system will evolve from the initial static setup.

o The fully automatic calibration algorithms require as an
input, a priori knowledge of the system, which can be
obtained from different sources, for example using data
mining. From this initial input, an inductive learning
process extracts a set of rules which are used to generate
the weights in the FCM. Such methods are prone to
produce stable dynamical behavior.

In a few words, expert-based approaches are good for coher-
ent static weight definition and fully automatic algorithms
are adequate for achieving a stable dynamic behavior. The
main contribution of this work is a new method that has
both good properties. It is based on a dynamic automatic
calibration which combines expert knowledge with a real-
time automatic weight adjustment.

We specifically applied our method to the solution of the
dynamic game difficulty balancing problem that uses Evo-
lutionary Fuzzy Cognitive Maps (E-FCM).

Evolutionary Fuzzy Cognitive Map (E-FCM) extends FCM
proposed by [15], [16], where each state is evolving ac-
cording to non-deterministic external causalities. Similar to
the FCM, Evolutionary Fuzzy Cognitive Maps have been
also applied to a variety of scientific areas, such as political
decision making [17], interactive storytelling for the creation
of virtual worlds [16], medical diagnosis [18], [19], compu-
tation pragmatics [20] and so forth.

In [21], the authors proposed a method to change the
difficulty levels dynamically and in real-time, which is
based on player interaction information, context variables,
and Evolutionary Fuzzy Cognitive Maps. Player interactions
involve actions where the player interacts directly with the
game logic, for example, eating, jumping or collecting items.

The method proposed in [21], is different from others
proposed in literature [22], [23], [24], because it presents
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three important advantages: independence, adaptability, and
scalability.

Independence, because the method is able to adjust the
difficulty levels independently of explicit player feedback
(e.g., surveys, reports, and related alternatives) inferring the
necessary information directly from player actions in the
game.

Adaptability, because it is possible to apply the method to
any game, as E-FCM are flexible.

Scalability because, as the number of context variables and
causal relationships increase, it is possible to consider more
factors to evaluate player-related aspects, which may lead to
better game experience and player engagement.

This paper is organized as follows. Section II presents
an overview of Evolutionary Fuzzy Cognitive Maps (E-
FCM). Section III describes the application of E-FCM for
Dynamic Game Difficulty Balancing. Section IV describes
the algorithm proposed for weights calibration in real-time.
Section V presents experimental results and Section VI
presents conclusions and future works.

II. EVOLUTIONARY Fuzzy COGNITIVE MAPS

In this section, we present the components of the E-FCM
model and how simulations in real-time can be performed
using an updating step. The design of an E-FCM is basically
the design of a FCM adding the evolving time.

A. E-FCM Design

An E-FCM is constructed with two main components:
concepts and causal relationships.

o Concepts C = (S,AS, T, P;), which represents important
factors and characteristics of the real-time system. Each
concept ¢ € C is expressed as a tuple:
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¢ = (s,A5,e1,py) (1)

where, s € S denotes the value or level of the concept,
et € T is the evolving time for the concept and p; is
the probability of self-mutation. As € AS is the state
value change for the concept, which will be updated in
real-time simulations.

The evolving time et is important in a real-time system
because it helps to control the change of the concept
value s, at a given instant of time ¢.

For example: Given two concepts in vital functions of
the human being system: breathe and eat, it is required
that the value of breathe to be updated every five
seconds, whereas the value of eat can be updated every
six hours.

Different concepts might have different evolving times.
Let C be a set with n concept variables. The set of its
evolving times can be represented in vectorial form as

ety

The concepts in the system have their states updated in
their respective evolving times. Besides, each concept
alternates its internal state randomly in real time. Thus,
to each concept we associate a very small mutation
probability p;. If the probability is high, the system
can become very unstable.

Causal relationship (r;;), which represents the strength
and probability of the causal effect from one concept
¢; to another concept c;. It is defined as a tuple:

rij = (wij,s, pm;;) 3)

where w;; is the weight of the causal relationship and
denotes the degree of influence of the concept c; to
the concept c;. The weights are fuzzy values; they can
normally be in the range of [—1,1] or [0,1].

The relationships between the concepts can be direct
or inverse. This is expressed in the variable s, which
can be positive or negative, describing respectively the
direct or inverse relationships.

In the E-FCM model, concepts can be affected by
causal relationships with probability pm.

Figure 2 illustrates how an E-FCM model describes
causality. In the example, the concept c¢; affects the
concept ¢, via a causal relation c¢; — ¢, where ¢ is
the causal variable and c¢; is the effect variable.
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Figure 2: E-FCM modified to include u; relationships,
related to player interactions (PI). C; represents context
variables and dotted arrows represent the causal relation-
ships.

In our examples, in each causal relationship, we consider
the probabilities pm = 1, and the signs are implicitly de-
fined in the weights w;; € [—1,1]. Thus, the fuzzy causal
relationships for a system with n variables can be directly
represented as a n X n weight matrix W:

Wi Wiz e Wi
w21 w2 e Wan
W= : : : @
Wit Wij o 0 Wi
Wnl Wnp2 0 Wpp

B. Updating step for Simulations in Real Time

E-FCM works updating in each cycle all the context vari-
ables, states S, whenever a evolving time ef of a concept ¢
matches the current time value ¢. This update is a funda-
mental step in the theory of E-FCM and is called a running
cycle [2].

The state value s; of a concept is updated at time step ¢+ 1
from the previous time step ¢ by computing its state change
according to equation (5):

AsT =k Z h(pmij — L)Asiwij + kaAs; )
=0

where £ is the Heaviside step function:

h(x):{o, n<0

1, n>0
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and A is a probability threshold between 0 and 1. As we
defined the probabilities pm = 1, equation (5) can be written
in a simplified version:

AsT =Ky Z Asiwij + kaAs; (6)
J=0,j#i
st = f (s 4+ Asit) 7

where f is the activation function used to regulate the state
value. It is important to adjust the concepts values in a given
range. Some usual f functions are:

« Bipolar, for binary values O or 1.
« Logistics, for values in the range [0,1]:

1
= 8
0= ®)
where A > 0.
« Hyperbolic, for values in the range [—1,1]:
f(x) = tanh(x). )

The state value of the concept ¢; at time ¢ is represented
as s;. The state value change of the concept ¢; at time ¢ is
As'. The evolving time ef is not included in this formula
because it is used to verify in which running cycle s; must
be updated. Different concepts may have different evolving
times. The k; and k, values are constants; k> represents the
proportional contribution of the other concepts which affects
to ¢; and kj represents the influence of the previous value
Si.

III. USING E-FCM FOR DYNAMIC GAME DIFFICUTLY
BALANCING

In this section, we will explain briefly, the design of the
E-FCM used to solve the DGB problem.

In [21], the authors introduced the player interactions as
inputs that change the E-FCM values in real-time.

Note that with such introduction the E-FCM is able to simu-
late different behaviors along the gameplay. For example, the
E-FCM provides to the player more items when his stamina
is low. Conversely, when his stamina is high, the E-FCM
increases the number and difficulty of the obstacles.

In this work, we use the Time Over game presented in [21],
as a study case. This is a runner type game where the player
is a boy who is escaping from a twister. In the game, he must
avoid the obstacles and also collect some items such as food
and water, which are provided to him to recover his energy.
Figure 1 illustrates some screenshots of the TimeOver game.

One interesting feature of Time Over game is that the
player’s energy is not infinite. Hence, a tiredness factor is
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considered, which will affect the player’s energy and also his
speed. Thus, the player is forced to collect items constantly
to survive.

According to this game description, the game designer
considers the following concepts as context variables:

1) Stamina: represents the player’s energy, which in-
creases as the player collects more items in the game.

2) Speed: represents the player’s speed, which relates to
stamina. Speed decreases over time to simulate the
player character’s tiredness.

3) Obstacle type: there are three types of obstacles: easy,
default, and hard. These types represent how difficult
the obstacles are.

4) Obstacle period: represents the period (time interval)
that the game uses to insert obstacles in the game
scene.

5) Item type: there are two types of collectible items in
the game: water bottles and seeds. Both items increase
player stamina, but water bottles provide more stamina
than seeds.

6) Item period: represents the period (time interval) that
the game uses to insert collectible items in the game
scene.

In practice, players have different skill levels and may regard
usual predetermined difficult levels as too easy or too hard,
becoming frustrated or bored. For that reason, the game
designer sets rules to keep the player on playing the game.
Some examples of rules for this case are:

« If the player’s energy increases, the speed also in-
creases.

« If the player’s speed is high, the number of food and
water is reduced and the difficulty of the obstacles is
increased.

Based on this rules, the game designer creates the causal
relationships between concepts and decides whether the
relation is direct or inverse. In this stage, it is important
to define the degree of the causalities (the weights). The
definition of the weights is a critical step because it controls
the gameplay experience. Weights with high values along
the gameplay can produce instability in the E-FCM because
the changes are more violent. Weights with very low values
can produce low interactivity along the gameplay, and it is
not desired in real-time simulations.

According to [21], the new function that updates the con-
cepts values, including the player interactions (u;), is as
follows:

n
A= f <k1 Z Asiwij + ko (As +ui)> (10)

J=0
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The player interactions u; drastically alter the behavior of the
E-FCM, so dynamically changes the game difficulty levels
in real-time. However, this changes could produce abrupt
changes in the game experience. Thus, it is necessary to
achieve an equilibrium between the game designer expecta-
tion’s, who knows the game logic, and the behavior of the
E-FCM along the gameplay. The present paper proposes an
algorithm to adjust the weights, using an initial configuration
given by the game designer and controlling the ratio of
changes in the E-FCM to improve the gameplay experience.

IV. CALIBRATING E-FCM WEIGHTS

So far, we detailed how E-FCM works, however, the game
experience does not only depends on the correct work of
the logic rules for DGB. Along the gameplay, it is also
important that the game level changes are not abrupt because
it generates instability in the game experience.

In the gameplay for example, if stamina decreases quickly,
the other inverse concepts to stamina will increase so fast,
that a lot of items will be generated in a short time.

In every instant of time, a running cycle is executed. Algo-
rithm 1 summarizes the process of updating the concepts’
values in a running cycle of E-FCM.

Algorithm 1 E-FCM running cycle in real-time

Require: C = (S,T): concepts

Require: W: weight matrix

Require: ¢: current time

Require: AS': states value change at time ¢
1 A <= AS
2 for all ¢c; € C do
3 if t mod t; =0 then

n
4 At = f ki Y Asiwij+ka(AS; +u1~)>
+1 «ﬁl#j
3 I
5 SiT = s A
6 end if
7 end for

When the simulation is finished, the E-FCM produces
functions (time series) for each concept, influenced by the
player interactions. In general applications, the concepts
of E-FCM tend to converge, according to the logic of E-
FCM design. However, since the player interactions were
introduced, the E-FCM concepts values are always changing
along the gameplay. Because of that, it is necessary to
control the changes in the values of the concepts avoiding
abrupt changes along the simulations.

To cope with this issue, since it is impossible to predict the
behavior of the functions as they strongly depend on player
interactions, we consider two fundamental E-FCM elements
that are known in each running cycle:

The weights w;; and the state value change As;,As;, which
indicates how the functions are changing at an instant of
time.

In order to define a way to update the weights, so that
the functions evolve in a smooth way, keeping the coher-
ence with the causal relationships, we analyse the four
basic combination of function behaviors and associated
state changes. In each configuration we analyse the relation
between function growth or decrease and the state change
values and how the weights can be modified to control the
function behavior.

o Direct and increasing relation w;; > 0 and As; >
0,As; > 0, when both functions are increasing. In this
case, the weight is reduced proportionally to the concept
changes, to moderate the independence degree between
the functions associated to the concepts.

o Direct and decreasing relation w;; > 0 and As; <
0,As; <0, when both functions are decreasing. In this
case, the weight is also reduced proportionally to the
concept changes, to reduce the independence degree
between the functions of the concepts.

o Indirect and increasing-decreasing relation w; ; <0
and As; > 0,As; < 0, when the function generated by
the causal concept ¢; is increasing and the function
generated by the effect concept c; is decreasing. In this
case, the two functions are moving away from each
other, depending on the weight. Since ¢; affects to c;,
it is necessary to reduce the repulsion force, increasing
the weight in a factor proportional to the changes of
the functions. The increase in the weight makes the
causal concept have more influence in the effect concept
making them have a closer behavior.

o Indirect and decreasing-increasing relation w; ; <0
and As; < 0,As; > 0, when the function generated by the
causal concept ¢; is decreasing and the function gener-
ated by the effect concept c; is increasing. In this case,
the two functions are approaching each other. Since c;
affects to cj, it is necessary reduce the attraction force
also the weight is increased in a proportional factor
to the changes of the functions. As in the previous
case, the increase in the weight has the same effect.
Both variables will have greater correlation, as the
causal variable will have more impact on the effect
variable, diminishing the difference in the behavior of
the functions, caused by the sign difference in the state
changes As; and As;.

From the analysis, we update the weights is real-time
according to equation (11):

wij = f(wij(1 - AS;AS})) (11)
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where f is the regularization function which guarantees that
the weight values are always in range [—1,1].

Finally, we developed a new algorithm, seen in Algorithm
2, wherein each running cycle the weights are adjusted,
considering the changes of the concept levels. In the algo-
rithm AsﬁAs’j, represents the strength of the weight change,
and if this is positive or negative. The adjustment is just
proportional to the old weight according to w;; < f(w;;(1—
AsiAs%)).

Algorithm 2 Update E-FCM real time with calibration

Require: C = (S,T): concepts
Require: W: weight matrix
Require: ¢: current time
Require: AS': states value change at time ¢
1 AS™T <= AS
2 for all ¢; € C do
3 if t mod t; = 0 then
4 Wij <:f(wij(l—As§As’j))

n
5 AS?H <=f (kl Z Astjwij +k2(AS£' + u,))

s
s
6 s, <=5+ As;
7 end if
8 end for

Algorithm 2 summarizes the process of automatic calibration
of weights in real-time.

V. EXPERIMENTS AND RESULTS

In order to experimentally validate our algorithm, we created
the Social Drug E-FCM and also redesigned the E-FCM for
the Time Over game.

A. Social Drug E-FCM

“Social Drug” E-FCM basically simulates the human emo-
tions and its emotional states when a person experiments
social approval (flattery) or social rejection (understate).

Figure 3, illustrates the E-FCM model for “Social Drug”,
where the context variables are:

e ¢1: Animus.

e ¢>: Depression.
e c3: Sadness.

e c4: Courage.

e cs5: Health.

o cg: Happiness.

The player interactions u; and up, represent social approval
and social rejection respectively.
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Figure 3: The E-FCM model for Social Drug.

Depression
s: 0.5
s: 0.001
S

3

Encouraged

Healthy
s: 0.55 s: 0.7

s:0.001 s: 0.001
2 S

Figure 4: The E-FCM model for Social Drug.

The evolving time vector is T=(1 1 2 2 5 3) and
the initial values for the context variables are
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Figure 5: The E-FCM model for Social Drug.

S=(0.6 05 05 055 0.7 0.6)

Figures 6, 7, illustrates the simulations of E-FCM Social
Drug, where the interactions “Social Approval” and “Social
Rejection” were simulated altering both values, emphasizing
the factor “Social Rejection”. Because of this, along the
simulation the concept “Animus” is decreasing in both
calibrated and non-calibrated simulations.

The main difference between figures 6 and 7 is the behavior
of the concept (state values) along the time. In Figure 6,
we can observe that the concept values of Animus, Courage,
Health and Happiness are decreasing faster than the concept
values with calibrated weights. Moreover, the behavior at
initial times is quite similar, which is an expected behavior
because the calibration process is done along the simulations
in real-time and also depends on the player interactions. The
weights adjustment would be impossible to do in the game

design stage because is impossible to predict how the player
will interact with the E-FCM along the simulations.

Therefore, for different gameplays, the algorithm will pro-
duce different weight matrices. In the case of the Social
Drug model, we applied the same interactions in both
simulations, the calibrated and non-calibrated, in order to
better appreciate the effect of the calibration algorithm along
the simulations.

Figure 6 shows the E-FCM behavior along the first 100 time
instances, setting as initial configuration the E-FCM model
illustrated in Figure 4; the convergence is reached close to
t =100 and the final configuration is shown in Figure 5.

The concepts’ values converge to 0 and 1, keeping the logic
in the causal relations, but it should be noted that the Health
concept converges slower than the other concepts.

Conversely, in Figure 7, which shows the simulation with
weights calibration, not all concept’s values converge to 0
or 1 in time ¢ = 100. The value of Health concept in this
time is 0.5, and its curve did not drop to 0. It should be
noted that the curve for the Happiness concept converges to
0, but it takes longer than in the non-calibrate graph whose
value is already 0O in ¢ = 60.

In the same way, Depression curve increases much slower,
in t = 100 it still has not reached the value of 1.

Figure 7 shows the simulation of the E-FCM with calibrated
weights. It is possible to see that the curves of the concepts
change slower than those obtained in the simulation with the
non calibrated E-FCM. This real-time calibration guarantees
that changes in game difficulty are not abrupt, differently
from those presented in [21].

Table I, shows the probabilistic weight output matrix W
of the causal relationship for the Social Drug experiment,
obtained after the weights were calibrated via the proposed
algorithm.

Table I: Probabilistic weight matrix W of the causal rela-
tionship for Social Drugs

Wij Cl %)) c3 C4 Cs C6

c 0 0 -0.77 | 0.72 0 0.72
23 0 0 0 0 0 0.9899
c3 -0.55 | 0.72 0 -0.88 0 0
cy4 0 0 -0.33 0 0 0

Ccs 0.54 0 0 0 0 0

c6 0.54 | -033 | -0.55 | 0.72 | 0.81 0

B. Time Over E-FCM
We also validate our model in a game, where the interactions

are different from those in the Social Drug case. We run
the E-FCM model with different player interactions, but
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Figure 6: E-FCM simulation without calibrated weights in the Social Drug model
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Figure 7: E-FCM simulation with calibrated weights in the Social Drug model

with the same player. Figure 8 shows the E-FCM model
for TimeOver game.

Each context variable describes is a fuzzy value, normalized
to the range [0, 1]. The mean of each variable value depends
on specific game designs. For simplicity, we defined obstacle
type as a mapping of the actual value of obstacle type to
conceptual “easy”, “default”, and “hard” difficulty obstacle
levels. The “easy” difficulty level maps to the range of
[0,0.33], the “default” difficulty level maps to [0.34,0.66]
and the “hard” level maps to the range of [0.66,1]. The
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Item type is a mapping of the actual value of item type
to conceptual “water” and “seeds”. The water item appears
when the corresponding value belongs to the range [0,0.5].
The seed item appears when the corresponding values are
in the range [0.6,1]. We associate each context variable to
the following concepts:

e c1: Stamina.

e 2 Speed.

« c3: Obstacle type.

e c4: Obstacle period.
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s: 0.98

s: -0.00022
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velocity items type
s: 0.65 s: 0.29 0.1
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Figure 8: The E-FCM model for TimeOver game.
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s: 0.25 s: 0.8 s: 0.23
s: -0.0022 s: 0.0018 s: -0.0022
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0
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Figure 10: The E-FCM model result without calibration for
TimeOver game.
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1
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s: 0.1 0_
1 stamina
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s: -0.00022
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2 5
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Figure 9: The initial E-FCM configuration for TimeOver
game.

5
items freq
s:0.17
s: -0.0006
t: 1

2
obstacle type
s: 0.37
s: -0.00043
t1

obstacle freq
s: 0.62
s:0.0022

e cs5: Item type. tl

e ce¢: Item period.

Figure 8 illustrates the final TimeOver’s E-FCM model,

where ¢;,i € [1,6] represents each context variable and  Figure 11: The E-FCM model resut with calibration for
signed arrows represent causal relationships between context TimeOver game.

variables. A positive sign (+), means positive causal rela-

tionship and negative sign (—) means negative relationship.

Table II illustrates the probabilistic weight matrix W of  py the game designer. The matrix P, is a one’s matrix
causal relationships, which are determined either from an  pecause we consider that the probability of a concept c;
expert knowledge or learned from a knowledge base. In this affecting another concept c; is equal to one.

paper we redesigned some of these values; as the model '

designed for this game is simple, the weights were provided = The activation function selected for the experiments was the
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Figure 12: E-FCM simulation TimeOver game without calibration.
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Figure 13: E-FCM simulation 1 in TimeOver game with calibration.

logistic function. This means that the concept values should
be a number between O and 1, inclusive.

In order to model player interactions with the E-FCM, we
added two arrows to the E-FCM model. The u; arrow,
represents the stamina that the player earned by collecting
items. The uy arrow represents stamina loss (due to player
tiredness). The stamina value decreases constantly. We use
the “game frame” as the time unit. In this regard, we consider
that time evolves as the game frame sequence progresses. We
update the six context variables each frame, according to the
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evolving time vector T

T 4 1 1 1

(1 1)

The values in T denote the time interval in which a variable
is updated. For example, a value equal to 1 means that a
variable is updated each frame. A value equal to 2 means
that a variable is updated every two frames, and so on. Here
we modified the speed evolving time value to 4 because we
consider the speed changes in the player must be slower.

The initial values of the six context variables are:

§=(0.01 0.001 0.1 0.1 0.1 0.1

Figure 9, illustrates the initial configuration of E-FCM for
TimeOver game. Figures 11 and 13 illustrate the configu-
ration results of real-time simulations that we designed and
conducted to test the behavior of E-FCM model with non-
calibrate and calibrate weights respectively.

Figures 12 and 13 illustrate the context variables in each
game frame. Given the initial configuration in Figure 9, we
expected that in the simulations, the concept values change
as the player interact along the game. Each figure illustrates
the context variables in each game frame, demonstrating that
all simulations behaved as we expected.

Figures 12 and 13 are different, because the player interac-
tions were performed in different ways. However, in both
gameplays, the concept values changes according to the E-
FCM model.

One remarkable difference between both gameplays, the
calibrated and the non-calibrated, is the behavior of the func-
tions (concepts values in each game frame). In Figure 13,
the “obstacle type” and “items period” functions, becoming
more independent of each other along the gameplay.

The functions of the concepts in Figure 13 present less
abrupt changes, for example in frame 300, when the value of
stamina decreases, the values of “speed”, “items period” and
“obstacle type” also decreases but the change is smoother
compared with the frame 2515 of the gameplay in Figure
12 with non-calibrate weights.

VI. CONCLUSIONS

Considering the results described in Section V, we observed
that our algorithm enhances the gameplay experience, be-
cause it is able to regularize the changes produced by the
player interactions, avoiding abrupt changes and considering
only the principal elements of the causal relations such as:
inverse or direct causal relationships (positive or negative
sign) and the degrees of change (AS).

Therefore, we conclude that our algorithm generates softer
simulations in real-time, considering the player interactions
and also presents the following advantages:

Dynamic: The proposed algorithm takes advantage
of the dynamic behavior of the E-FCM to generate
the regularization of the functions in real-time.
Independence: The method considers mainly the
own natural evolution the E-FCM. It does not
require any external method for smoothing the
functions.

Coherence: The smooth functions will always be
coherent with the E-FCM design. In the case of
our method, coherence is automatically obtained
because the regularization of the functions relies
solely on the data captured directly from the E-
FCM simulation. It would be necessary more ex-
periments to verify if other regularization methods,
for example, those based on time-series smoothing
or moving averages, would lead to convergence and
present results coherent with the design of the E-
FCM. This is something that we achieve without
introducing external processes.

An interesting future work is a in depth study of the behavior
of the E-FCM models in real-time, that is, to figure out how
to predict its behavior in real-time simulations from the game
design. Another interesting work is to do an analysis of the
game experiences using E-FCM and E-FCM with calibration
because it is possible to find out other factors that may help
to improve the game experience based on this methodology.
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