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Abstract—Computer games are real-time applications that create
interactive virtual environments, usually as discrete time-stepped
simulations. These simulations may have predefined time step
sizes or may use variable time step sizes. These approaches are
common in games, but not flexible. In the first approach, when the
game runs on a machine with abundant resources, the game does
not use the extra capacity to improve simulation quality (task
results or presentation). The second approach usually runs the
simulation as fast as possible, using the time elapsed between con-
secutive time steps to scale all computations, so as the simulation
runs in real-time. However, this approach wastes processor time
and energy and in multi-core hardware scenarios (e.g., GPUs and
clusters), the problem of wasting computing resources becomes
more severe. In this paper, we propose a parallel and adaptive
architecture that employs workload balance, precedence of game
tasks and tardiness policy in multi-core hardware to handle
the aforementioned issues. The architecture uses tardiness policy
to monitor and change task behavior according to the current
conditions of he host hardware. On more powerful computers, the
architecture is able to improve task quality if there is spare time
available. On less powerful computers, the architecture restricts
task functionality so that tasks are able to complete on time.
We provide two examples to demonstrate how the architecture
works.

Index Terms—heterogeneous and unconventional applications,
tardiness, parallel programming, game architectures.

I. INTRODUCTION

Computer games are real-time applications that create virtual
environments, where players interact with the environment
itself, with virtual characters, and with other players (in some
cases). A game is regarded as a discrete simulation because
the virtual environment is simulated by changing discrete game
states across time. In this paper we consider game state as a
static “data snapshot” that characterizes the game at any given
moment. The simulation in a computer game usually advances
in time using a time-stepped mechanism [1], [2].

Computer games provide the illusion that everything is hap-
pening at once, as smooth motions and immediate input

feedback. This illusion is created by computing and presenting
game states at a fast rate. The game state presentation takes
form as images, animations, and audio, for example. In the
time-stepped simulation model, each game state is computed
in a single time step. The collection of time steps forms a
game timeline. The game application processes each time step,
sequentially. Usually, a game needs at least 16 time steps per
second to maintain the game illusion, whereas more adequate
values range from 30 and 60 [3], [4], [5]. We can affirm
that games have real-time requirements because if a game
application is unable to process all tasks before the current
time step expires (i.e., the deadline), the user experience will
not be good enough in fact, user experience could be severely
impaired, thus breaking the “game illusion” The player may
perceive a degraded user experience as jerkiness, unresponsive
input, general slowness, and other undesired side-effects of
low game performance.

Structurally, the game application uses a “game loop” to com-
pute a single game state. A game loop model organizes the ex-
ecution of game tasks to achieve consistent simulations[1], [2].
A game simulation is consistent if all tasks are processed in the
correct order, considering their dependencies. For example, the
game needs to collect player input before applying game rules.
As another example, the game must run physics processes
before repositioning non-player characters in the environment.
In general, tasks in games can be categorized in three broad
classes: input acquisition, simulation, and presentation. Input
acquisition gathers player data from various input devices,
such as mice, keyboards, sensors, and camera. Simulation
corresponds to tasks that contribute to computing the current
game state, such as game logic evaluation, applying game
rules, physics simulation, and AI processing. Presentation
tasks deliver simulation results (i.e., the current game state)
to players through images (rendering), audio, and haptics, for
example.

Game developers face a crucial challenge when implementing
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game loop models in game architectures: it is necessary to
satisfy real-time requirements in a scenario where hardware
is highly heterogeneous. Desktop hardware has great diversity
when considering CPU and GPU configurations. The hardware
diversity increases when considering that computer games may
use GPUs as high performance clusters to process massively
mathematical problems, due to the high computing capabilities
that these hardware provide for non-graphics tasks. Special-
ized video-game consoles also use diverse parallel hardware
architectures [6], [7], [8]. With multi-core and parallel hard-
ware becoming ubiquitous and even more affordable, parallel
programming in game development is already a trend. The
challenge of guaranteeing real-time requirements, consistency,
and interactivity is not an easy task to achieve in practice when
considering this scenario.

There are several ways to approach this challenge. For ex-
ample, computer game architectures may have a well-defined
simulation model or not. In well-defined simulation models
(the first approach), developers determine a target time step
size and design a game simulation based on this value. The
simulation becomes deterministic and developers are able to
reproduce a simulation given the same input data. Architec-
tures that do not have well-defined simulation models (the sec-
ond approach) commonly use variable time step sizes, which
is a measure that renders the simulation as non-deterministic.
In these cases, a common solution is to use the elapsed time
between consecutive loops as the time step size.

Although these two approaches are common in game devel-
opment, they are not flexible. In the first approach, when the
game runs on a machine with abundant resources, the game
does not use the extra capacity to improve the quality of
task results or presentation. In the second approach, the game
runs as fast as possible, wasting processor time and energy.
When this second case takes place in scenarios with multi-core
CPUs and GPUs, the problem of wasting computing resources
becomes more severe.

Additionally, applications, including games, developed to
multi-core CPUs brings another challenge that is the best
utilization of parallelism on multi-core CPUs, i.e., all cores
of a CPU must have the same quantity of workload in order
to avoid idle state of some cores or processing overload on
other one.

In this paper, we propose a novel game loop architecture that
considers the positive aspects of the two approaches formerly
described, while avoiding some of their shortcomings. We
investigated a strategy employed in real-time simulations and
applied it to game development to efficiently manage heteroge-
neous cluster architectures, as multi-core CPUs and GPUs for
general purpose computing, adjusting the workload among the
CPU cores. In other words, the proposed architecture builds a
game simulation using time steps of fixed value and it is able to
measure total task processing to request tasks to either reduce
or raise their processing requirements according to the current
hardware conditions. As far as we know, there are no research

works in game development literature that apply the concepts
as we present in this paper. The architecture we propose in
this paper represents the first attempt at workload balance and
applying tardiness control in parallel (CPU multi-cores and
GPUs) game loop architectures.

The research that led to this paper had these main objectives:

1) Define the game task workload among available and the
precedence and/or independence of game task;

2) try to optimize hardware usage according to game task
workload;

3) develop a metric to describe task delays or advances
given a target time step;

4) develop strategies to adapt task operation according the
metric defined at (2); and

5) develop a game loop architecture that tries to ensure
real-time requirements by applying (1), (2), (3) and (4).

The first point (1) aims at guaranteeing the uniform workload
among CPU cores and taking into account the precedence
and/or independence of game tasks, i.e., keeping all cores busy
with the same quantity of workload, dividing all game tasks
among CPU cores so that the game tasks can be executed
in parallel and also in correct order. To define the game tasks
order, we have adopted a heuristic to create the game tasks list
and define how these tasks will be processed and allocate them
on the processors available. We have used genetic algorithm
(GA) as a heuristic[9].

Point (2) aims at maximizing hardware usage given the current
run-time conditions. When total task processing time is below
a defined target time step, there is room for improvement
regarding task result quality. For example, in this situation an
AI algorithm might try an alternate approach that uses more
computing power to yield more sophisticated NPC behaviors.
On the other hand, if total task processing power exceeds the
target time step, tasks need to use less computing power so
that game processing fits the target time step. In order to
realize point (3), we have used a technique from real-time
operating systems known as tardiness control [10]. Tardiness
is a technique used as a metric to calculate task delays or
earliness given a target time step, helping applications to
satisfy real-time requirements. To realize point (4) we use the
concept of interruptible and non-interruptible tasks, which we
discuss in Section III. Finally, we apply points (1), (2), (3)
and (4) as an adaptive and parallel game loop architecture
that uses GA to guarantee the workload on CPU, and game
loop architecture also uses tardiness policy to request tasks to
adapt their operation, as a measure to try to meet real-time
requirements and maintain game interactivity.

This paper extended the previous one presented in XIV
Brazilian Symposium on Computer Games and Digital Enter-
tainment. In this work, we include and present a preliminary
study about game tasks list scheduling due to this research is
being conducted.
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This paper is organized as follows. Section II presents works
related to list scheduling, tardiness and game loops. Section III
presents the proposed architecture. Section IV demonstrates
the proposed architecture through two case studies. Finally,
Section V presents the conclusions and future works.

II. RELATED WORK

Real-time operating systems have more strict real-time re-
quirements than games have. This means that if system does
not execute all tasks before the deadline, the system fails,
which may result in drastic consequences. For example, if
these systems fail, people may die. Examples of these systems
include aircraft control systems.

Generally speaking, research works in real-time operating sys-
tems use tardiness to propose diverse task scheduling strategies
to avoid task delays, which can be fatal is those systems.
Examples of such strategies are [11], [12], [13], [14], [15],
[16], and [17].

Although researchers have been discussing tardiness control in
real-time operating systems for a long time, we were not able
to find research works that apply tardiness control in game
simulations.

Regarding game loop architectures and game loop models,
Valente et al. [18] provide an overview of basic game loop
models. For example, the simplest game loop model consists
of running player input, simulation, and rendering stages
sequentially, as a pipeline (single-threaded). These kinds of
models couple the simulation and rendering stages, which
run as fast as possible. Consequently, the simulation does
not satisfy real-time requirements as the simulation behaviour
depends on the host hardware capacity. The simulation runs
faster in powerful machines and slower in machines with lim-
ited computing power. A classic solution to solve this problem
corresponds to uncoupling the simulation and rendering stages.
Usually, this solution takes form as using elapsed time between
consecutive loop executions as parameter in tasks calculations
(e.g., physics and animations). By using this solution, the
simulation runs in a similar way in different machines while
maintaining interactivity. More powerful machines will be able
to run the game more smoothly, while less powerful ones will
still be able to provide some experience to the user. However,
this approach wastes processing power as the game runs as fast
as possible. There are some models in the literature that apply
this approach, in single-threaded ([18], [19]) or multi-threaded
([18], [20], [21]) variants.

As hardware evolved over time (as multi-core CPUs, pro-
grammable GPUs and distributed environments), game de-
velopers needed to design new approaches to take advantage
of these hardware resources through parallel and distributed
programming. There are a number of works in the literature
that explores this issue (such as [22], [23], [24]), which is
related to the solution we present in this paper.

Game architectures that use parallel and distributed computing
need to address problems such as data sharing, data synchro-
nization, and deadlocks. Another important issue is that some
tasks cannot be fully parallelized due to task dependencies
[20]. For example, the game is unable to render a character
in the correct state before computing the game logic and
updating the overall game state. Hence, serial tasks represent
a bottleneck to parallelizing game simulations.

Considering task dependencies, Rhalibi et al. [25] present an
early attempt to handle this issue as a game loop model that
divides tasks into three concurrent threads, creating a cyclic-
dependency graph to organize the ordering in game related
processing. Each thread divides the rendering and update tasks
according to their dependencies.

Mönkkönen [21] presents multi-thread game loop models that
are grouped into two categories: function parallel models and
data parallel models. The first category corresponds to mod-
els that present concurrent tasks, while the second category
concerns models that try to process data entirely in parallel, if
possible. As an example (first category), Mönkkönen proposed
the Asynchronous Function Parallel Model, which does not
wait for task completion to perform its job. The Asynchronous
Function Parallel Model runs the render stage using the last
complete game state, even if the update stage is still computing
the new one. As an example related to the second category,
there is the Synchronous Function Parallel Model [21], which
processes the game physics in a separated thread while the
main thread processes the characters animations.

There are some works that use the GPU in game loop architec-
tures for non-rendering tasks (as GPGPU). Zamith et al. [23]
proposed the first game loop architecture that uses GPUs as
math co-processors in games. The work by Zamith et al. [23]
extended the Single-thread Uncoupled Model [18] by creating
an architecture that uses a secondary thread responsible for
managing the GPU as a math co-processor.

Another work that applies the GPU for parallel program-
ming is [22], where the authors present an architecture that
distributes tasks between CPU and GPU. This architecture
uses GPGPU to process game physics (in a dedicated thread)
and implements static load balancing (the task distribution is
determined by scripts before application start up).

Joselli et al. [24] also present an architecture based on a
model that integrates GPGPU in the game loop. The Multi-
thread Uncoupled Model proposes an automatic load balanc-
ing scheme that uses heuristics to define task allocation on
processors (considering hardware with multi-core CPUs and
programmable GPUs). This load balancing scheme is able to
work dynamically, moving tasks between processors during
the application lifetime to guarantee task load balance.

AlBahnassi et al. [26] propose a design pattern for parallel
programming of games that support the creation of task graphs.
This design pattern takes into consideration task heterogeneity,
task dependencies and dynamic sets of active tasks. The
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approach by AlBahnassi et al. [26] aims at maximizing multi-
core CPU usage.

Best et al. [27] propose a parallel programming environment
for games (named as Cascade) that supports task dependen-
cies through dependency graphs. Cascade also implements
a parallel version of the producer/consumer pattern, which
is very common in games. Best et al. [27] also propose
CDML (Cascade Data Management Language) as a solution
to handle issues related to side effects in parallel procedural
programming.

III. THE PROPOSED GAME ARCHITECTURE

Digital games need to process simultaneously a set of hetero-
geneous tasks in a heterogeneous hardware, which means that
it is not possible to predict the time required to process all the
tasks. Consequently, it is not possible to predict the behavior
of a game simulation, in terms of interactive performance.

To help in dealing with these issues, we propose an architec-
ture that creates a list of game tasks and defines the cores
workload in according to this list. Following, the proposed
architecture also defines a policy to help the game simulation
in meeting performance metrics.

A. The game tasks list scheduling

List scheduling problem is frequently discussed in combina-
tion optimization field. It is classified as NP-Hard problem
and consists in finding the best tasks arrangement in order
to minimized makespan. Makespan represents the amount of
time required by an application to be completely processed
[28].

Furthermore, our work focus on parallel multi-core architec-
ture. It means, all cores same equal, all of them have the same
power processing and can communicate data in low latency
through cache memory hierarchy. The list scheduling is based
on deterministic tasks. A deterministic list scheduling problem
is a class of problem where we know everything about tasks,
precedence, dependence, execution time and communication
[28]. These characteristics represent game tasks due to the
fact that game tasks are well behavior. We know about the
moment that game task starts and how long it takes.

In case of games, list scheduling is a list of game task set
which should be computed, otherwise, the game could fail.
Furthermore, some tasks rely on player events. In this case,
those tasks can occur or not in according to the player event.
Therefore, game list scheduling considers all those aspects and
constraint of game tasks.

The formal definition of list scheduling problem is: given
by tuple (P,G), where a set of m homogeneous processors
(cores of a CPU) P = {pi : i = 1, 2, 3, · · ·m}; and a
directed acyclic graph (DAG) G = {V,E}, where each vertex
V = {T1, T2, · · · , Tn} represents a game tasks. The set

of edged E means dependence among the tasks. Each ei,j
connects the tasks Ti and Tj , the arrow of edged ei,j defines
the processing order, which Ti is predecessor of Tj and Tj is
successor of Ti. The successor task must not processed before
all predecessors tasks have already been processed and their
results are available. If a successor task is not ready to be
processed, the processor is idle state until the task becomes
ready.

Therefore, the list scheduling aim is find out the best arrange-
ment possible throught a list, where all tasks are executed in
parallel on all available processors, minimizing processors idle
state and reducing the makespan.

We adopt DAG as data structure to represent game tasks
relation, because it represents the dependencies among game
tasks as well as their ordering. This data structure also provides
us a way to represent communication cost among tasks, that
given by edged weight [29], where edged weight 0 indicates
no communication among tasks, while tasks that share data
receive cost 1.

1) Genetic Algorithm: Genetic Algorithm (GA) is a heuristic
inspired by theory of biological evolution proposed by Charles
Darwin [30] . This heuristic is well applied in NP-hard
problems and present good results in acceptable time. In most
of case, the result is the best one. GA adopts the principles:

1) a problem solution is represented by individual;
2) the individual characteristics are his chromosomes that

represent how adapted an individual is;
3) hereditary characteristics are transfer from individuals to

their successors; and
4) natural selection determines that the most adapted indi-

viduals are chosen.

We may describe as following Algorithm:

Algorithm 1 GA to create a list of tasks

1: CreatingInitialPopulation(population);
2: EvaluatingPopulation(population);
3: while Stopping Criterion do
4: if ( thenStopping Criterion = false)
5: return solution;
6: end if
7: Crossover(population);
8: Mutation(population);
9: EvaluatingPopulation(population);

10: DiscardingPopulation(population);
11: end while

The GA aim is disposing less adapted individuals and propa-
gate the good individual characteristics, so that GA may find
the best individual who is the best problem solution.

We code an individual as a set of list, where each list
corresponds game tasks executed on a processor and order
of tasks in the list indicates the order of execution. Each list
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represents list scheduling of a processor. Number of lists is
the same of number of processors.

Furthermore, two conditions should be satisfied:

• The precedence relations among the tasks are guaranteed.
• Every task is present and appears only once in the

schedule [31], [32].

Figure 1 shows an example of GA individual, composed by 3
processors where the tasks are defined as DAG. Values over
each task represents the elapsed time unit by the task, when
it is executed on processor.

Fig. 1: An example of A GA individual.

Those tasks are allocated among processors. However, an
individual can be a good or bad solution, relying on how
the tasks are allocated. Fitness function uses the DAG to
evaluating an individual. Fitness function provides values close
to zero indicates that evaluated individual is good. Otherwise,
values apart from zero indicates a bad individual or a bad
solution. Indeed, fitness function tries to minimize makespan.
The fitness function is given by equation:

makespan : minSi∈Sched{maxJ∈TasksFj} (1)

Fj denotes the time when task j finalizes. Sched represents
the set of all possible schedules and tasks is the set of all
game tasks are scheduled. Makespan of individual represented
in Figure 1 is 12 time unit.

GA uses fitness function to select a set of individuals and
discard other set. In our case, GA picks up the best individ-
uals. These selected individuals indicate that they have good
chromosomes. In doing so, good chromosomes will produce
new best individuals. Otherwise, GA discards bad individuals.

We can decided to applied crossover operator in just one point,
as a first approach. However, others crossover strategy can be
applied. In our proposed work, GA selects two individuals and
applies crossover operator in one point, as illustrated by Figure
2. After crossover operator, mutation selects individuals and
changes two chromosomes.

Fig. 2: An example of two individuals generated by two other
individuals by crossover operator.

GA generates list scheduling with game tasks of game stage.
For each new set of game tasks which executes concurrently,
GA creates a new list scheduling. Given a list scheduling, the
tardiness policy is applied, as we discuss in next sub-section.

B. Model Architecture

In a nutshell, the architecture measures elapsed time among
consecutive loops and uses this value to verify if the simulation
meets one of these situations: 1) the tasks are delayed; 2)
there is processing time available; 3) the tasks are on time.
In the first situation, total processing time is longer than the
target time step value. In the second situation, total processing
time is less than the target time step value. The third case is
the optimal situation, would be having total processing time
the same as the target time step value. Figure 3 illustrates
these situations. The architecture uses the time measurements
to adapt task execution to try to achieve the optimal solution,
where total execution time equals the target time step.

The proposed architecture comprises three broad stages: input
gathering, simulation, and presentation. The simulation stage
runs tasks in parallel, according to the number of available
processing cores. Figure 4 illustrates the proposed architecture,
where the simulation stage is broken down into four sub-steps.
The presentation stage corresponds to rendering.

The simulation stage lays out the four sub-steps (Figure 4)
as follows. The first step is responsible for calculating the
tardiness metric. The second step identifies how many tasks
need to be processed and creates (n) threads to process them.
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Fig. 3: Task execution diagram. (a) Task finished before dead-
line: the available computing resources exceed task processing
requirements (b) Delayed task (c) Optimal case.

Player Input

Render

Synchronize n threads

Calculates tardiness

     Task manager 

Thread (0)
Manage Game Task 

Thread (1)
Manage Game Task 

Thread (...)
Manage Game Task 

Thread (n-1)
Manage Game Task 

Fig. 4: The proposed game loop architecture.

The number of threads that the architecture creates depends
on the number of available processing cores. At the third step,
each thread runs its corresponding task, and at the fourth step
the architecture synchronizes all threads to ensure that the
results are consistent for presentation.

The developer is responsible for defining the granularity of
game tasks. Granularity is the amount of work executed by a
specific thread. Task granularity should be carefully chosen,
since fine grained granularities may cause high system over-
head due to thread management cost. On the other hand, coarse

grained granularities may increase the thread workload, which
may result in reduced parallelism levels and loss of thread
processing efficiency. For example, a particle system requires
processing several individual elements (i.e., the particles) and
the developer may choose to process a particle system as
a whole in a thread (using an iterative approach), or divide
the particle system into sub-tasks to be processed in several
threads.

C. The tardiness policy

The architecture applies tardiness control considering a target
time step defined by the developer when designing the game.
The target time step generally ranges from 1/30 to 1/60
seconds, which is a common value to keep interactivity in
simulations and games. If total task processing time exceeds
the target time step, the architecture may request a task to
reduce its processing requirements or may try to interrupt
the task’s processing on the next time step. If the total task
processing time is below the target time step, the architecture
informs all the tasks that they may raise their processing
requirements if needed. This brings opportunities for tasks to
improve their results.

The architecture uses two kinds of tasks: interruptible and
non-interruptible. Interruptible tasks may be broken down in
several parts that are processed in consecutive time steps.
When the target time step deadline comes, the architecture
requests this kind of task to pause processing, which will
be resumed in the next time step. The architecture repeats
this procedure until the task completes. Non-interruptible tasks
cannot be processed in consecutive time steps and cannot be
interrupted. When the execution of a non-interruptible exceeds
the target time step size, the architecture requests the task to
reduce its processing requirements for the next time step. For
example, a task may fulfil this goal by reducing the domain
size of the problem that it needs to compute.

D. Tardiness metric

Our architecture uses tardiness as a metric for gauging sys-
tem performance. In the first step (Calculate tardiness) the
architecture considers the last elapsed time (previous loop
execution) to calculate the tardiness value. The architecture
uses this value to define a new time upper bound to keep total
task processing time below the target time step (Eq. 2).

Tardiness =
TimeExecuted

TimeProgrammed
(2)

Eq. 2 has two parameters: TimeExecuted (the measure task
processing time) and TimeProgrammed (the predefined target
time step). The developer is responsible for defining the target
time step, which generally ranges from 1/30 to 1/60. This
value usually matches the refresh rate of computer monitors.
Eq.2 returns values for tardiness that range from 0 to ∞.
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When the result is 0 ≤ Tardiness < 1, it means that total
processing time is below the target time step. This situation
brings opportunities to improve task quality due to extra
processing time available. When Eq.2 results in values greater
than 1 , it means that total processing time exceeded the
target time step. In this situation, it is necessary to reduce
task processing requirements to suit the target time step. The
optimal case corresponds to Eq.2 resulting in 1, which means
that total task processing time is exactly the same as the target
time step. However, in practice the optimal case is hard to
achieve. The proposed architecture tries it best to achieve the
optimal case by using the tardiness metric (Tardiness ≈ 1).
Figure 3 illustrates these scenarios.

Eq. 2 is based on the original tardiness equation by Taranti et
al. [10]. The original equation may provide negative values,
which would prevent defining correct upper bound on time in
our game architecture. Therefore, we have adapted the original
equation to return values from 0 to ∞.

When considering several tasks, it is necessary to calculate the
sum of all task processing times to compute tardiness. In this
regard, TimeExecuted is given by:

TimeExecuted =
n∑

j=1

GTj (3)

where GTj denotes the processing time of the jth game task.

Eq. 3 applies to calculating processing time of all tasks in a
single processing thread. When there are several processing
threads (the case of our architecture), the final TimeExecuted

value will be determined by the thread that takes longer to
process, because our architecture needs to wait for all threads
to finish before proceeding to rendering. Eq. 4 represents this
calculation:

TimeExecuted = max

(
S1, S2, · · · , Sn

)
(4)

where Si represents the total task processing time of the ith
thread.

We lay down the final equation to calculate total processing
time in multi-thread contexts by combining Eq. 3 and Eq. 4
into:

TimeExecuted = max

(
Si

( n∑

j=1

GTj

))
(5)

As a simple example of calculating tardiness (Eq. 2),
let it be the following scenario. The target time step
TimeProgrammed = 1ms. The system has three different game
tasks: 1) A particle system, such as gunshot smoke simulation
(processing time GT0 = 0.5ms); 2) AI behaviour of an enemy
NPC “A” (processing time GT1 = 0.25ms); 3) AI behaviour
of an enemy NPC “B” (processing time GT2 = 0.15ms); and
4) Calculation of player avatar movement (processing time
GT3 = 0.3ms). Consider that in this example there are three

processing threads: thread A (particle system), thread B (AI
behaviour of NPCs), and thread C (player movement).

In this case, TimeExecuted = max(0.5, 0.25 + 0.15, 0.4),
i.e., TimeExecuted = 0.5ms (Eq. 5). Applying Eq. 2 yields
Tardiness = 0.5, which means that the total task process-
ing time (TimeExecuted) spent 50% of the target time step
(TimeProgrammed). As the tardiness value is below 100%,
the game could use the extra time to the improve quality of
some tasks, if desired.

As another example, suppose that the particle system in
the previous example spent 1.25ms instead of just 0.5ms.
In this case, TimeExecuted = max(1.25, 0.25 + 0.15, 0.4),
i.e., TimeExecuted = 1.25ms (Eq. 5). The tardiness in this
example would be 1.25, which means that total processing
time exceeds the target time step in 25%.

In both examples, the Task Manager adjusts game tasks as we
explain in the next subsection.

E. Task Manager

The task manager is the core of our architecture. The task
manager has two main responsibilities:

1) create and destroy threads dynamically, allocating tasks
to threads (according to the task granularity defined by
the developer); and

2) request tasks to adapt their processing time requirements
according to the tardiness metric.

In our architecture, tasks need to address some requirements
so that the architecture works properly. These requirements
are:

1) a task is interruptible or non-interruptible — we define
this as the “task behaviour”;

2) a task is able to inform its task behaviour to the task
manager; and

3) the task implementation uses time measures to ad-
just how it operates. According to task performance
(evaluated with Tardiness), the task manager requests
a task to reduce its processing demands, in case of
Tardiness > 1 + δ. The task manager also signals a
task that it is allowed to raised processing demands if
desired, in case of Tardiness < 1− δ. Our architecture
uses the δ value to compensate for time interferences
generated by background operating system tasks, which
could lead to inconsistencies in our model. Currently,
we use δ = 0.2;

4) if the task is non-interruptible, the task implements
methods to adapt its operation based on the tardiness
metric; and

5) if the task is interruptible, the task implements methods
to adapt its operation to be processed across consecutive
time steps.
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F. Implementation details

We defined an object-oriented model (C++ language) for our
architecture where there are two main classes: a class to
represent the task manager and a basic class to represent
general game tasks. The basic task class defines two methods
(increase and decrease) that the task manager class uses to
request a task to increase or decrease processing demands. The
developer is responsible for defining the actual implementation
of these methods in derived classes.

The task class also defines an important method (sync) that
is responsible for synchronizing the task using whatever
synchronization object is available (e.g., barriers, mutexes,
or semaphores). We provide a default implementation of
this method, using a barrier as the synchronization object.
However, we consider that the tasks are independently from
each one other, which means that each task runs alone and
the synchronization is employed to guarantee the visualization.
Others synchronization objects can be implemented.

The Task Manager is also responsible for distributing the
threads among available multi-core processors and distribut-
ing tasks among the threads. We adopt a FIFO policy to
schedule game tasks. Although FIFO is a simple scheduling
policy, it works well in games because all tasks must be
computed in a discrete time step (1/30 or 1/60). Although
more sophisticated scheduling policies could be implemented,
they could require more processor time, which might affect
the game loop adversely. Furthermore, desktop computers
are not dedicated hardware, they have several processes run
concurrently, sharing the CPU, even if CPU multi-core, with
the game tasks and other processes. We have in mind that CPU
is shared between the Task Manager (scheduler) and the game
tasks.

At last, we used C++ with pThread and CUDA libraries in
order to program in parallel model. The former works on CPUs
multi-core, while the latter is employed on GPUs.

IV. CASE STUDIES

This section describes two case studies we have performed
to test the proposed architecture. To compare the influence
of applying the tardiness strategy, each case study provides
a test that adjusts task operation according to the tardiness
metric (“tardiness-applied-test”) and another test that does
not adjust task operation (“tardiness-not-applied test”). Both
tests calculate tardiness; the first one applies the adaptive
approach while the second one uses tardiness to understand
task behaviour (e.g., if a task takes too long to process or if
it finishes early), using these data to compare results with the
adaptive approach.

The first case study uses an interruptible game task and dy-
namic thread management on a multi-core CPU scenario. This
case study aims at investigating if the proposed architecture is

able to adjust threads dynamically on demand, when applying
the tardiness strategy.

The second case study is a synthetic non-interruptible game
task that represents an accurate physics simulation with high
processing demands. Generally, digital games do not use these
kinds of tasks due to the required high computing demands.
However, we wanted to evaluate our architecture with a
heavy non-interruptible task to understand how these kinds
of tasks would affect a game simulation. This second case
study solves a physics simulation on a multi-GPU scenario (a
non-interruptible task). The physics simulation simulates an
explosion (sound wave propagation) that travels through an
environment with large obstacles.

The tests in these case studies start computing tardiness only
after the first 100 frames to avoid the application transient
state. The application transient state occurs when the applica-
tion starts running, due to events related to application start up
(such as library initialization, memory allocation, and thread
creation, among others). These events may impact tardiness
calculation artificially, so the architecture waits some time
before calculating tardiness.

The case studies use 1/60 as the target time step
(TimeProgrammed parameter in Eq. 2). In each case study,
the test applications record frames per second (FPS), game
task elapsed times (ET), and tardiness (Tardiness) values.

The test platform is a desktop machine using an Intel i7
(with four 3.60Hz physical cores), 8GB RAM, PCI-express
3.0 bus (1.8 GHz memory access), and two NVidia 640 GTX
GPUs, running the Ubuntu 12.04 64 bits operating system.
All tests were implemented using C++, OpenGL, and GLUT.
The remaining of this section discusses the case studies and
presents the results.

A. Case Study 1: A* Pathfinding

The first case study implements an A* pathfinding algorithm,
using a 2D maze scenario similar to scenarios found in
earlier Pac-Man games. In this case study, several agents (i.e.,
the ghosts) calculate the path (using A*) towards the main
character (i.e., Pac-Man) to try to capture it. Each agent is
controlled by a different thread. Figure 5 illustrates the test
maze, where walls are represented in red colour and corridors
in black. We wanted to use a test maze much larger than a
typical Pac-Man scenario, so we chose to design a test scenario
of 128× 64 tiles in size.

The starting position of Pac-Man is at the upper-right corner,
while the ghosts start at the bottom-left. Figure 5 depicts
the characters positions on the scene. We chose these initial
positions to characterize the worst case for the A* algorithm
to process.

This case study was designed to demonstrate the flexibility
of the proposed architecture. The tests (tardiness-applied and
tardiness-not-applied) implement a scalable A* pathfinding
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Fig. 5: 2D maze scenario.

algorithm, which increases or reduces the number of agents
(ghosts) according to the host hardware performance.

Both kinds of tests (tardiness-applied and tardiness-not-
applied) have initial conditions regarding the starting num-
ber of threads. We ran 12 instances of each kind of test,
using different values for the starting number of CPU
threads: (1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 640, and 768). As
A* pathfinding algorithm requires heavy memory access due
to the characteristics of algorithm (more data access than
CPU computation), this algorithm was implemented on CPU.
Moreover, we considered that each ghost computes its own
A* pathfinding algorithm independently of the others. Thus,
each thread controls just one ghost and the total of threads is
scheduled by O.S. among the CPU cores.

We adopted pthread library and semaphore as synchronized
object in order to guarantee the consistency of ghosts position
their visualization.

For tardiness-applied-tests, we expect that these instances con-
verge to the ideal number of threads when applying tardiness,
given a target time step of 1/60. The tardiness-not-applied
tests do not change the number of threads dynamically, using
the number of ghosts defined before the test started.

B. Results

In this section, Figures 6, 7, and 8 illustrate the test results in
green (tardiness-applied-test) and in red (tardiness-not-applied
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Fig. 6: Average tardiness.

test).

Figure 6 illustrates average tardiness behaviour per frame
while varying the number of threads (ghosts) running in the
system. The tests record the average tardiness every 100
frames. The tardiness calculations consider all tasks that run
in the tests, which includes the A* algorithm and rendering.

Considering the tardiness-applied-test, Figure 6 illustrates that
average tardiness does not vary significantly while the number
of threads range from 1 to 32. We suspect that this situation
occurred due to rendering being the task that most contributes
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Fig. 7: A* pathfinding: average elapsed time per thread
(milliseconds).

to tardiness when the number of threads ranges from 1 to 32.
This situation requires further investigations as our tests do not
measure total rendering time. When the number of threads is
greater than 64, the influence of all threads on tardiness start
to have more significant impact.

Figure 7 illustrates average elapsed times when processing a
frame, for each thread (A* algorithm). The tardiness-applied-
test spends much less time to finish than the tardiness-not-
applied tests when the number of threads is greater than 64.
When the tardiness-not-applied test runs with more than 256
threads, the test always exceeds the target time step (1/60),
while the tardiness-applied-test is able to keep total processing
time below the target time step when using up to 768 threads.
All tardiness-applied-tests converge to using 256 as the ideal
number of threads, when the tardiness value is approximately
1.

Figure 8 depicts memory usage in both tests. The tardiness-
applied-test used less memory than the tardiness-not-applied
test in overall. This difference starts to increase significantly
from 32 threads. This is an interesting result, although we
regard it as side-effect contribution because our research was
not concerned with reducing memory usage while applying
tardiness control. Also, we cannot guarantee that this result
applies to other kinds of game tasks.

C. Case Study 2: Shock-wave Explosion

The second case study is a synthetic game task, it corresponds
to a shock wave simulation that models how a shock wave
(originated from an explosion) travels through an environment
with large obstacles, such as a city block with tall buildings.
The application used the resulting amplitude field to render the
propagation of a shock-wave-like effect at each frame step.

This case study models an outdoor scene that is represented
by a lattice with cells, using a physics simulation to model
the shock wave propagation. Figure 9 displays the test scene
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geometry and the evolution of the shock-wave propagation
effect in time. The wave propagation starts in (A) and ends in
(D). The buildings interfere in the wave propagation. Parts (A)
and (B) omit buildings to help in visualizing wave reflection.
Parts (C) and (D) present the complete scene.

A B
Fig. 9: Test scene geometry and the wave propagation effect
evolving through time (from A to B). Parts (A) and (B) omit
buildings to help in visualizing wave reection.

The shock wave propagation is implemented by finite differ-
ence methods (FDM) on the GPU. The FDM requires two
parameters: ∆h = 1.0 meter and ∆t = 0.0033 seconds.
The tests in this case study starts with a domain size of
128× 128 points. The largest domain size that the tests use is
4096×4096. The domain size describes how many cells exist
in a lattice. Domain sizes larger than 4096×4096 are infeasible
to process using the test hardware. The number of threads is
equal to the number of cells. Hence, each thread computes one
cell. We defined blocks with 32×32 threads, composing total
of 1, 024 threads (limited by hardware - NVidia 640 GTX).
Besides, shared memory size is based on the number of threads
plus a region called buffer border whose size is two times the
neighborhood size, corresponding to the 2D stencils FDM size,
i.e., considering 32 bits float point and block size of 32× 32,
then we allocated approximately 4 Kbytes of shared memory,
as we proposed in [33].

The tardiness-applied-test increases the domain size when
tardiness is less than 1 and decreases the domain size when
tardiness is above 1. This test applies the following strategy to
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change the domain size: when it needs to increase the domain
size, the doubles it (e.g., from 128×128 to 256×256). When
the test needs to reduce the domain size, it halves it (e.g., from
512× 512 to 256× 256). The tardiness-not-applied test does
not change the domain size dynamically, running with a fixed
domain size defined before the test starts. Domain sizes larger
than 4, 096 × 4, 096 are infeasible to process using the test
hardware.

In this approach, the CPU invokes the simulation on GPU,
transferring the necessary data to simulation and processing
to GPU. The NVidia Graphic Card driver instances and
schedules threads among GPU processors and CUDA cores.
The developer only defines the number of blocks, threads per
blocks and the codes (kernels) which are executed by GPU.
However, the CPU can abort the GPU execution or defines a
smaller domain, so that GPU can execute in fast way.

D. Results

Initially, we ran several rounds of the tardiness-not-applied
test, using different domain sizes ranging from 128 × 128 to
4, 096×4, 096. In these rounds we measured average tardiness
(AT), average frames per second (FPS), average elapsed time
per frame (ET), and the amount of memory allocated (Mem).
Table I presents these quantitative results.

Domain A. T. E. T. FPS Memory
128x128 0.053 0.876 1141.711 0.063
256x256 0.075 1.243 804.687 0.250
512x512 0.191 3.181 314.374 1.000
1,024x1,024 0.751 12.509 79.941 4.000
2,048x2,048 2.819 46.983 21.284 16.000
4,096x4,096 11.991 199.847 5.004 64.000

TABLE I: Physics simulation performance.

Considering the test hardware, the most suitable domain size to
use was 1, 024×1, 024, when tardiness averages approximately
0.751. For larger domains, tardiness is greater than 1. Figure
10 illustrates average tardiness according to domain size.
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Figure 11 illustrates average FPS in tardiness-not-applied
tests. When the domain size is larger than 1, 024 × 1, 024,
the average FPS is greater than 79.941. On the other hand,
when using domain sizes larger or equal than 2, 048× 2, 048,
the average FPS rate drops significantly (Table I presents these
values).

Since this task is non-interruptible, memory usage does not
vary while the test runs. The reason is that the physics
simulation allocates all required memory at once when it starts
according to the defined domain size. Figure 12 illustrates
memory usage when considering different domain sizes.
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The tardiness-applied-test starts running using the domain size
128 × 128 and changes this value until it reaches 2, 048 ×
2, 048, when it discovers that this domain size is infeasible
because tardiness is greater than 1. The test then chooses the
last suitable value (1, 024 × 1, 024) for the domain size and
keeps on using while tardiness ranges from 0.8 to 1. The test
uses this range to avoid constant domain size switching (e.g.,
from 1, 024×1, 024 to 2, 048×2, 048, back and forth). On the
other hand, when tardiness is below 0.8, the test decreases the
domain size to the previous suitable value (e.g., 512× 512).
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When comparing the tardiness-applied-test and the tardiness-
not-applied tests, there is no difference regarding the quanti-
tative results (average tardiness, average FPS, average elapsed
time, and memory usage). The reason is because the physics
simulation in these tests is non-interruptible, which means that
the task needs to run until completion in a single time step.

The main difference between the tardiness-applied-test and
tardiness-not-applied tests is that the tardiness-applied-test is
able to adjust domain size dynamically according to the cur-
rent hardware conditions (e.g., free processing time available,
processing capacity), which may improve task results. On the
other hand, the tardiness-not-applied test uses fixed domain
size, which may result in poor performance if the domain size
is not adequate to the current hardware conditions.

V. CONCLUSION AND FUTURE WORKS

This paper proposed an adaptive game loop architecture based
on tardiness control to adapt task operation according to
the current hardware load conditions at a given moment.
Furthermore, our adaptive game loop is able to create game
task list scheduling, considering multi-core processors. Despite
creating the list scheduling correctly based on GA Algorithm,
we did not compare to analytic solution and, therefore, we
do not know how far the list scheduling is from the best
arrangement. So that it is NP-hard problem.

Applying tardiness control in games is a new approach that
may help game developers in designing tasks that run ade-
quately in a myriad of hardware configurations and running
conditions. To the best of our knowledge, the research we
report in this paper represents the first attempt to apply
tardiness policies in game architectures.

Firstly, the architecture proposed in this paper uses a simula-
tion model based on time steps of fixed size in order to create
deterministic simulations. In other words, the architecture is
able to reproduce a simulation given the same set of input
data. This target time step value should be a suitable value so
that the game simulation remains interactive. In practice, this
value ranges from 1/30 to 1/60 seconds.

However, when task processing time exceeds the target time
step, the simulation starts to run slower than real-time, which
violates the real-time requirements that games have. This
situation may arise for several reasons, such as running hard-
ware not meeting the minimum task run-time requirements
and temporary high processing loads that may occur due
to game events (e.g., the game generated an explosion that
sparked several particle systems). When developing a game, it
is difficult to foresee when these kinds of situation will happen
due to the variety of computer hardware configurations and
unpredictability of game events.

Tardiness control seems to be a promising approach to handle
these kinds of situations, as we understood by developing
two prototypes using the proposed architecture. The proposed

architecture monitors the simulation running times to learn
about the behavior of total task processing time when com-
pared to the target time step size (in percentage). When
calculating tardiness, the result means that 1) task processing
time exceeds the target time step; 2) task processing time is
below the target time step; and 3) task processing time equals
the target time step (the optimal case, which is hard to reach
in practice). The proposed architecture uses this percentage
value to request tasks to adjust their operation dynamically.
Using tardiness also makes it possible to use extra time
available to improve the complexity and results of game tasks
automatically, which may improve the game experience. We
understood that applying tardiness in games seems to be a
good measure to keep the simulation bound to the real-time
requirement (which we represent by keeping task processing
time bounded by the target time step).

In this paper, we discussed applying tardiness control for
interruptible and non-interruptible tasks. Interruptible tasks
need to guarantee their continuity in other words, these tasks
must be capable of resuming their work after being interrupted.
This is a crucial requirement in our approach those tasks must
not reset after being interrupted. The prototypes demonstrated
that adapting tasks dynamically using tardiness is a feasible
and promising approach. However, while doing the research
we report in this paper, we noticed some aspects that require
further investigation.

Currently, the proposed architecture calculates tardiness and
requests all tasks to change based on this value. For example,
if the simulation has three tasks (A, B, and C) and one of them
(C) is heavily responsible for exceeding the target time step,
the current approach penalizes all three tasks. The next step
in applying tardiness policies would be applying a weighted
approach when requesting tasks to reduce their processing
requirements. In other words, in this example the task that
contributes the most to total processing time (C) is the one
that most needs to reduce processing requirements.

Another important issue relates to non-interruptible task pro-
cessing. Currently, the proposed architecture needs to run a
non-interruptible task entirely before calculating tardiness. In
this case, the real-time requirement and interactivity may be at
jeopardy, as these tasks might take too long to process. Hence,
a future work is proposing more policies to handle tardiness
calculations when considering non-interruptible tasks. Finally,
another important future work is creating scheduling strategies
to maximize game task processing considering multi-core
CPUS and programmable GPUs.

In future work, we will investigate GA algorithm to create
game list scheduling. Specially, in related to real game tasks.
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L. B. Gonçalves, “Hybrid grasp heuristics to solve an unrelated parallel
machine scheduling problem with earliness and tardiness penalties,”
Electronic Notes in Theoretical Computer Science, vol. 302, pp. 53–
72, 2014.

[16] C. Koulamas, “The total tardiness problem: Review and extensions,”
Operations Research, vol. 42, no. 6, pp. 1025–1041, 1994. [Online].
Available: http://dx.doi.org/10.1287/opre.42.6.1025

[17] T. Sen, J. M. Sulek, and P. Dileepan, “Static scheduling research to
minimize weighted and unweighted tardiness: a state-of-the-art survey,”
International Journal of Production Economics, vol. 83, no. 1, pp. 1–12,
2003.

[18] L. Valente, A. Conci, and B. Feijó, “Real time game loop models
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