
Reflections over Communicability in PaaS
Environments

Rafael Brandão, Marcio Moreno, Juliana Ferreira, and Renato Cerqueira
IBM Research

Rio de Janeiro, Brazil
{rmello, mmoreno, jjansen, rcerq}@br.ibm.com

Abstract—Platform as a Service (PaaS) has become an
essential product for large technology companies. It is a way of
delivering hardware, software tools and other resources for
application development and hosting, as a service. Its users are
developers who need to build and deploy new applications.
Besides computational power, PaaS environments (PaaSE) offer
services, development tools and even complete apps to be put
together in web applications. These pieces of software can be
developed by diverse groups of people, presenting a significant
challenge from a Human-Centric Computer (HCC) perspective.
We argue that the semiotic engineering (SemEng) theory, which
views human-computer interaction as computer-mediated
communication between designers and users at interaction time,
may be applied to help creating knowledge in this context. In
PaaSE, several designers communicate with PaaSE’s users
(developers). In this paper, we apply SemEng concepts to analyze
different software artifacts present in PaaSE, showing evidence
of communication breakdowns between designers and users. Our
goal is to provide a better understanding of existing
metacommunication processes in such environments, offering
specific suggestions to emphasize communication boundaries.

Keywords— semiotic engineering; communicability analysis;
cloud computing; platforms as a service (PaaS)

I. INTRODUCTION
The constant increasing connectivity and bandwidth

availability has enabled the transformation of computing power
into a commodity. Companies are gradually adopting the
paradigm of cloud computing, aiming at cutting their costs by
maintaining data and processing outside their premises.
Commonly, cloud computing services fit into three different
models that can be viewed as a stack [1]. They are referred to
as: Infrastructure as a Service (IaaS), the most basic layer that
offers hardware resource abstraction as a service; Platform as a
Service (PaaS), which abstracts all resource provisioning,
configuration and runtime environment requirements; and at
the highest level, Software as a Service (SaaS), where users
should deal only with application software, databases and other
services, leaving all other aspects to be maintained by the
service provider.

The acceptance of cloud computing solutions in the market
has grown significantly no matter the level of abstraction of the
service model. IaaS solutions, such as the ones from SoftLayer1

1 www.softlayer.com

or AWS2, allow different players, from small business to large
enterprises, to shift their operations away from costly hardware
maintenance requirements. That is, they allow enterprises to
avoid traditional low-level hardware details, so they can focus
on their core businesses. However, in these solutions, users still
must handle details about networking and provisioning. PaaS
solutions, like Amazon Elastic Beanstalk3, IBM Bluemix4 and
Microsoft Azure5 aim at hiding these details from their users,
creating an abstraction layer that allows them to focus on
application development instead of managing their
infrastructure. Lastly, SaaS is a model where purchasing and
use of software is not related to acquiring licenses, instead,
users pay software providers on-demand. SaaS has been
incorporated into the strategy of nearly all leading enterprise
software companies. Services offered by Salesforce6 and
ServiceNow7 fall into this category.

In this paper, we focus on PaaS solutions where there is an
explicit tradeoff where users (developers) are willing to giving
up control of infrastructure specifics in exchange for simplicity
and speed. To endorse the positive side of this tradeoff, some
PaaS solutions offer users a catalog of services they can choose
to integrate with their applications. Commonly, PaaS
Environments (PaaSE) must manage information about third-
party services (e.g. maintaining documentation with
description, features, etc.), references to the service providers,
and authentication mechanisms (e.g. API keys, billing, etc.) for
contracted services.

The concepts promoted by PaaSE are intrinsically related to
the ones from DevOps (Development and Operations). It
involves processes and methods for reflection about
collaboration and communication between development, IT
operations and Quality Assurance staffs. In other words, PaaS
promotes a cross-departmental integration, since it depends on
heterogeneous expertise to be maintained.

We argue that PaaSE makes an interesting subject for an
exploratory study through a communicability perspective.
Particularly due to its idiosyncrasies, involving diverse

2 www.aws.amazon.com

3 www.aws.amazon.com/elasticbeanstalk
4 www.ibm.com/bluemix

5 www.microsoft.com/azure
6 www.salesforce.com

7 www.servicenow.com

50 SBC Journal on Interactive Systems, volume 8, number 2, 2017

ISSN: 2236-3297

technical aspects and the collaboration of multiple actors that
design and consume different knowledge artifacts. Indeed,
some authors [2] state that PaaS is the least mature of the three
cloud computing layers usually discussed, but it comes along
with a great market potential.

Semiotic Engineering views HCI as a special kind of
communication between people, as a computer-mediated
communication between designers and users at interaction time
[3]. In this sense, the designer of PaaSE has a broad range of
responsibilities, since (s)he is consolidating several
components, and usually gathering information from other
designers of services endpoints or their libraries with APIs.
These features must be combined in a “package” to be exposed
as one single environment. Among other things, (s)he needs to
consistently communicate to his/her users: 1) how this
package’s features can be organized to build their applications;
2) where and when to “hand over the conversation” to a third-
party designer’s component or service during users’ interaction
with the environment.

In this work, we apply concepts from Semiotic Engineering
to trace back pitfalls where PaaSE designers typically fail to
communicate the user important aspects while building a new
application on their platforms. The SigniFYIng Message, a
component from the SigniFYI [4] (Signs for Your
Interpretation) methodological toolset, was used to frame
metacommunication and show breakdowns in the PaaSE’s
user-designer communication. The Semiotic Engineering view
of HCI as communication between designers and users at
interaction time provides a distinct perspective for PaaSE
evaluation, design and use. We illustrate a fictional PaaSE with
interface mockups called “Developer Salad Bar” (DSB), but
some of the reported issues were also observed on different
PaaSE in the market.

This work is a result of a multidisciplinary group of
Semiotic Engineering experts and senior developers. This
integration was crucial to enrich analysis and framing the
extension of communicability issues in PaaSE. Our main
contribution is to provide a better understanding of existing
metacommunication processes throughout application
development in such environments. In addition, this work
provides specific suggestions to emphasize communication
boundaries between users (developers) and designers of PaaSE.

This article is organized as follows: the second section
presents a background of the problem, with a brief discussion
about PaaSE. It also addresses Semiotic Engineering concepts
and their framing over PaaS communicability aspects. In the
third section, we discuss related works that share interests with
our approach. We present a fictional story in the fourth section,
showing potential communicability breakdowns between
designers and users on PaaSE. In the fifth section, we discuss
how the communicability issues presented in our story could be
handled with support from Semiotic Engineering tools. In the
sixth section, we reflect over communicability aspects on PaaS
solutions available in the market, confirming that the
theoretical problems addressed in the illustrative scenario are
also experienced in practice. Finally, the last section concludes
with final remarks and future work.

II. BACKGROUND

A. PaaS environments
PaaS is the middle tier of the main cloud computing service

models, set between IaaS layer (with a lower abstraction level)
and SaaS (higher abstraction level). Fig. 1 illustrates the
arrangement of these layers with an indication of the main
resource they abstract to users, i.e. hardware in the case of
IaaS, the platform in PaaSE and applications in SaaS layer.

IaaS

PaaS

SaaS

Ap
pl
ic
at
io
n

Pl
at
fo
rm

In
fr
as
tr
uc
tu
re

Fig. 1. The three common service models from cloud computing.

NIST [5] provides the following definition for PaaSE, in
terms of consumer’s capabilities.

“The capability provided to the consumer [of PaaSE] is to
deploy onto the cloud infrastructure consumer-created or
acquired applications created using programming languages,
libraries, services, and tools supported by the provider. The
consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems,
or storage, but has control over the deployed applications and
possibly configuration settings for the application-hosting
environment.”

Depending on the desired scenario and restriction policies,
there are distinct types of PaaS strategies commonly
discussed: public, private, hybrid or community. Public
platforms are usually offered to users on the Web, in a pay-as-
you-go model. It is also possible to maintain a PaaS in private
clusters, restricted to the domain of an organization. Thus,
ensuring a finer access control, if security is considered a
primary concern. Alternatively, a hybrid model is possible as
well. By keeping sensitive data on-premises with restrict
access, along with a publicly maintained infrastructure. A
fourth strategy is the use of PaaS in a community cloud. That
is, the infrastructure is provisioned for a specific community,
consumers from one or more organizations. It can be managed
by one or more organizations from the community, or by third
parties. It can be located on or off premises.

Generally, the PaaS provider is responsible for defining
details of how the infrastructure operates, such as its
operational system, available programming languages,
services, and general management matters. Development tools
and other collaborative environments may be provided to
enhance users’ experience. Fig. 2 summarizes the resources

SBC Journal on Interactive Systems, volume 8, number 2, 2017 51

ISSN: 2236-3297

commonly abstracted by PaaSE ranging from hardware (its
virtualization and provisioning), along with runtime
environments that allow for deployed applications to run.

Hardware	resources

Virtualization

Runtime	environment

Services Deployed	apps

Fig. 2. Resources commonly abstracted by PaaS environments.

The concept of DevOps is an intrinsic ingredient of PaaSE.
By promoting the integration of staff from different
departments needed for platform management, it is expected
to enhance things, e.g., a lower time-to-market, improved
product quality, more stable releases, etc. However, this cross-
collaboration comes with an associated cost in terms of
guaranteeing consistent communication between people. In
this sense, an exploratory study with theoretical tools that
support epistemological analysis about these communication
acts may come in handy.

B. Semiotic Engineering and PaaS Environments
Semiotic Engineering views HCI as a computer-mediated

communication act between designers and users at interaction
time. The system speaks for its designers in several types of
conversations specified at design time. These conversations
communicate the designers’ understanding of who the users
are, what they know the users want or need to do, in which
preferred ways, and why [3]. It emphasizes communication and
signification processes taking place in interaction, and brings
HCI designers onto the stage of human-computer interaction.
The system is the designer’s proxy during user’s interaction
(Fig. 3a).

PaaSE have an extra layer of communication in interaction
time. PaaSE provide a platform allowing users to develop, run,
and manage applications without the complexity of building
and maintaining the infrastructure typically associated with
developing and launching an application [1], [6]. In that
environment, there are pieces of software (components,
libraries, services, complete applications, etc.) that can be
combined to build a new application. The designers of those
pieces of software are different people, with different ideas,
different goals, different beliefs, and so on. Therefore, while
interacting with a PaaSE, the user is communicating with
different individuals, depending on which pieces of software
(s)he decides to combine (Fig. 3b). The PaaSE’s designer is the
user’s first interlocutor. This designer has the responsibility to
intermediate the whole conversation among user and all the

other designers of components and services offered by the
environment. It is reasonable and expectable that the PaaSE’s
designer hands over the conversation to other designers
throughout the interaction. But this needs to be made clear to
PaaSE’s users, so they know to whom they are talking with in
each step of the interaction.

Fig. 3. The system as the designer’s proxy (A) and different designers
communicating with the user at interaction time (B).

Semiotic Engineering has resources to help addressing this
particular situation of PaaSE’s designer and multiple designers
of combined features (see different designers in Fig. 3b). One
interesting resource is the metacommunication template,
presented in Fig. 3a dialog balloon. It communicates the
designers’ understanding of who the users are, what they know
the users want or need to do, in which preferred ways, and
why. It helps framing and organizing the designers’ message,
making it easier to identify gaps or confusing portions of that
message. SigniFYIng Message is the operational version of the
metacommunication template [4]. An evaluator can use the
SigniFYIng Message frame, showed in Fig. 4, to define
portions of designer-user message:

i. The developer’s beliefs about the user’s: profile,
goals, needs, preferences, and/or the logic of his
context;

ii. The developer’s intent and expectation with respect to
the systems: description, functionality, mode of use,
and/or logic of the system’s design; and

iii. The developer’s provisions and support for:
alternative modes/purposes of use that are compatible
with system's design.

52 SBC Journal on Interactive Systems, volume 8, number 2, 2017

ISSN: 2236-3297

Fig. 4. . Metacommunication Frame Form – SigniFYIng Message frame [4].

The metacommunication template is a known concept from
Semiotic Engineering and it has been used as part of the
Semiotic Inspection Method [3], [7], [8]. The operational
version of it, the SigniFYIng Message, proposes that it can
stand on its own as a powerful evaluation resource to identify
communicability issues.

We applied the SigniFYIng Message to frame a portion of
the PaaSE designer’s message and to expose this
environment’s particularities, with multiple designers
communicating with one user through “mediation” of the
PaaSE’s designer.

III. RELATED WORK
There is few previous research related to human-centered

aspects of PaaSE. The work presented in [9] discusses about
customer satisfaction measures by considering a user feedback
mechanism based on Interview and Questionnaire method,
which is the closest it gets to an HCI result. It also evaluates
performance by taking CPU utilization, memory usage and
disk seeking rate as essential parameters. Some previous
research was made regarding cloud interaction in general [10]
or about cloud systems evaluation all together, considering
issues that are transparent to PaaSE’s users like infrastructure,
for example [11], [12].

To the best of our knowledge, there is no proper HCI
evaluation of PaaSE that:

• Provides to the users the capability to deploy onto the
cloud infrastructure consumer-created or acquired
applications created using programming languages,
libraries, services, and tools supported by the provider;
and

• Provides resources so the user does not need to manage
or control the underlying cloud infrastructure including
network, servers, operating systems, or storage, but has
control over the deployed applications and possibly
configuration settings for the application-hosting
environment

The first point is an important one in our perspective, when
all the interaction between user and PaaSE’s interface happens:
when the user wants to build a new application, and uses the
PaaSE to achieve that goal. PaaSE’s designer needs to define
the boundaries between the message (s)he is responsible for
and the message from other designers (library APIs, RESTful
service endpoints, apps, etc.).

Collaborative systems research is a field where there are
multiple people communicating to achieve a goal. However,
for collaborative systems, there are multiple users, not multiple
designers, as our PaaSE scenario. Semiotic Engineering
methods were previously used to evaluate collaborative
systems and some results might be interesting for our
investigation. The need of discourse and coordination
awareness for collaborative systems, considering multiple
people communicating [13], could be applied to our scenario.
However, as aforementioned, PaaSE have one user and
multiple designers. We are particularly interested in the
discussion of following two concepts.

Discourse awareness: PaaSE’s designer needs to be aware
of the other designers’ (library APIs, service endpoints, and
other designers related to application DevOps) discourses and
make users aware of each discourse. Users must always be able
to identify to which designer (s)he is communicating while
interacting with the PaaSE.

Coordination awareness: PaaSE’s designer needs to
coordinate with other designers to define the boundaries of
information each one is going to communicate to users and
how. PaaSE should not be responsible for communicating all
information about library APIs, service endpoints, etc., but
there is a border that needs to be defined to avoid PaaSE’s
users to experience a communicability breakdown in
interaction time, which includes design, development and
deployment stages.

IV. SCENARIO
The following fictional scenario, based on true facts that

happened with experienced developers, illustrates how tricky
the communicability between PaaS designers and users
(application developers) of these systems can be.

John is a senior developer working as a manager at a
software company with an established portfolio on building
both web and stand-alone applications. One day, a client orders
the development of a new e-commerce website that should be
implemented in a scalable way. That is, it should initially meet
the demand of hundreds of costumers, but potentially serving
up to a “couple of thousands” of consumers simultaneously. In
addition, the client wants the system to support different data
analysis, such as consumer profiling and sales statistics.

Although John did not have experience with cloud
development before, he promptly realizes that this new project
could benefit from the much-advertised “elastic” hosting
scheme these systems offer. He also thinks this is an
opportunity to bring his company’s portfolio to another level.
John knows there are different cloud-based platforms available,
which are capable of rapidly allocating computational
resources depending on the actual access demand and

SBC Journal on Interactive Systems, volume 8, number 2, 2017 53

ISSN: 2236-3297

workload. Furthermore, some of these platforms provide off-
the-shelf services with analytic algorithms that support big data
exploration. He decides that it would be a clever idea to
prototype a sample application in one of the PaaS solutions
available in the market. Through this prototype, it would be
easier to talk about implementation possibilities and the client’s
requirements.

Along with his team, John initiates the development of the
prototype using tools provided by a well-known PaaS
corporation, named Developer Salad Bar (DSB). They start by
defining what services the prototype needs and initially identify
three building blocks it should have: an HTTP server
technology to host the e-commerce website, a database service
to store information about customers and products, and a
consumer behavior analysis service to support reasoning about
statistics and business trends. Luckily, all these services are
offered by the DSB platform. Furthermore, it provides ready-
for-use boilerplate code in a variety of programming
languages, to help users overcoming the initial learning curve
to deal with the platform specifics.

After logging in the DSB's website, John’s team were
presented with an administration interface showing a list of
several programming languages and execution environment
options that they could choose for their projects, as well as a
service collection they could use. Fig. 5 illustrates the interface
for project configuration offered to John’s team while using the
DSB platform.

Fig. 5. . DSB's administration interface.

DSB offers a broad range of services, including some based
on machine learning techniques, including computer vision and
data analytics algorithms. For each service available, there is an
associated documentation describing its features in detail. John
goes on to read the documentation provided by DSB and,
serendipitously, a specific feature in a data analytics service
calls his attention: a trend analysis component to support
exploring consumers’ personality and habits. By tracking
consumers’ interaction events and input data, the service can
estimate whether they are prone to acquire and experiment new
products, or they have a more conservative profile, preferring

to keep their habits and acquire the products they customarily
get. Fig. 6 depicts the webpage with the service’s primary
features.

Fig. 6. . Service description page in DSB.

John also learns from the DSB’s documentation that the
platform automatically configures the execution environment
based on user’s choice of programming language and services.
That is, after the application code is deployed, it performs a
transparent provisioning of resources and fetching procedures
to handle all software dependencies. These software
dependencies include the associated libraries that provide
access to selected services, in the programming language
defined by the user. In other words, the platform takes care of
the whole configuration process and application execution, in a
hassle-free approach.

DSB	PaaS

Node.js	app

MongoDB	access	
API

Analytics	service	
access	APIPrototype	

app	code

Scalable	
customer	base

deploy

Fig. 7. Sketch with prototype overview created by John and his team.

After a comprehensive meeting discussing technology
choices, John and his team define they will stick with software
tools they had previous experience. They opt to work with
JavaScript language on the server side, specifically with

54 SBC Journal on Interactive Systems, volume 8, number 2, 2017

ISSN: 2236-3297

Node.js runtime environment for the HTTP server. For the
database technology, the team chooses MongoDB, a NoSQL
database. They outline an overview of the prototype’s
architecture (Fig. 7), and get satisfied with the overall
simplicity of the project as a result of the various features
offered by the DSB platform.

Designers in the team start to create the website visual
identity, while database experts discuss how they will model
the database considering the client's business requirements.
After some work effort, the team manages to establish a
functional prototype with basic HTTP server and database
components. Therefore, they are ready to begin experiment
with some of the features provided by the platform.

John suggests the team should try out the consumer
analytics features he saw in DSB’s documentation. But to
everyone's surprise, after all the preparation on the prototype's
database and interface to receive and present results from the
trend analysis component, the specific calls to the features that
John saw in DSB's documentation are not present in the
provided Node.js library, which abstracts the access to the
analytics RESTful service endpoints.

John refers again to the documentation and indeed finds the
remote calls to the features he wants. But he realizes something
that had been overlooked. The link to the documentation
actually leads to an external service website. After clicking that
link (displayed in the DSB’s service page in Fig. 6), the user is
taken to the service’s developer specific documentation, as can
be seen in the browser’s address bar in Fig. 8.

Fig. 8. Service-specific external documentation.

Unsure what to do, John contacts the DSB’s support team
and describes the situation. They explain that the platform
offers service endpoints (in a RESTful scheme), which can be
abstracted by third-party libraries. In this case, there must be
some inconsistency between the features offered by the service
and the access to endpoints available from the service library.
Moreover, John is told that their execution and request
processing take place outside of DSB’s premises. That is,
remote calls from the final users’ front-end to these endpoints

are forwarded to exogenous systems that handle the requests
accordingly.

John and his team review their draft architecture
considering the information received from the platform support
team. Fig. 9 shows the platform details they were not aware
during the initial prototype development.

DSB	PaaS

Prototype	
app	code

Scalable	
customer	base

deploy Exogenous	
system

Analytic	services

Exogenous	
system

Database	service

Node.js	app

MongoDB	access	
API

Analytics	service	
access	API

Fig. 9. Prototype overview considering details received from DSB’s support
team.

There is a clear indirection regarding remote requests
coming from users on the Web to the platform services.
Requests or calls are received through libraries in the server
module and dispatched to the respective service
implementations, which may reside outside of the platform
premises. These exogenous systems are responsible for
processing requests and returning results of the performed
computing to the HTTP server in PaaS, which in turn may
return them to clients who originated the request.

After investing significant person-hours in the prototype,
John and his team are facing a tricky situation and need to
make a decision: They can either give up using their favored
programming language (JavaScript) and search for another one
which has a service library consistent with the latest features
offered by the service. Or, they can invest more effort in the
current setup, trying to work around the problem by extending
the library offered by the platform, or even rework it
completely from scratch. Either way, John and his team will
need to invest more time that they assumed they would have,
since the PaaS approach should have facilitated their
development, but ended up in this turmoil. If they had all the
information beforehand, they might have taken another way to
prototype the solution.

V. COMMUNICABILITY ANALYSIS
We performed a communicability analysis and discussion

with the participation of experts in Semiotic Engineering and
HCI, and experienced developers. First, a Semiotic
Engineering and HCI expert filled the SigniFYIng Message
frame (Fig. 4), considering the DSB’s interface that the user
selects the programming language and the services that (s)he
wants to combine in his/her application (Fig. 5):

i. The developer’s beliefs about the users:

 You are a developer who needs to combine languages
with services, APIs and APPs to build applications...

SBC Journal on Interactive Systems, volume 8, number 2, 2017 55

ISSN: 2236-3297

ii. The developer’s intent and expectation with
respect to the system:

Therefore, here you can choose ANY LANGUAGE
and combine it with ANY SERVICES, APIs or APPs
that you wish…

iii. The developer’s provisions and support for:

…to build your new application for which I will
automatically configure the execution environment
based on your choices of programming language and
services.

In Fig. 6, the service’s documentation does not contradict
the metacommunication message, so the user thinks (s)he is ok
to go with his/her choices of programming language and
service to build his/her new application.

Once the development advances, John and his team realize
that they cannot easily use the service they needed (consumer
behavior analysis service) with the language they wanted
(JavaScript). John goes back into the service documentation
page (Fig. 6) and notices a link to the service’s provider
documentation (Fig. 8), outside DSB’s domains. At this point,
John gave up and went to look for helpdesk assistance, but the
service’s provider documentation page would surprise him as
well by contradicting the DSB’s interface, once it informs the
user that the service only works with PHP and Python, not
JavaScript (Fig. 10).

Fig. 10. Service 1 - Getting started page.

Considering the portion of interaction that ended in Fig. 10,
we identified a contradiction between the message sent by the
DSB’s designer, presented in the first SigniFYIng Message
frame and the message sent by the service provider’s designer
in his “Getting started” page:

i. The developer’s beliefs about the users:

 You are a developer who needs to combine languages
with services, APIs and APPs to build applications…

ii. The developer’s intent and expectation with
respect to the system:

However, I ONLY PROVIDE DIRECT
COMBINATION WITH PHP AND PYTHON…

iii. The developer’s provisions and support for:

Therefore, to build your new application with my
service you need to know PHP or PYTHON, otherwise
you are on your own.

The absence of that crucial information in the DSB’s
interface (programming languages that a service is ready to be
combined) misled John on to think that there was no restriction
regarding programming languages for the service he wanted to
use in his application. Therefore, he and his team went over
with their plans to build the application with the service they
needed. When they found out that they could not use the
service with the language they were using to program the new
application, some rework would be necessary no matter the
decision on that point, and they would spend more time and
money to adjust to the new scenario. The facilities that the
PaaSE offered at first could be evaluated if they knew about the
programming language limitation of that service.

Regarding the expected calls not provided in the Node.js
library, there is an inconsistency of information between the
DSB's documentation and the provided Node.js library. John
went to the documentation and indeed found the calls to the
features he wanted. However, the reference to an external site
(the service’s provider documentation site) made him doubt the
PaaSE designer’s message learned in the documentation (Fig.
6). Therefore, he looked for the information outside the
interaction space, calling the DSB’s support team.

i. The developer’s beliefs about the users:

 You are a developer who needs calls to a specific
feature of a service.

ii. The developer’s intent and expectation with
respect to the system:

Here are the remote calls to the features you want …

iii. The developer’s provisions and support for:

…so, you can integrate with your new application.

However, when John went over the Node.js library that
abstracts the service endpoints, he did not find the call that he
was expecting to find. In this library, we frame the message
from its designer to users (developers). In that message, the
user did not find the remote call to the features he was
expecting. The DSB’s support team explained to John that the
platform offers service endpoints (in a RESTful scheme),
which can be abstracted by third-party libraries. However, he
did not anticipate having to deal with this kind of things; he
expected that DSB would do that for him.

The SigniFYIng Message frames filled above are messages
from different designers: PaaSE’s designer and service’s
designer. The user gets lost on that communication. The
PaaSE’s designer do not inform the user his/her “boundaries of
communication” during interaction. The user is sent to another
website (the service’s provider documentation website) without
further notice, which in this case caused communication
breakdowns in the interaction for PaaSE’s users (Fig. 11).

56 SBC Journal on Interactive Systems, volume 8, number 2, 2017

ISSN: 2236-3297

It is important to stress that, considering calls to service’s
endpoints, there is an inconsistency problem, which also leads
to communication breakdowns. PaaSE’s designer says one
thing, but the service’s designer says another thing and
misleads users. In the scenario where John contacts the DSB’s
support team, there are even more evidences that PaaSE’s
behavior might be too “transparent” to users. Maybe users need
to choose how “in the dark” they want to be about their
application implementation details.

Fig. 11. Not so happy PaaSE user.

The PaaSE show some information about the service (Fig.
6), but the programming languages and the libraries that
abstract the endpoints of services are not part of that set of
information. This communicability analysis indicated how
crucial this information is and needs to be part of the
communication between PaaSE’s designer and his/her users
(developers) about services in advance.

In our communicability analysis, we did not perform a
complete evaluation of DSB, so there is no distinction among
types of signs or complete filled metacommunication templates
or comparisons, as expected in a detailed semiotic inspection
[3], [7]. We applied SigniFYIng Message to frame the
metacommunication message of different designers of a PaaS
environment to show how it can be unclear to its users.

Our analysis shows evidences that PaaSE’s designer needs
to be aware of the other designers’ discourses (present in
library APIs, service endpoints, and other designers related to
application DevOps) and make the user aware of each
discourse. The user must always know to which designer (s)he
is communicating with, while interacting with PaaSE
(Discourse awareness). In addition, PaaSE’s designer needs to
coordinate with other designers to define the boundaries of
information each one is going to communicate to users and
how this communication would happen. PaaSE’s designer
should not be responsible for communicating all information
about libraries, services, etc., but there is a border that needs to
be defined to avoid users to experience communicability
breakdowns (Coordination awareness).

VI. PAASE SOLUTIONS IN PRACTICE
There are many PaaS solutions available today, each one

applying different strategies for communicating their intended

use and development abstractions, i.e. execution platforms,
available services and libraries. In this sense, we discuss and
reflect about general communicability aspects of three
representative platforms that are currently widely used:
Amazon Elastic Beanstalk, Microsoft Azure, and IBM
Bluemix. The inspection described in this section is by no
means exhaustive, but rather, it illustrates some difficulties and
communicative problems that developers commonly face when
using PaaSE and its many features, even with all the facilities
these solutions provide. The three inspected platforms offer a
substantial number (see Table 1, at the end of this section) of
features. To demonstrate the developers’ experience of
selecting services and runtime environments for their
applications, we conducted a brief inspection to explore how
these PaaSE classify and present their features to users. Table 1
summarizes the categories and total number of services and
runtime environments available in each one. The runtime
environments supported by the three platforms are mostly
similar, with some exceptions. All of them support software
development in a common subset of languages such as Python,
Java, PHP, JavaScript (through Node.js), and Ruby.

Currently, Amazon Elastic Beanstalk offers a total of 105
services distributed in 19 categories. The platform
documentation8 states that applications can integrate any of the
offered AWS services, which are not managed in the user’s
environment provided by Elastic Beanstalk. The architecture
overview suggests that applications and services typically work
across multiple “availability zones”. It does not specify
whether there is any service hosted on third-party
infrastructure. Fig. 12 shows the dashboard listing the diverse
services available for developers using the platform.
Screenshots of the analyzed platforms in this section were
anonymized to avoid publication issues with registered
trademarks and logos.

Fig. 12. Amazon Elastic Beanstalk dashboard with a listing of available
services.

8 http://docs.aws.amazon.com/elasticbeanstalk/

SBC Journal on Interactive Systems, volume 8, number 2, 2017 57

ISSN: 2236-3297

Fig. 13. Provided SDKs to use AWS services in all supported runtime
environments.

Considering software development artifacts, PaaSE usually
provide APIs in the form of libraries or software development
kits (SDKs) to facilitate access to their services. Fig. 13 shows
the options offered by Amazon Elastic Beanstalk for its
supported runtimes. For each of the available programming
languages and platforms there are links to release packages,
documentation with API references and GitHub repositories
with source code maintained by open-source communities.

Fig. 14. List of supported AWS services (and specific API version) of the
provided Node.js SDK.

Each of the provided SDKs has specificities on how to
communicate the supported services and their API versions to
developers. The supported services may vary as well. For
instance, the Node.js SDK shows a list9 of exactly 100
supported services (specified in a SERVICES.md file in its

9 https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md

current master repository, see Fig. 14), while the Java SDK
sums up 88 services (as per its release notes10 in version
1.11.82).

Microsoft Azure offers a total of 101 services across 11
product categories (cf. Table 1). These services are developed
by Microsoft itself. Unlike Elastic Beanstalk, the Microsoft
solution offers numerous third-party services. The developers
and maintainers of offered services are clearly listed in a
dashboard area called Marketplace (see Fig. 15).

Fig. 15. Microsoft Azure dashboard with a listing of available services and
other products.

Microsoft’s approach is to make developers’ experience of
composing services and using platform features into something
analogous to choosing and buying software products from an
app store. This facilitates third-party developers (or publishers
in Azure terms) making their services promptly available,
increasing the product offer on the platform. Which on the one
hand is good, given that the solution today lists approximately
600 products available11. On the other hand, makes attaining a
communicative cohesion among the various designers and
consumers of artifacts of the platform even more complex.

Fig. 16 shows the SDK listing for accessing Microsoft’s
services, which are made available through repositories in
GitHub under open-source license. Each community manages
the service SDK lifecycle in its own way. Taking the Node.js
SDK repository for reference again, its README.md file
(which serves as the GitHub repository webpage) states the
following (see highlighted text in Fig. 17): “Note: we have not
provided fine-grained modules for every supported Microsoft
Azure services yet. This will come soon. If there is a module
that you find is missing, open an issue so that we can prioritize
it in the backlog”. Certainly, the current implementation covers
most of the platform services. Nevertheless, this could be a
potential source of a communication mismatch, since this
information is not explicitly available on the PaaSE’s page.

10 https://aws.amazon.com/releasenotes/Java/6001466639362819

11 https://azure.microsoft.com/en-us/services/

58 SBC Journal on Interactive Systems, volume 8, number 2, 2017

ISSN: 2236-3297

Fig. 16. Provided SDKs to use Microsoft Azure services in supported runtime
environments..

IBM Bluemix currently has 119 services in 11 distinct
categories, of which 44 are developed and maintained by third
parties. Fig. 18 shows part of its catalog listing, where tags are
used to highlight whether artifacts such as services, boilerplates
for apps and runtime environments are maintained by third-
party enterprises and open-source communities.

Fig. 17. Source-code repository for Node.js SDK with a note stating that some
services may be missing.

Differently from the other two discussed solutions, the
Bluemix platform does not aim at providing a single SDK that
incorporates facilities for accessing all services. Instead, there
is a different approach depending on the specific feature. For
instance, the platform offers different SDKs to for using
Internet of Things and Watson services. In another specific
case, for accessing the Cloudant NoSQL storage service, IBM
provides a specific library rather than an SDK with support for
multiple storage services.

Fig. 18. IBM Bluemix services listing, with tags identifying third party,
community and IBM maintained components.

Fig. 19 shows the listing of Watson SDKs for the different
supported runtime environments, specifically for handling calls
to Watson services. In this specific listing, there is the
following observation: “Some services are not available with
all SDKs, and some services support additional SDKs. See the
documentation for the service you want to work with for more
information”. This again points to a potential breakdown in
communication that developers (users) may come across.

Fig. 19. IBM Bluemix provides separated SDKs for groups of offered
services, such as for Watson APIs.

In general terms, all three solutions consistently organize
their offered features, grouping them by similarity and use
scenarios. They also provide reasonably adequate
documentation. However, the resulting combination from
choosing among runtime environments, programming
languages, libraries, and desired services is not always smooth
and guaranteed as developers may think.

SBC Journal on Interactive Systems, volume 8, number 2, 2017 59

ISSN: 2236-3297

TABLE I. OVERVIEW OF THE INSPECTED PAAS SOLUTIONS

PaaS

environment
Category Services

Runtime

environments

Amazon
Elastic

Beanstalk

Compute 10

Java, PHP,
.NET,

Node.js,
Python, C++,

Go,
Objective-C,

and Ruby

Storage 8
Database 7
Migration 6

Networking
& Content
Delivery

5

Developer
Tools 7

Management
Tools 12

Artificial
Intelligence 4

Analytics 9
Security,

Identity &
Compliance

11

Mobile
Services 6

Application
Services 4

Messaging 4
Business

Productivity 3

Desktop &
App

Streaming
2

Software 1
Internet of

Things 3

Contact
Center 1

Game
Development 2

Microsoft
Azure

Compute 10

.NET, Java,
Python, PHP,
Ruby, Node.js

Networking 9
Storage 9
Web +
Mobile 13

Databases 6
Intelligence
+ Analytics 26

Internet of
Things 4

Enterprise
Integration 2

Security +
Identity 6

Developers
Tools 4

Monitoring +
Management 12

IBM
Bluemix

Data &
Analytics 35

Liberty for
Java, SDK for

Node.js,
ASP.NET

Core,
Runtime for

Swift,
Xpages, Go,
PHP, Python,
Ruby, Java

Tomcat

Watson 13
Internet of

Things 11

API

Management 1

Network 1
Storage 1
Security 7
DevOps 15

Application
Services 30

Integrate 5

Finally, the observed scenario of ever increasing number of
available features, services, and tools, envisions a challenging
setting in terms of effective communication between the
various PaaSE interlocutors. Finding certain information in the
existing data deluge can be a nontrivial task.

VII. FINAL REMARKS
In this paper, we discuss how existing metacommunication

processes in PaaS application development could be better
understood and improved, through the communicability
perspective provided by the Semiotic Engineering’s theory.
The PaaS abstraction model naturally entails the involvement
of different designers and users through different software and
knowledge artifacts, which makes it an interesting object of
study.

A first contribution of this paper is to identify opportunities
for improving communicability on PaaSE (more highlighted
information about the relation of programming
languages/libraries), which could have prevented a lot of
unnecessary work from John and his team. This is an example
of how the SigniFYIng Message tool could be applied to
pinpoint communicability breakdowns. Semiotic Engineering
has more resources to help on that matter, including other tools
from the SigniFYI (Signs for Your Interpretation) suite [4].

A second contribution that is worth mentioning is bringing
collaborative aspects of communication to the PaaS
environment (e.g. “user ßà platform designer”, “user ßà
service designer”, “platform designer ßà service designer”,
and “user ßà library designer” relations). This inspired us to
apply concepts from Collaborative Systems [13], such as
discourse awareness and coordination awareness. We believe
that these concepts can guide further investigations in PaaSE
communicability analyses.

A third contribution of this work is to bring a
multidisciplinary perspective to the semiotic inspection
context. Indeed, our findings are a result of discussions and
reflections by a group of Semiotic Engineering experts and
experienced developers. With a multidisciplinary team, we
were able to discuss communicability issues in a deeper level
when compared to traditional HCI approaches. The discussed

60 SBC Journal on Interactive Systems, volume 8, number 2, 2017

ISSN: 2236-3297

scenario was based on true facts experienced by developers
with theoretical and practice expertise. They found a
workaround solution for the PaaSE communicability issue. But
how about other developers? Would they be able to find their
way around it? We believe PaaSE designers should help them
to fulfill their goals of developing an application in a facilitated
way by consistently communicating their intents over platform
features and how to use them.

A final contribution of this work is the reflection over
communicability issues on three representative solutions
available in the market. Through a succinct analysis it was
possible to identify breakdowns in the communicability of such
platforms, confirming that the analysis performed on the
fictional story is observed in practice as well. A survey on the
services offered by these solutions illustrates the substantial
number of features, and hence the complexity involved in the
process of modeling and defining system requirements
developed on top of the three platforms.

PaaSE’s main goal is to offer abstractions for application
programming in the cloud. However, the greater the volume of
offered resources, the greater is the number of actors
participating in the design and use of such resources, making
communication among them more complex. As seen in the
brief overview of widely used solutions, the combination of
offered features may not be as seamless as the PaaSE
designers’ message may appear to users. From the designers’
point of view, one simplistic way to mitigate communicability
issues would be not to offer abstractions for using platform
services in the supported runtime environments, making
catalogs of services and libraries external to PaaSE. Obviously,
this clearly contrasts with PaaSE’s inherent purposes. Another
way of handling such issues would be for PaaSEs not to
present any catalog of services before users select their desired
runtime environment. In this case, only the services actually
supported in that specific programming language and runtime
would be presented. Note, however, it would be necessary to
specify mechanisms for matching services offered by the
PaaSEs and their support by the existing libraries. Not to
mention the marketing issues that this alternative would entail,
since the offered services would not be presented beforehand.
Finally, a further alternative to address communicability
problems when integrating new services to a specific PaaSE is
to require a clear message from their designers about which
service abstractions are offered for each runtime environment.
Thus, avoiding communicability breakdowns, and most
important, frustration from PaaSEs users.

We believe that by shedding light on some of the problems
discussed in this work, we contribute to a more comprehensive
assessment of communicability issues in the context of
software development processes in PaaSE. In this sense, we
hope to incrementally contribute to a better interpretation of
human-centered aspects that are closely related to Software
Engineering in these environments.

We envision a complete communicability evaluation on an
actual application developed on top of a PaaS environment as a
future work. In addition, addressing the identification and
inspection of designer-user metacommunication throughout the
processes of design, development and application deployment
in PaaSE. We also intend to further explore the SigniFYI
methodological toolset [4], to assist us uncovering meanings
inscribed in software artifacts in such environments. With this
suite, we could investigate metacommunication and their
perceived effects in a holistic approach, observing its
propagation during the software development stages in PaaSE.
One of the components in the suite is particularly interesting to
deepen the investigation on the case presented in this paper, the
SigniFYIng APIs component. This tool provides artifacts and
procedures that support an in-depth reflection about the
communicability of APIs.

Finally, we intend to further explore concepts from
Collaborative Systems (discourse awareness and coordination
awareness) to assess if they could help us by framing the
communicability breakdowns in a collaborative setting.

REFERENCES

[1] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break
in the clouds: towards a cloud definition,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 1, p. 50, Dec. 2008.

[2] M. Kavis, Architecting the cloud: design decisions for cloud computing
service models (SaaS, PaaS, and IaaS). Hoboken, New Jersey: Wiley,
2014.

[3] R. O. Prates, C. de Souza, and P. Assis, “Categorizing communicability
evaluation breakdowns in groupware applications,” CHI-SA 2001, 2001.

[4] G. Lawton, “Developing Software Online With Platform-as-a-Service
Technology,” Computer, vol. 41, no. 6, pp. 13–15, Jun. 2008.

[5] J. P. D. Preti and L. V. L. Filgueiras, “Interação em nuvens,” in
Proceedings of the IX Symposium on Human Factors in Computing
Systems, 2010, pp. 209–212.

[6] S. Kolb, “Making Platform as a Service offerings comparable –
Ecosystem profiles for portability matching.” [Online]. Available:
https://PaaSfinder.org. [Accessed: 08-Aug-2016].

[7] C. S. de Souza and C. F. Leitão, “Semiotic Engineering Methods for
Scientific Research in HCI,” Synthesis Lectures on Human-Centered
Informatics, vol. 2, no. 1, pp. 1–122, Jan. 2009.

[8] C. S. de Souza, R. de G. Cerqueira, L. M. Afonso, R. R. de M. Brandão,
and J. S. J. Ferreira, Software Developers as Users. Cham: Springer
International Publishing, 2016.

[9] P. Mell and T. Grance, “The NIST definition of cloud computing,”
2011.

[10] C. S. de Souza, The semiotic engineering of human-computer
interaction. Cambridge, Mass: MIT Press, 2005.

[11] C. S. de Souza, C. F. Leitão, R. O. Prates, and E. J. da Silva, “The
semiotic inspection method,” 2006, p. 148.

[12] W. Y. Chang, H. Abu-Amara, and J. F. Sanford, Transforming
Enterprise Cloud Services. Dordrecht: Springer Netherlands, 2010.

[13] S. Roy, B. Chakraborti, P. K. Pattnaik, and R. Mall, “Usability
evaluation of some popular PaaS providers in cloud computing
environment,” Journal of Theoretical and Applied Information
Technology, vol. 80, no. 2, p. 315, 2015.

SBC Journal on Interactive Systems, volume 8, number 2, 2017 61

ISSN: 2236-3297

