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Abstract— This paper proposes using a wearable device for
visualization and control in association with an Unmanned Aerial
Vehicle applied to structural inspection of buildings. More
specifically, an AR.Drone is controlled through head positions
and gestures performed by an operator wearing a Google Glass,
and images captured by the drone are visualized on Glass’s
screen. We discuss problems that arise when such a solution is
developed, along with limitations that come from today's
available technology and how to overcome them.
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L INTRODUCTION

Structural inspection intends to evaluate the condition of
the evident foundation performance, roof, and structure of the
building in order to provide information related to their
condition and an opinion as to whether they are in need of
repair [1][2][3]. Data obtained will provide insight into the
overall condition of the property and information that will
assist in maintaining it in the best possible condition during
future years. The scope of this inspection includes visual
observations of those portions of the foundation, roof and
structural components readily visible without moving or
removing items causing visual obstruction.

Inspections to some areas of the structure may be limited
by safety or site conditions, with most common limitations
related to direct access at roof or entry to crawlspace. In order
to alleviate such inherent difficulties, teleoperation-based
solutions could be applied. According to [4], teleoperator
devices enable human operators to remotely perform
mechanical actions that usually are performed by human arm
and hand. In the context of this work, it replaces human vision
capability and mobility. Thus, teleoperators, or the act of
teleoperation, extends human capabilities to remote, physically
hostile, or dangerous environments. Compared to
telecommunication, teleoperation conquers space barriers in
performing manipulative mechanical actions at remote sites,
while the former conquers space barriers in transmitting
information to distant places.

This work proposes using a wearable device for
visualization and control in association with an Unmanned
Aerial Vehicle (UAV) [5] [6] applied to structural inspection of
buildings. We discuss problems that arise when such a solution
is developed, along with limitations that come from today's
available technology and how to overcome most of them.
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Vision, hearing and touch senses are relatively easy to
transmit but smell and taste are more complicated. Fortunately,
these two senses are less used machine teleoperation. The
proposed teleoperation application presented in this work
focuses on the first sense listed, which is user vision.

The main advantage of using such a wearable device to
teleoperate an UAV is the naturalness of interaction between
human and device. For example, to directly use head
movements to control UAV direction seems to be more
intuitive for most users. Another hypothesis is the flexibility
that it provides to the user regarding his/her mobility, as it is
possible to walk along the construction area while seeing
UAV’s view. Such assumptions will be detailed on next
sections.

The rest of this paper is organized as follows. Section 2
presents related works regarding teleoperation in different
scenarios, problems inherent to each of them and how they
have been solved. Section 3 provides details regarding
hardware infrastructure used in this work, the reason for
choosing specific devices and how to use them. The project
development is explained in section 4. This section includes
aspects taken into consideration while designing the structural
inspection activity by a teleoperator device and how interaction
was mapped between operator/wearable device and UAV.
Section 5 lists achieved results and proposes adaptations about
how to extend the current solution in order to enable a broader
set of scenarios. Finally, section 6 draws some conclusions and
proposes future applications for methods and ideas developed
herein.

II.  RELATED WORK

Some researchers consider the genesis of teleoperation as
being the creation of Polygraph, famously used by Thomas
Jefferson, in 1805 [7]. Such device was capable of producing a
copy of a piece of writing simultaneously with the creation of
the original, using pens and ink, as shown in Fig. 1. By
typically using a pantograph mechanism, a four-bar linkage
with parallel bars enabled motion at one point to be reproduced
at another point.

At the year of 1948, Ray Goertz, from the US Atomic
Energy Commission, created the first Master-Slave
manipulator [12]. His goal was to protect workers from
radiation, while enabling precise manipulation of materials.
The terms "slave" and "master" were used for the first time,
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representing a device responsive to another and the controlling
device, respectively. Since then, teleoperator devices evolved
from mechanical linkages and cables, to electrical and
hydraulic servomechanisms with force/haptic feedback and
wireless remote control.

Nowadays, many areas benefit from teleoperation: space
exploration [13], military/defensive applications [14],
surveillance [15], underwater vehicles [17], telerobotics in
forestry and mining applications [19][20], telesurgery and
telepresence robots [21].

Fig. 1. Genesis of teleoperation: Polygraph [7].

Space is a very appropriate environment for teleoperation
applications. Physical presence of a human to operate a vehicle
in space requires many resources (Moon/Mars exploration) or
is totally impossible (Sun exploration). Therefore, it is more
efficient to use teleoperated vehicles [8]. Fig. 2 illustrates
Robonaut [13], which is an additional control method, beyond
ground control, that involves Robonaut mimicking
crewmember motions via gloves, a vest and a 3D visor.

Fig. 2. Robonaut Tele-operations System [13].
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As happens with space exploration, military applications
include recon missions. Gathering information about an enemy
or unknown landscape is a very common task for a military
operation. In this scenario, individuals with higher spatial
ability usually perform better while teleoperating robots than
those with lower spatial ability. Fig. 3 illustrates Predator [14],
an UAV originally developed by US Air Force for
reconnaissance and forward observation roles, carrying

cameras and other sensors. Later, it was modified and upgraded
to carry and fire two AGM-114 Hellfire missiles or other
munitions.

Fig. 3. Predator MQ-1 (top) and its teleoperator (bottom) [14].

Similar to military operations, security field presents some
teleoperation systems. Due to increased number of terrorist
actions, most police departments have created bomb squads for
deactivating bombs. An example of teleoperation related to
surveillance is the Rotundus robot [15]. It is a spherical robot
without external feet or wheels which moves through the
balance of a weight inside the sphere. It has two surveillance
cameras behind shielded glass areas and can reach speeds of up
to 70km/h. Another example, the Secom [16], a robot produced
for Tokyo police department, can be used for surveillance and
for stopping a person by spraying a cloud of gas. Both robots
are illustrated in Fig. 4.
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Underwater operations were one of the first mobile
applications where teleoperation techniques were adopted. This
class of ROVs (Remotely Operated Vehicles) represents the
largest commercial market for mobile vehicle teleoperation,
especially due to ultra deep water exploration for gas industry.
Fig. 5 illustrates a robot for exploring the sea and another one
dedicated to repairing underwater gas extraction machinery,
capable of reaching a maximum depth of 2,000 meters.

iy

Fig. 5. Underwater teleoperated robots: Victor 6000 [17] (top) and H2000
[18] (bottom).

Using heavy equipment in forestry and mining and hazards
of falling trees, rough terrain and caving in mine galleries have
imposed the use of teleoperated robots. In this field of
application, teleoperated robots can be classified into three
different categories: excavating machines, exploration robots
and rescue robots. Fig. 6 illustrates some robots used in
forestry/mining context.
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Fig. 4. Surveillance robots: Rotundus [15] (top) and Secom [16] (bottom).

Fig. 6. Forestry/mining robots: Centauroid Robot Work Partner [19] (top) and
Groundhogbot [20] (bottom).

Another well-known example of teleoperation is in medical
field. Technology has revolutionized surgery practices with the
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creation of robotic devices and complex imaging. This enabled
much less invasive operations, but still requires surgeons to
control machines. Precision that comes from teleoperated
robots for surgery makes more homogeneous results, since
both experienced and less-experienced surgeons tend to deal
with the controller, and not directly with the patient. Fig. 7
illustrates a teleoperation system used for telesurgery.

Fig. 7. Da Vinci Surgical System [21].

The concept of telepresence means that operator feels like
he/she is present at teleoperator site. Already the simple
camera-monitor combination creates some level of presence,
but usually a more sophisticated system is used in order to call
it telepresence. Typical ways to create telepresence are cameras
that follow operator’s head movements, stereovision, sound
feedback, force feedback and tactile sensing. To provide
perfect telepresence, all human senses should be transmitted
from teleoperator to operator site [8].

In [9], authors highlight benefits of controlling teleoperated
devices, such as UAVs, inspired by types of interaction
humans have with birds, specifically falconeering. Such
approach make interacion and control far more natural. Flying
Head [10] is an UAV control mechanism which syncronizes
human head and robot motions. Similar to what we propose in
our work, they map user’s head movements into robot actions.
In order to visualize the drone’s view, a Sony HMD is used.

A. Data Processing

Not in all scenarios is possible to interact in a
straightforward  manner using telepresence.  Some
environments are naturally hard to perceive, like ones with
low or non existing light (caves, ocean bottom, outdoor at
night), bad weather conditions (raining, snowing, cloudy,
misty), among others.

To solve the perception problem, some telepresence
systems are built using specific sensors based on their
purpose. Predator MQ-1, for example, is also equipped with
an infrared camera (used in low light/night conditions) (Fig.
8).

Although costs of more sophisticated equipment are
getting more accessible nowadays, they are still prohibitive
for development of low cost solutions, and even using high
quality sensors, there are some issues that teleoperators have
to face, like points-of-interest identification, for example.
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In order to overcome these difficulties, some researchers
are using data processing techniques, like Computer Vision
and Augmented Reality, for solving most varied problems in
their teleoperation solutions.

Fig. 8. Predator’s Night vision camera.

Rapid Imaging Software Inc., with collaboration of US
Air force, developed SmartCam3D (SCS) [32], an
Augmented Reality system that assists teleoperator to identify
points-of-interest (such as specific landmarks, vehicles
present in UAV area, land points, among others) (Fig. 9).

Fig. 9. SCS system identifying three points-of-interest.

Other areas than military can benefit from using data
processing techniques. FIyAR [33] is an AR interface for live
flight supervision and creating flight paths of a MAV (Micro
Aerial Veheicles) (Fig. 10 and Fig. 11). Developed for
assisting teleoperator in tasks like aerial reconstructions of
buildings, FlyAR is useful to avoid possible obstacles present
in environment and help to achieve desired positions for best
image capture.
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Fig. 11. FlyAR flight path up visualization.

With a similar purpose, the work described by [34] defines
a teleoperation AR system using an UAV and a set of sensors,
such as thermal and color cameras, temperature, humidity,
dust and CO sensors, for helping teleoperator in internal and
external building inspection (Fig. 12).
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Fig. 12. Teleoperation system presented in [34].
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[35] focus in using teleoperation systems in civil engineer
scenarios as well. This work presents an ongoing study using
an UAV equipped with a high resolution camera with
stabilization control, a laser range finder and a set of radio

frequency transmitters (Fig.

13). The interface used by

teleoperator is heterogeneous: computers, tablets, smartphones
or pilot controlling can be used (Fig. 14).

Image Trasmitter

Fig. 13. UAV used by [35].

Computer view

Smart phone view

Tablet view

Gimbal

Fig. 14. Teleoperator interface proposed by [35].
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The use of data processing techniques can be useful in
locomotion assist in indoor scenarios, a difficult task if there
are a significant number of objects obstructing ROV’s path. In
[36] it is presented an augmented free-viewpoint teleoperation
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system interface. The approach proposed uses a robot
equipped with an omnidirectional color camera and four depth
sensors arranged around the robot. The teleoperador controls
the robot using an HMD with head tracking and a joystick.
Images received from robot and commands sent to it are
intermediated by a server workstation. Augmented

information is processed by server and is sent to teleoperator
alongside images (Fig. 15 and Fig. 16).

Fig. 15. Depth images (left) captured using the system proposed by [36].

Fig. 16. Omnidirectional images captured using the system proposed by [36].

B. Aerial and other Remotely Controlled UAVs

[39] proposed a solution for three-dimensional
localization, mapping and characterization of a tunnel
environment. Aspects such as mobility, perception and
localization are deeply explored. [40] proposed a hierarchical
passive teleoperation control architecture that enables
achieving better precision and overal task performance while
controlling aerial robots. [41] proposed an intuitive
multimodal haptic interface for teleoperation of aerial robots.
This enables interconnecting multiple input devices, using
standard interconnection rules in bond graphs. [42] proposed
a system aimed at providing users with improved perception
of the robot's remote environment.
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III. HARDWARE INFRASTRUCTURE

Most drone applications in civil engineering focus on land
surveying. In other words, an UAV flies over construction site
and gives general information about current state of entire
construction. From high-resolution images captured, it is also
possible to construct digital elevation models to improve
decision making by engineers.

In order to construct a similar system to be used for
structural inspection, two main devices, common to all
teleoperation applications, are needed: an operator and a
teleoperator. The operator device, which is human-controlled,
in this work was chosen to be the Google Glass [22], due to its
compactness and naturalness of interation. As teleoperator
device, Parrot’s AR.Drone [23] was chosen, since it has been
on the market for a while and there are a lot of different
applications already developed for this device.

Troche [11] maps head movements captured using Glass to
remotely operate a drone. To the best of authors knowledge,
there is no work that maps Glass gestures to drone commands
and also access drone camera images directly on Google Glass,
enabling telepresence through vision. Our work combines
different technologies to make it possible.

Data exchange between glass and drone requires wireless
network communication. Since AR.Drone creates a local
wireless network to which controller devices can connect, we
decided to use it as communication channel. In fact, when
constructing a network architecture for such teleoperation
application, two possibilities come to mind, as shown in Fig. &:
directly connecting both glass and drone, or using a PC as
bridge between these devices. For simplicity reasons, we
adopted the second approach, because we were not able to find
any working SDK capable of directly providing control and
image information exchange between glass and drone.
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Fig. 17. Two alternatives for connecting Google Glass and AR.Drone: direct-
connection (top) and through an intermediate PC (bottom).
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The PC (laptop) used along with glass and drone in our
tests had the following configuration: Intel Core 17-3720QM
2.6GHz CPU, 16GB of RAM, 512GB SSD HD, NVIDIA
GeForce GTX 680M, running Windows 8.1 Professional.

Both AR.Drone and Google Glass will be explained in
detail, and which specific features of them where used in the
proposed application.

A. AR .Drone

An UAV is defined as an uninhabited motorized vehicle
that can be controlled by a remote control, semi-autonomous,
autonomous, or a combination of the above capabilities. It can
be used for military purposes, to solve specific tasks like traffic
surveillance, meteorological surveillance, carrying specific
payload, solving tasks where presence of a human pilot can be
unhealthy or dangerous or for general purposes such as taking
a picture from a certain height from the earth or observing a
target from another point of view. As compared to a manned
aerial vehicle, this one has some advantages like: reduced cost,
longer endurance and less risk to the crew [6]. The UAV used
in this work is the Parrot AR.Drone 2.0, and its components are
illustrated in Fig. 9.

Fig. 18. AR.Drone 2.0 components (http://ardrone2.parrot.com/).

AR.Drone 2.0 includes two new hardware sensors
compared to its previous 1.0 version: a 3 axes magnetometer,
and a pressure sensor. This magnetometer is mandatory for
Absolute Control feature, which follows the direction in which
the controller is tilted. The pressure sensor allows AR.Drone
2.0 to know its height regardless of the ultrasound performance
(after 6 meters, ultrasound cannot measure height). It also has
other sensors, such as navigation boards.

AR.Drone 2.0 uses an HD (720p - 30fps) front facing
camera. This camera can be configured to stream both 360p
(640x360) or 720p (1280x720) images. AR.Drone 2.0 bottom
facing camera is a QVGA (320x240 - 60fps) camera. This
camera pictures will be upscaled to 360p or 720p for video
streaming. AR.Drone 2.0 has a master USB port, with a

standard USB-A connector. This USB port is currently used for
USB key video recording.

In order to develop an application capable of remotely
controlling AR.Drone, one of the available SDKs must be
used. There are different options, which mainly vary on
features, programming language and platform. Table 1
compares some of the drone SDKs found in literature.

TABLE L COMPARISON BETWEEN SOME AR.DRONE SDKS.
SDK Language Features
CVDrone C/C++ e Integrates drone operation and OpenCV
[24] e Allows full control and image access
from both cameras
Javadrone Java e Allows full control

[25] e Runs on multiple platforms
o Has version compatibility problems

ARDrone.Net | C# o Allows full control and image access

[26] from both cameras

YADrone Java o Allows full control

[27] e Image access does not work on Android
platforms

EasyDrone Java e Provides easier movement commands

[28] and complex behaviours such as face
detection/face  following and tag

recognition

CVDrone was chosen in this project because of its
integration with OpenCV [29]. This way, once an image was
received from drone, it could be encoded and transmitted to
Glass.

B. Google Glass

Google’s most recent gadget, Glass [38], works as a 50g
Android-based wearable computer. As shown in Fig. 10, it is
similar to an eyewear, but with advantages of having
embedded processing power and also input and output
peripherals, all in same package.

Fig. 19. Google Glass components (http://www.brille-kaufen.org). Touchpad
is located outside CPU’s enclosure.

For the proposed teleoperation application, the following
components are used:

Prism (output): to display content captured by drone;

e Gyroscope (input): for controlling drone rotation in a
natural way;

o Touchpad (input): for
commands;

e Wireless connection (Wiki): for data exchange between
Glass and Drone.

controlling other drone
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Tests performed by authors showed that Glass battery has a
maximum lifetime of one hour, when used in full load
situations (recording a 720p resolution video or running
computer vision algoritms). Therefore, Google Glass was not
meant to be an active device. It was originally conceived to
give punctual information (notifications) to user. Working that
way, its battery can last a day or more.

The touchpad (located on the external part of the CPU case,
on the lateral side of device) supports multitouch interaction. It
is possible to identify single or double tap gestures, and also
when user swipes its fingers in a specific direction.

All content on Glass can be displayed on its 640x360
display, located on the top right view field of user as a 64cm
screen and 2.4m away. Since the prism is not placed right in
front of user’s view, it does not interfere significatively with
his/her vision. Due to the fact that the prism is located slightly
above user’s eye of sight, creation of see-through augmented
reality applications is compromised. In order to implement
them, developers must first solve alignment problem between
virtual screen (projected by the prism) and real world content,
which means that a small portion of image captured by Glass
camera matches virtual display area. This mapping may vary
according to distance between Glass and real object being
viewed.

Glass platform was designed so that existing Android SDK
just works fine. This enables developers to code in a familiar
environment, but for a uniquely novel device [30]. In addition,
all of existing Android development tools can be used, and the
developed software for Glass (called Glassware) is delivered as
a standard Android package (APK).

Google also provides Glass Development Kit (GDK),
which works as an add-on to Android SDK that lets developers
build Glassware that runs directly on Glass. In order to make
sure that a project is compatible with Glass platform, developer
must simply set Android target to version 4.0.3 (which
corresponds to API version 15). Another detail that must be
taken into consideration is that application input must be
mapped to Glass input peripherals, because of the fact that
interaction is performed through touchpad and other sensors
(camera, gyroscope, accelerometer, GPS, etc.).

IV. EXPERIMENT

This section describes how the project was designed, tools
used and some decisions regarding user interaction for
controlling drone through Glass.

A. Architecture

The architecture designed for the application is basically
composed by two major modules: an Android client built
specifically for Google Glass (implemented using Java),
responsible for managing image visualization and remote
control, and a PC server (implemented using C++), responsible
for intermediating communication between drone and glass
(Fig. 8 bottom).

Client module has three sub-modules: UI, Image Receiver
and Command Sender, as shown in Fig. 11. Ul module is
responsible for displaying images received from Image
Receiver module and for capturing interaction events (gestures
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and head motion), used for sending commands to Command
Sender module.

Ui

ST

Receiver

Command

Sender

Fig. 20. Client module architecture.

Image Receiver module is responsible for receiving images
captured by drone from network and routing them to UL
module. Command Sender module is responsible for sending
commands over network for controlling the drone, which has
eight possible options: take off, land, rotate right and left, go
front, up and down, and stand (used to stop current command
being executed).

Server module has, analogously to Client module, three
sub-modules: Drone Manager, Image Server and Command
Server, as shown in Fig. 12. Drone Manager takes care of
communication between PC and drone, acquiring images
captured from its camera and sending to it commands for
performing desired actions.

Drone

Manager

Command
Server

Image Server

Fig. 21. Server module architecture.

Image Server is the module responsible for PC/Glass image
streaming, retrieving images captured from Drone Manager,
compressing them into JPEG format, and then sending data
through network. Command Server is responsible for receiving
commands sent from Glass and routing them to AR.Drone
manager module.

B. Implementation

The two modules were built based on different
technologies, communicating with each other using TCP/IP
network protocol. This communication uses two distinct
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approaches, one for syncing images and other for syncing
commands.

Image sync approach consists in encoding the image into
JPEG format, using 30% of compression quality. Server side
sends compressed data and client side must decode it properly
before rendering it.

Command sync approach consists in sending a single byte
that represents one of nine possible actions that drone can
perform. Once connection has started, client side must send
commands using the same convention adopted by server. For
example, client must send the byte representation of number
zero (0) for server to route to drone the “take off” action.

Client module, which runs in Google Glass, was developed
using Android SDK 15 (version 4.0.3). Client’s UI module was
implemented using an ImageView (responsible for displaying
images received), a SensorManager (responsible for capturing
angulation data from Glass internal compass), a
GestureDetector (responsible for capturing gestures performed
on Glass touchable surface) and an Activity (which holds both
ImageView and SensorManager) class.

Before establishing connection to PC, Glass must know a
priori its IP address, which is hardcoded on application and
obtained from connection to wireless network provided by the
drone. Client’s Image Receiver module was implemented using
a Socket that connects to server for receiving JPEG encoded
images, a BitmapFactory, used for decoding data received from
Socket, and a Thread that performs a continuous reading of
Socket’s input and uses the decoding result for updating UI’s
ImageView.

Client’s Command Sender module was implemented using
(similar to Image Receiver) a Socket that connects to server for
sending UI’s captured inputs (from both GestureDetector and
SensorManager). Mapping between user actions and drone
controls is listed in Table 2.

TABLE 1II. ACTION MAP BETWEEN GLASS AND DRONE.

Operator Gesture

Teleoperator Action

Head position to front

Drone stands still

Rotate head to left

Rotate drone to left

Rotate head to right

Rotate drone to right

Swipe right Drone goes forward
Swipe left Drone stands still
Swipe up Drone goes up

Swipe up with two fingers

Drone goes down

Two-tap

Drone takes-off or lands

object, responsible for capturing and sending data to drone, and
a Thread, used for continuous drone data update.

Image Server was developed using OpenCV’s imencode
function, for encoding drone’s images, a Socket that connects
to client for sending encoded image, and a Thread that
performs a continuous writing in Socket’s output.

Finally, Command Server was developed using a Socket
that connects to client for receiving commands, and a Thread,
used for continuous reading and interpreting of Socket’s input
data, and routing them to drone via DroneManager.

Source code for the entire system (both client and server
sides) is available for download and distributed as open-source
in the following address: http://goo.gl/'YoWAS5q .

V. RESULTS

After implementation was concluded, we performed two
classes of tests, related to indoor and outdoor environments. In
order to capture images displayed on Google Glass, we used
Droid@Screen application (http://droid-at-
screen.ribomation.com/), which receives from a dedicated USB
stream every image that is displayed on Glass. It is important
to say that such tool is used for debugging purposes, so that
image refresh rate is low (approximately 1 image every
200ms).

All tests were performed by a team of 4 people, 3 of them
being project developers. Since tasks to be performed were not
complex, none of the 4 testers took more than 5 minutes per
test to completely execute it a single time. All four people
showed similar results, which are described in sequence.

Fig. 13 shows first test realized. In this test the operator
basically had to perform a two-tap (tap with two fingers)
gesture on Glass touchpad and client application would send a
“take off” or “land” action to the drone, according to its current
state.

Fig. 22. Operator interacting with Google Glass (two-tap gesture).

Fig. 14 illustrates the image operator sees on Glass while
controlling the drone in an indoor scenario, looking for some
structural damage on a wall. Even with a JPEG compression
quality of 30%, it is still possible to extract relevant
information from it, such as the structural damage on wall and

PC Server module was developed using C++ language,
Asio Library [31], OpenCV [29] and CVDrone API [24].
Drone Manager was implemented using CVDrone’s Ardrone

close to ceiling.
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Fig. 23. Operator’s vision while performing a structural inspection task using
the AR.Drone (image captured from Glass screen using Droid@Screen
application).

Fig. 15 shows another test performed, now regarding an
outdoor scenario. The small image on the top right shows
drone’s view transmitted to Google Glass, while the rest of the
image shows an outside view of the drone.

Fig. 24. Open field navigation test. Screen on top right shows image viewed
on Glass and captured by AR.Drone’s camera.

From tests, it was possible to validate two important
aspects of any teleoperation system:

1. tracking: slave’s ability to follow master;

2. transparency: whether operator feelings match real
environment perception.

The first one was validated by testing all mapped
commands given by head positions and gestures to control the
drone. Since PC simply routes commands to drone, it was
capable to execute all the given commands accordingly. Also,
due to the ammount of data representing a command (a single
byte), delay from command to drone action is almost
imperceptible, being the same as when it is controlled from a
mobile device (cellphone or tablet).

Naturalness of interaction regarding rotation was
responsible for validating transparency aspect of the system.
Mapping head rotation movements like a joystick not just
enables operator to perform minimum head gestures
(decreasing effort) but also to view different content in front of
him/her as drone rotates following wuser’s head. One
insteresting detail is that sometimes operators tended to
perform other head gestures, as if they were also controlling
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the drone. For example, when drone was tested in strong wind
conditions, its stability was a little bit compromised.
Sometimes operators moved their head up or down hoping that
this would make drone flight more stable. We intend to
evaluate these new ways of interaction in a near future and
possibly change how user interacts with Glass in some
situations. One possibility that is being analyzed is voice
control, which is natively supported by Google Glass.

A video comprising realized tests can be found in following
address: http://goo.gl/3t90Ct .

VI. APPLICATION POSSIBILITIES

One of the advantagens of having a computer serving as
communication bridge between drone and glass is the fact that
it can add intelligence to entire process, instead of only passing
images from one side to another. This is particularly interesting
since neither drone nor glass has enough processing power to
support complex real time computer vision algorithms. By
isolating system’s “intelligence” on the bridge computer, it is
possible to replace the machine with a more powerful version,
without changing drone and glass parts. This section lists three
possible application scenarios. First two of them regard
outdoor operations, while last one focuses on a indoor task.

A. Corrosion Inspection

Engineering domain demands working with structures that
must overcome bad or even awful weather conditions. But
these structures are planned for a specific purpose: some for
heritage, like Egyptian pyramids; other for real world
problems, like cruising an entire riverbed. Independently of
purpose and weather surrounding the subject, all of them are
exposed to agents that promote damages, fractures and fatigue.
Effect of these engineering structures corroder agents can be
attenuated but not stopped and if their action is relegated,
structures' reliability will be severely compromised.

Fig. 25. Corrosion inspection application scenario.

A corrosion inspection scenario consists in an
interdisciplinary system in which user can navigate among
several stages of dated stress on a given material or structure.
Corrosion inspection is very useful, for example, for predicting
building collapse due to fatigue of beams and pillars. The
proposed system applies AR techniques to allow users to freely
move around subject and adjust visual aspect of the model
accordingly to desired date of stress, as exemplified in Fig. 25.
It leads to speed up learning curve of beginners, and for experts
it decreases time spent on determining how corroded a material
is, since it is possible to predict its lifetime by just visually
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approximating aspect of real and synthetic objects. Using AR
instead of VR is due to the higher degree of users' immersion
and familiarity reported in literature.

B. Civil Construction Support

Using markers for tracking a construction site presents
some problems. In order to be possible to estimate pose at a
given frame, a marker has to be visible on camera field of
view. Since environment has a wide range, several markers
have to be spread along construction site. In addition, each
marker has to be calibrated with the building pose. Marker
tracking can fail due to partial occlusion by any elements
present on site, such as structures, tools and vehicles. It can
also fail when markers appear too small on camera frame,
requiring that camera cannot be too far from the tracked target
or that markers with increased size have to be used, which are
limiting factors. Beyond, important parts of building may be
hidden by markers. They also cannot be positioned at places
where there is a risk of being damaged by constant handling of
construction materials. All of these cited issues suggest using a
markerless tracking approach.

In civil engineering, MAR can be used to give useful
information for guiding the work. Fig. 26 a building under
construction augmented with graphics that indicate its future
aspect in subsequent project phases, along with relevant data
about how it is going to evolve. Project plan, stored in CAD
plants, is exploited for both tracking and visualization
purposes. It provides a 3D model of the building, which can be
used by the system to perform camera pose estimation. Pose
estimation makes possible for engineers to visit the building
and visualize augmented information in real-time. CAD model
is also source for information to be displayed over construction
image.

Fig. 26. Civil construction application scenario.

C. Indoor Navigation Support

In 2011, Google Maps for Android began introducing floor
plans of shopping malls, airports, and other large commercial
areas. Unlike GPS, there is not a standard way of building an
indoor positioning system (IPS). Google’s approach tracks
device via WiFi — it knows where the WiFi hotspots are in a
given building, and through signal strength triangulation it can
roughly work out where devices are.

Depending on location accuracy, it is possible to use it for
autonomous drone navigation, besides navigation support to
user that controls drone via Glass. We have evaluated an IPS
SDK named Ubee [37]. An example application of its
functionality is illustrated in Fig. 27. It works by triangulating
signals from pre-registered hotspots and gives corresponding
2D position on map. Conclusion from tests performed shows
that it has not enough precision to be used on an autonomous
navigation scenario, being only suitable for approximate
location on a minimap.
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Fig. 27. Ubee's store locator based on indoor positioning.

VII. CONCLUSION

This work proposed a teleoperation application capable of
remotely controlling an AR.Drone for structural inspection
through Google Glass wearable device. The advantage of using
Google Glass as visualization/control device is naturalness of
movements mapped to drone. Drone rotation is directly
mapped to user’s head relative rotation, while other commands
are gesture-based using Glass touchpad. Feasibility of such an
application was demonstrated along with its applicability on
civil engineering area.

As explained in Experiment section, there is still possibility
for improvement. For simplicity reasons, Glass/PC/AR.Drone
network scheme was chosen. This decision increases network
traffic, since data must be transfered twice to reach their
destination (drone to PC, PC to Glass and vice versa). Because
AR.Drone network is used for connecting both Glass and PC, it
sometimes gets overloaded and loses image frames and also
drone commands. We believe that a direct connection between
Google Glass and AR.Drone should improve network
communication quality.

In order to have this second version of the system up and
running, we will have to build or modify an existing drone
SDK for directly controlling drone on Android device (in our
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case, Google Glass). As stated before, none SDKs tested
provided both control and imaging for Glass platform.
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