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Abstract Small networks usually use Ethernet devices that apply solutions such as the Spanning Tree Protocol (STP)
to forward packets through a single path with no loops. However, this prevents the use of idle links that may reduce
congestion and augment the aggregate bandwidth of the network. This work proposes a load balancing mechanism
between paths using Software Defined Networks (SDNs). The proposed mechanism, named MLB (Multipath Load
Balance), computes multiple paths with disjoint links that have the smallest number of hops between source and
destination. Moreover, MLB has a “switching control” function that verifies whether the current occupation of the
path exceeds a percentage of its capacity and if the potential new path computed by MLB has an occupation at least
a percentage value smaller than that of the current path. MLB is implemented in Python and evaluated in Mininet.
The results show that it is possible to increase the aggregate bandwidth by 95% and decrease the packet loss by
about 95.5% compared with the standard operating mode of the OpenDaylight SDN controller.
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1 Introduction
Virtual services offered over the Internet by commercial
clouds or within enterprise networks by corporate clouds are
increasingly being consumed by users. Nowadays, there is
an increasing number of new applications offering essential
services for the professional scope and also for entertainment.
Such growth tends to promote the increase of the underly-
ing network infrastructure with the introduction of new hosts
and, consequently, of new switches, necessary for the expan-
sion of the network. In general, with the network expansion,
new links that generate path redundancy are created. In this
way, by having redundant links, it is possible to use them not
only during unavailability situations, but also in the day-to-
day performing load balancing between them. This type of
scenario makes it possible to increase the throughput of data
traffic by combining the bandwidth of two or more network
paths [Liu et al., 2016].
This work proposes a load balancing mechanism between

paths, named MLB (Multipath Load Balance), using SDNs
(Software Defined Networks)1. MLB can be applied on
small networks preferably with a large number of disjoint
paths. The fact that SDN networks have a logically central-
ized architecture allows the controller to have a global view
of the network topology and with this, it is possible to com-
pute all the paths between sources and destinations. Another
important characteristic is that traditional load balancers are
not programmable, as they have instruction sets designated
by the proprietary architecture of their manufacturers [Se-
mong et al., 2020]. Nevertheless, SDN networks are pro-
grammable. This feature allows the network administrator

1This work is based on our paper published in Portuguese in the
Proceedings of the XXV Workshop de Gerência e Operação de Redes
e Serviços (WGRS) available at https://sol.sbc.org.br/index.php/
wgrs/article/view/12455/12320

to create intelligent applications, using data collected from
the network, that can make decisions such as which way a
network flow should be routed. In [Hamdan et al., 2021],
the authors state that the use of a modern approach, such as
SDN, allows overcoming data plane congestion by optimiz-
ing data traffic when less busy paths are chosen. In addi-
tion, Ethernet networks rely on the STP (Spanning Tree Pro-
tocol) to generate a spanning tree with only one path, which
causes data traffic to be sent from one point to another in the
network without loops generated by redundant paths [Singh
et al., 2015]. Thanks to its global view of the network, the
SDN controller makes the use of STP unnecessary and as-
sumes the role ofmanaging the network paths. This approach
is employed in Amiri and Javidan [2019], but no load bal-
ancing mechanism is used. Other researchers address load
balancing, such as in [Bredel et al., 2014; Ramdhani et al.,
2016; Mallik and Hegde, 2014; Bhandarkar and Khan, 2015;
Hassan, 2017; Zhao et al., 2021]. Their main differences are
in the use of disjoint or non-disjoint links, the type of path se-
lector, and the introduction of other functionalities, such as
a flow admission control. Moreover, these solutions use the
traditional SDN model where the controller provides static
rules to the SDN switches but other solutions apply the data
plane programmability paradigm using languages as P4 and
NPL, such as in Kawaguchi et al. [2019].

TheMLBmechanism is based on the load balancingmech-
anism proposed by Seth in Seth [2022]; Hassan [2017]. How-
ever, MLB differs from Seth’s mechanism in that it has a
function named “switch control” that uses some assumptions
to perform the path change, avoiding modifications that lead
to a very low gain. The switching control verifies if the cur-
rent occupancy of the path, i.e.; highest data volume trans-
mitted and received between the links of the path, exceeds a
percentage of its capacity and if the computed potential new
path has an occupancy at least a percentage value smaller
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than the occupancy of the current path. Furthermore, MLB
performs path computation with disjoint links, based on the
Edmonds and Karp algorithm [Cormen et al., 2009]. This al-
gorithm performs path computation using the Breadth-First
Search (BFS) algorithm to find all possible paths between a
source and a destination in a graph. Then it uses the max-
imum flow theory by applying the Ford-Fulkerson method
to select paths that do not share edges [Cormen et al., 2009].
Seth’s mechanism uses non-disjoint links, based on an adap-
tation of Dijkstra’s algorithm.
We use Mininet [Lantz et al., 2010] to compare the perfor-

mance of our mechanism, Seth’s mechanism, and the Open-
Daylight (ODL) SDN controller, which has no load balanc-
ing mechanism. The results show that MLB performs better
in bandwidth aggregation and packet loss. It is possible to
increase the aggregate bandwidth by 95% and decrease the
packet loss by about 95.5% compared with ODL.
This work is organized as follows. Some characteristics

of multipath routing are presented in Section 2. Section 3
presents related work. Section 4 describes the implemen-
tations of the load balancing mechanisms, while Section 5
presents the performance evaluation. At last, conclusions
and future work are presented in Section 6.

2 Exploiting Multipath
The multipath routing technique exploits the physical re-
sources of the traditional network using multiple paths be-
tween source and destination to send data traffic [Tsai and
Moors, 2006]. The three basic components of multipath rout-
ing are: path computation, traffic division, and path selec-
tion [Singh et al., 2015]. These components can also be ap-
plied in the SDN context, when an SDN switch can use in-
formation from different layers andmultiple paths to forward
packets.
Path computation aims to find all existing paths between

a source and a destination. For the search process to be ef-
fective, the path computing algorithm needs to have global
knowledge of the network topology. After discovering the
topology, the algorithm needs to identify the paths from
source to destination based on three scenarios [Singh et al.,
2015]:

a) Disjoint nodes: path is composed of nodes (other than
source and destination) not shared by other paths. By
not sharing nodes, there will also be no link sharing,
except for broadcast links and Non-Broadcast Multi-
Access (NBMA) networks. This configuration provides
greater fault tolerance as the paths are completely in-
dependent. However, it implies greater expenditure on
infrastructure, as in order to obtain more paths it is nec-
essary to create more nodes and links. This scenario
is exemplified in Figure 1(a), which presents a graph
composed of 10 nodes and 14 links, with node “A” as
the source and node “J” as the destination of two flows
that follow paths that are independent and free from the
sharing of nodes and links.

b) Disjoint links: the path is composed of nodes that can
be shared by other paths, but the links are not shared.

This scenario has lower fault tolerance compared with
the previous scenario. This is because, when a node
fails, all paths that make use of it will be affected. The
same will not happen if the failure occurs in a link. The
use of disjoint links can help increasing the total amount
of bandwidth and decreasing network congestion [Sun
et al., 2012]. An example of this scenario is presented
in Figure 1(b), where there are three flows traversing
paths that do not share links, but node “E” is shared by
Flows 2 and 3.

c) Non-disjoint links: exemplified in Figure 1(c), both the
nodes and the links of a path can be shared by the other
paths in the network. The lack of restrictions on the
use of common nodes and linksmakes path computation
easier [Singh et al., 2015]. However, this scenario is
considered the worst case among the three, because if
a node or link fails, this failure will affect all paths that
share such physical resource.

The performance of the algorithm in path computation de-
pends on the number of nodes and links in the topology. Ac-
cording to Singh et al. [2015], establishing an ideal number
of paths can reduce the complexity of the processing. Also,
non-disjoint paths should be avoided, as sharing nodes and
links means having to deal with low fault tolerance. Another
issue regards bandwidth, as paths with shared links will also
have their bandwidths shared.
The load balancing mechanisms evaluated in this work

make use of non-disjoint paths in the case of Seth’s mecha-
nism and paths with disjoint links in the case of the proposed
mechanism named MLB.
According to Prabhavat et al. [2012], the traffic division

can be done at different levels: packet, flow, subflow, su-
perflow, and sub-superflow. In this work we use the traffic
division by flow based on the following packet identifiers:
source IP, destination IP, protocol, source port, and destina-
tion port. Once a flow identifier is defined, the SDN switches
use it when forwarding packets.
The selection of paths can be classified according to the

type of selector used [Prabhavat et al., 2012]:

a) Round robin: traffic is forwarded by all computed paths
following a cyclic sequence.

b) Packet info: traffic is forwarded based on information
contained in the packet header.

c) Traffic condition: may consider the traffic load, the traf-
fic throughput, the traffic volume, or the number of ac-
tive flows in the path.

d) Network condition: may consider queue size, delay, jit-
ter, or packet loss along the path.

The load balancing implementations used in this work are
based on the selection of paths by traffic condition. TheMLB
mechanism uses the throughput of the path, i.e.; the volume
information of data transmitted and received in a 1 s-time
frame by the SDN switches of a path. Seth’s mechanism uses
the volume of traffic in the path, i.e., data volume transmitted
and received by the interfaces of the switches that make up
the path during a 2 s-interval.
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(a) Disjoint nodes

(b) Disjoint links

(c) Non-disjoint links

Figure 1. Examples of path computation scenarios considering node “A” as
the source and “J” as the destination.

3 Related Work

Load balancing between links using SDN networks has been
studied by some researchers, such as in recent survey pa-
pers [Hamdan et al., 2021; Semong et al., 2020].
Bredel et al. [2014] present a traffic optimization using

multipath that extends the Floodlight controller and is based
on disjoint paths. They use a path selection algorithm that
chooses the path with the least number of mapped flows. The
work compares different path selection algorithms that are
based on: hash of packet header fields, random selection,
round-robin, or the number of flows in the path. The results
show that the use of the algorithm based on the number of
flows performs better when compared with the others. How-
ever, the authors did not include in the work the selection by
path based on the traffic rate and the traffic volume, usually
used to assess congestion in the links.

Ramdhani et al. [2016] address the limitation of the single-
path routing due to the use of STP in Ethernet networks. The
authors use SDN as a way to help with multipath routing.
Load balancing is proposed with a flow admission control
activated whenever the data load in the path reaches 80%
of its capacity, which helps to reduce network congestion.
The model uses switch statistics collected by the Ryu con-
troller that help in decision making. An evaluation shows
the good performance of the proposed model in achieving a
more stable transfer rate and lower latency compared with
STP single-path routing. However, admission control seeks
to reduce network congestion by not allowing new flows.
Mallik and Hegde [2014] present a dynamic load balanc-

ing mechanism using multipath and a congestion control
mechanism that calculates the data load level on the paths
to determine whether they can be used in the path selection.
The application together with the Floodlight controller tries
to detect if the path load is above a certain threshold and if
so, instructs the switches to forward the flows through an al-
ternative path. The authors highlight the capacity of their
model to identify and immediately react to load imbalance
and traffic congestion. All possible paths between source
and destination are computed, characterizing the use of paths
with non-disjoint links. However, it is known that this type
of path computation has low fault tolerance, since a node or
link failure will affect all flows that pass through such phys-
ical resource.
Bhandarkar and Khan [2015] implement a dynamic load

balancing that chooses the path with the highest free band-
width to route traffic. The work presents a performance eval-
uation, with data traffic generated by the Cbench tool, be-
tween the implemented solution and the load balancing of
the Floodlight controller based on round-robin. According
to the authors, the results show that with the use of their so-
lution, in comparison with the round-robin load balancing,
it is possible to handle more packets, as well as reduce net-
work latency. However, the work does not present the level
of network congestion, which could be done by showing the
packet loss rate of the traffic.
Hassan [2017] presents the implementation of the dynamic

load balancing algorithm proposed in Seth [2022]. The work
aims to evaluate and validate the proposed algorithm. In his
work, Seth uses the computation of shortest and non-disjoint
paths between source and destination, based on an adaptation
of Dijkstra’s algorithm. OpenDaylight is used as a network
controller in a Fat-tree-based topology. The algorithm only
takes into account two network flows, a fixed flow and a load-
balanced one. Thus, the first flow operates as background
traffic and the second is switched between paths. In addi-
tion, switching takes into account the data volume transmit-
ted and received on the current path comparing it with those
of the computed paths. However, there is no threshold to
avoid switching between paths of similar performances. Our
work, on the other hand, proposes an adaptation of Seth’s al-
gorithm. Our solution supports the load balancing of more
flows and performs the switching between paths in a con-
trolled manner, avoiding switching to new paths that present
flow rates similar to that of the path in use.
Load balancing may increase energy consumption by

spreading traffic to as many active SDN devices as possible.
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So, Zhao et al. [2021] propose PLOFR, a Power-efficient and
Load-balanced Online Flow Route framework for SDN net-
works. A power optimization problem of satisfying load bal-
ancing constraint is formulated and the corresponding algo-
rithms are proposed. However, energy consumption is out of
the scope of this paper.
We highlight the main characteristics of the related work

in Table 1. This work, similarly to [Ramdhani et al., 2016;
Mallik and Hegde, 2014], also proposes an SDN-based load
balancing mechanism that has a switching control between
links activated whenever the load level in the path reaches
a certain threshold. In addition, this mechanism also veri-
fies whether the potential new path has more free bandwidth
compared with the current path. Thus, in general, it prevents
unnecessary switches from being performed that could lead
to congestion of the new path chosen by the load balancer.
However, unlike [Ramdhani et al., 2016; Mallik and Hegde,
2014], we do not use a selective policy of packet discard, as
the retransmission of discarded packets directly affects the
flow transmission time. In another way, the use of paths
with disjoint links avoids the sharing of links between the
computed paths. This choice contributes to the load balanc-
ing to have greater fault tolerance when a link is down since
the link unavailability will affect only a single path.

4 Evaluated Load Balancing Mecha-
nisms

In this work, two load balancing mechanisms between paths
are used, the one proposed in this work named MLB and the
one by Seth. The twomechanisms act in the application layer
and interact with the network controller using its northbound
interface. Furthermore, they use the “NetworkX” library
written in Python for the creation, manipulation, and study
of graphs and networks [Hagberg et al., 2008]. In our case,
nodes are simple elements (SDN switches) that use flow iden-
tifiers to forward packets. Traditional layer-2 switches for-
ward packets using only the destination MAC address and
do not perform load balancing. In the following, we present
implementations of both mechanisms. Our mechanism im-
plementation is openly available2.

4.1 Implementation of Seth’s Mechanism
This implementation is based on Dijkstra’s algorithm for
computing non-disjoint multiple paths that have the smallest
number of hops between the source and the destination. The
algorithm only works for one load-balanced flow. Moreover,
switching takes into account the data volume on the current
path comparing it with those of the computed paths. We use
Seth’s mechanism since its source code is available under a
General Public License [Seth, 2022]. The pseudocode of this
implementation, derived from its source code, is presented in
Algorithm 1.
The source and destination hosts are defined at the begin-

ning of the execution, as shown in Lines 2 and 3. Seth’s
implementation performs load balancing of just one flow.

2The code is available at https://github.com/alisson2000rj/MLB

Algorithm 1: Seth’s Implementation
1 begin
2 src = source host
3 dst = destination host
4 while true do
5 connected_nodes = proc_topology()
6 G = networkx.graph(connected_nodes)
7 paths = networkx.all_shortest(G, src, dst, dijkstra)
8 for i from 1 to number(paths) do
9 t1 = returns_data_tx_rx(OpenDaylight_restconf,

paths[i])
10 wait 2 s
11 t2 = returns_data_tx_rx(OpenDaylight_restconf,

paths[i])
12 path_cost[i] = t2 - t1
13 end
14 best_path = returns_index(min(path_cost))
15 configure_flow(paths[best_path], source, destination)

16 end
17 end

In Line 4, the repetition structure begins, which keeps
the application in constant execution. In Line 5 the
“proc_topology()” function asks the network controller for
information about the connections established between the
switches of the network. Such information is generally
known to the controller, which uses the OFDP (OpenFlow
Discovery Protocol) and the LLDP (Link Layer Discovery
Protocol) protocols to discover existing network devices in
the topology. In the next line, with the information received
from the controller, the network application assembles the
global graph of the network topology. In Line 7, the “G”
graph structure is processed by the “all_shortest” function,
based on Dijkstra’s algorithm. As a result, all computed
paths between source and destination are returned and stored
in the variable “paths”. On Line 8, a loop that will be re-
peated given the number of computed paths starts. Inside
the loop, in Line 9, “t1” receives from the controller, at the
current time, information of the data volume transmitted and
received by the interfaces of the switches that make up the
path and after a 2 s-waiting, “t2” also receives from the con-
troller the same data volume information, as shown in Line
11. Then, in Line 12 the value of “t2” is subtracted by “t1”
and the result is stored in the vector “path_cost”. The vari-
able “best_path” receives the path with the lowest recorded
data volume, in Line 14. The idea is to use the path with less
data transmitted and received during that 2 s-interval. And
finally, in Line 15, the application submits to the controller
information about the new path that the flow must use.

4.2 Implementation of the MLB Mechanism

This implementation is based on the Edmonds andKarp [Cor-
men et al., 2009] algorithm, which computes multiple dis-
joint paths between a source and a destination. Their algo-
rithm applies the Breadth First Search (BFS) algorithm, the
maximum flow theory, and the minimum cut of links with
capacity equal to 1 to compute the shortest disjoint paths be-
tween a source and a destination. Our implementation differs
from Seth’s not only in the type of path calculation but also
in the number of flows it can handle. In addition, the MLB
has a “switching control” function that verifies whether the
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Table 1. Main characteristics of related work.

Work Scenario Path selector Other functionalities
Bredel et al. [2014] disjoint links traffic condition -

Ramdhani et al. [2016] non-disjoint links traffic condition flow admission control
Mallik and Hegde [2014] non-disjoint links traffic condition congestion control

Bhandarkar and Khan [2015] non-disjoint links traffic condition -
Hassan [2017] non-disjoint links traffic condition -

Zhao et al. [2021] non-disjoint links traffic condition power saving
This work disjoint links traffic condition switching control

current occupation of the path exceeds a percentage value
(named “condition1”) of its capacity and if the potential new
path computed by MLB has an occupation at least a percent-
age value (“condition2”) smaller than that of the current path.
The pseudocode of this implementation is presented in Algo-
rithm 2.

Algorithm 2: MLB Implementation

1 begin
2 src = source switch
3 dst = destination switch
4 no_flows = number of flows
5 path_capacity = 10,000,000
6 current[flow] = ∅
7 while true do
8 connected_nodes = proc_topology()
9 G = networkx.graph(connected_nodes)
10 for flow from 1 to no_flows do
11 paths =

networkx.edge_disjoint(G, src, dst, edmonds_karp)

12 for i from 1 to number(paths) do
13 paths_cost[i] =

calculate_occupation(OpenDaylight_restconf,
paths[i])

14 end
15 best_path = returns_index(min(paths_cost))
16 if current[flow] = ∅ then
17 configure_flow(paths[best_path],

src, dst, flow)
18 current[flow] = best_path
19 end
20 else if paths_cost[current[flow]] ≥ condition1 ×

path_capacity & path_cost[best_path]
≤ condition2 × path_cost[current[flow]] then

21 configure_flow(paths[best_path],
src, dst, flow)

22 current[flow] = best_path
23 end
24 end
25 end
26 end

In Lines 2 and 3, the source and destination switches are
defined. Line 4 defines the number of flows that will be bal-
anced. In Lines 5 and 6 reference values for the switching
control function are defined. In Line 7 the repetition struc-
ture begins, which keeps the application in constant execu-
tion. Line 10 presents a repetition structure conditioned to
the number of flows in use.
In Line 11, the G graph structure is processed by

the “edge_disjoint()” function using the path computation
method of Edmonds andKarp. OnLine 12, a loop that will be
repeated given the number of computed paths starts. In this
one, the “calculate_occupation” function estimates the occu-

pation on the computed paths using the volume information
of data transmitted and received in a 1s-time frame by the
switches of each path. At this point, the network application
registers the highest data load verified between the links of
the path, an action that is repeated in all the computed paths.
In Line 15, the variable “best_path” receives the path with
the lowest occupation. And finally, Line 16 tests if it is the
first execution of the application for the current flow. If so,
the path of the flow is configured in Line 17 and “current”
vector receives the index of the best path for the current flow.
If not, Line 20 presents the switching control function, which
allows switching the flow to the new path if the current occu-
pation of the path is greater than or equal to the value defined
in the variable “condition1”, and the new path has an occupa-
tion that is at least “condition2” smaller than the occupation
of the current path. We present tests regarding the setting of
“condition1” and “condition2” values in Sections 5.1 and 5.2.
For cases where both conditions are satisfied the new alter-
native path will be set to the current flow in Line 21 and the
“current” vector will receive the index of the best path for the
current flow, as shown in Line 22.

5 Performance Evaluation
This section presents the performance evaluation of the ODL
controller, which does not use load balancing mechanisms,
Seth’s and the MLBmechanisms. The metrics used to obtain
the results are presented hereafter, followed by the mecha-
nisms and the traffic models used in the evaluation.
Evaluated metrics are:

a) aggregate throughput: the use of load balancing tends
to increase the aggregate bandwidth. For its calculation,
flows use the TCP (Transmission Control Protocol) pro-
tocol.

b) fairness: the use of a path by more than one flow is
considered fair when all flows make use of equal parts
of the available bandwidth. The fairness index [Jain,
1991] returns a value between 0 and 1. If all flows have
a nearly equal flow throughput between them, the re-
sult is close to 1. If there are significant differences in
flow throughputs, the result tends to 0. The fairness in-
dex [Jain, 1991] is given by:

f(x1, x2, ..., xn) =
(
∑n

i=1 xi)2

n
∑n

i=1 x2
i

,

where “n” is the total number of flows competing for
bandwidth and “xi” is the throughput value of the “i”
flow.
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c) packet loss: packet loss is mainly due to congestion in
the path. In this case, flows use the UDP (User Data-
gram Protocol) protocol.

The three mechanisms used in the experiments are pre-
sented hereafter in more detail:

a) ODL: the onlymechanismwith no load balancing. With
the use of the ODL controller, all flows are switched by
the same default path defined in the spanning tree.

b) Seth’s: performs load balancing using Seth’s implemen-
tation based on non-disjoint paths.

c) MLB: performs load balancing using the path-based
MLB implementation with disjoint links and the switch-
ing control function.

Seth’s mechanism performs load balancing of only one of
the flows, in this case the main flow. The MLB mechanism
can balance more flows. However, to make this evaluation
fair, the experiments performed are divided into two groups
named two-flow- and four-flow-experiments. In the exper-
iments with two flows, MLB is configured to balance only
the main flow as in Seth’s mechanism. Furthermore, another
flow that corresponds to background traffic is used and this
traffic is not balanced. For the two-flow experiments, two
types of traffic models are used:

a) TCP-2f model: composed of two flows, the main flow
has host “h1” as its source and host “s5” on port
TCP/5001 as its destination, and the background flow
has as its source the host “h2” and “s6” as the destina-
tion on port TCP/5002 (see Figure 2). The duration of
the flows is fixed at 600 s.

b) UDP-2f model: composed of two flows, the main
flow has host “h1” as its source and host “s5” on the
UDP/5001 port as its destination, and the background
flow has as its source “h2” and as destination “s6” on
the UDP/5002 port (see Figure 2). The duration of the
flows is also fixed at 600 s.

In the experiments with four flows, MLB is configured
to balance three flows, which are main flows. The fourth
flow is background traffic, being switched by the default path
generated in the spanning tree. For the experiments with four
flows, two types of traffic models are used:

a) TCP-4f model: composed of four flows, three of them
main flowswith sources, destinations, and ports defined
as follows: for flow 1, the source is the host “h1” and
destination is the host “s5” on the port TCP/5001; for
flow 2, the source is the host “h2” and destination is
the host “s6” on port TCP/5002; and for flow 3, the
source is the host “h3” and destination is the host “s7”
on port TCP/5003. The background flow has host “h4”
as source and host “s8” on port TCP/5004 as destina-
tion (see Figure 2). The duration of the flows is fixed
at 600 s.

b) UDP-4f model: composed of four flows, three of them
main flowswith sources, destinations, and ports defined
as follows: flow 1, the source is the host “h1” and des-
tination is the host “s5” on port UDP/5001; flow 2, the

source is the host “h2” and destination is the host “s6”
on port UDP/5002; and flow 3, the source is the host
“h3” and destination is the host “s7” on port UDP/5003.
The background flow is defined as having host “h4” as
source and host “s8” on port UDP/5004 as destination
(see Figure 2). The duration of the flows is fixed at
600 s.

TCP flows are used to measure the aggregate throughput
and the fairness index, whereas UDP flows are used to mea-
sure the packet loss. UDP flows are configured to transmit
data at 9.5 Mbps; 95% of the capacity of the network links.
This transmission rate has been chosen after running several
tests in which packet loss was measured. The transmission
rate was successively increased until the limit of transmis-
sions without packet loss was reached; 9.5Mbps in the exper-
iments. We aim to evaluate the packet loss when the network
is near congestion, even if only one flow is sent. All flows
are generated using the iPerf tool. Each test is run 30 times.
Means and 95% confidence intervals are used.
Figure 2 shows the network topology used in the experi-

ments, which is composed of eight nodes, three disjoint paths,
and five non-disjoint paths considering the sources and des-
tinations already mentioned. The topology is emulated in
Mininet [Lantz et al., 2010]. Network nodes are emulated
using the Open vSwitch virtual switch. The capacity of all
links in the network is configured at 10Mbps due to available
computational resources. The OpenDaylight controller was
chosen because it is an open project that is already used in the
academic and corporate world [Kreutz et al., 2015]. Devel-
oped in the Java programming language, it has a native appli-
cation named “l2switch” composed by the “Loop Remover”
module responsible for generating the network spanning tree,
similar to the one generated by the STP protocol. The span-
ning tree is composed of standard paths that cover all nodes
in the network and aims to eliminate redundant paths that
may cause loops. ODL maintains a spanning tree inventory
with the STP “status” of the “forwarding” for the active links
and “discarding” for the inactive links. In the example of the
figure, for host “h1” to communicate with host “s5”, path 1-
2-6-8 is used. The status of the links can be verified through
the ODL management web console [OpenDaylight, 2022].

5.1 Two-Flow-Experiments
First, “condition1” and “condition2” parameters of the MLB
mechanism are varied to evaluate their impact on the ag-
gregate throughput using the TCP-2f traffic model. We
make condition1 ∈ {30%, 40%, 50%, 60%, 70%} and
condition2 ∈ {10%, 30%, 50%, 70%}.
Figure 3 shows that there is no significative impact of

both parameters on the aggregate throughput. In this way,
we chose to set the first condition to 50% so that the switch-
ing may occur only when the current path has an average or
large bandwidth occupation. By doing this, we avoid divid-
ing large flows and consequently the delays caused by ex-
cessive reordering of packets at the destination due to this
division. Likewise, the second condition is set to 10% to
avoid switching between paths with very close bandwidths,
which could also contribute to the occurrence of out-of-order
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Figure 2. Network topology used in the experiments. The dashed links indicate the default paths designated by the spanning tree generated by the ODL. F
stands for forwarding and D stands for discarding, both related to the status of links when using ODL.

packets [Singh et al., 2015].

Figure 3. Aggregate throughput for MLB when different values of the pair
condition1-condition2 and two flows are used.

Thenwe evaluate the results for the ODL controller, Seth’s
and MLB mechanisms. Figure 4 presents the aggregate
throughput results. It is possible to observe that using
only the ODL, the aggregate throughput is approximately
10 Mbps. In this case, the main flow and the background
one share the bandwidth of the standard path generated by
the ODL (spanning tree) formed by nodes 1-2-6-8. Thus,
as there is no load balancing, the aggregate throughput will
be less than or equal to the bandwidth of the standard path.
In Seth’s load balancing, the aggregate throughput is in-
creased by 41% when compared with the ODL and reaches
13.5 Mbps. This is because Seth’s balancing performs the
switching of the main flow to a new alternative path that
presents a lower volume of traffic. The main flow is now
switched to a path without shared links with the background
flow, formed by nodes 1-4-7-8, to the default path used by
the background flow, or to paths with links shared with the
default path, formed by nodes 1-2-5-8, 1-3-6-8, and 1-4-6-
8. Finally, for the MLB balancing, aggregate throughput
reaches 18.6 Mbps, a 37%-gain when compared with Seth’s
one. This better performance is due to the use of paths with
disjoint links and to the switching control function that only

allows switching for the main flow when 50% or more of its
path bandwidth is occupied and the new path has an occu-
pied bandwidth that is at least 10% smaller than that of the
current path. This prevents switching to a new path that has
an occupancy level similar to the current path in use.

Figure 4. Aggregate throughput for ODL, Seth’s and MLB mechanisms
when the number of flows is 2.

Figure 5 presents the results of the fairness index using the
TCP-2f traffic model. For ODL, the contention for the use
of bandwidth between the flows resulted in a fairness index
of 0.99, which means that both flows have similar through-
puts: background flow throughput reaches 4.8 Mbps versus
4.7 Mbps of the main flow. In Seth’s load balancing, the fair-
ness index is also 0.99; which demonstrates that the flows
have similar throughputs, even with the path switching gener-
ated by the load balancing. This means that at times when the
background flow and themain flow use the standard path, the
throughputs remain approximately equal and at times when
the main flow is switched to an alternative path, both flows
also have similar throughputs. The average throughput for
the background flow is 6.8 Mbps against 6.7 Mbps for the
balanced main flow. For the MLB balancing, the fairness in-
dex is also 0.99. Both flows reach 9.3 Mbps. It should be
noted that even the background flow is indirectly benefited
by the load balancing of MLB since it uses the 1-2-6-8 path
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exclusively for most of the time.

Figure 5. Fairness index for ODL, Seth’s and MLB mechanisms when the
number of flows is 2.

Finally, Figure 6 presents the packet loss results using the
UDP-2f traffic model. With the use of ODL, packet loss is
close to 50%. This high value can be explained by the fact
that the flows use the standard path formed by nodes 1-2-6-
8. The bandwidth of the default path is shared by the two
UDP flows that are not subject to congestion control. Thus,
the two source hosts transmit the flow at a constant rate of
9.5 Mbps, which leads to a large packet loss. In Seth’s bal-
ancing, packet loss is close to 27%, as the loss mainly oc-
curs when the balanced main flow shares the standard path
with the background flow or when it uses some alternative
path with links shared by the standard path; for example for
paths formed by nodes 1-2-5-8, 1-3-6-8, and 1-4-6-8. With
the switching of the main flow to the path formed by nodes 1-
4-7-8, the flows no longer compete with each other for band-
width and the packet loss is not significant. In MLB balanc-
ing packet loss is below 5%. This is because the switch con-
trol function only allows the main flow switching to occur
when there is a difference of 10% or more in the occupancy
of the current path comparedwith that of the new path. When
paths have their bandwidth occupied with similar load levels,
switching does not take place. Thus, in the case where the
main flow follows a path that does not share any link with the
standard path, such as the path formed by nodes 1-4-7-8, the
occupation of the paths will occur similarly. This happens be-
cause, with the switching control, the flows will remain for
a longer time following different paths without any switch-
ing taking place. And in this way, as there is no bandwidth
dispute between the flows, more packets are successfully de-
livered at their destinations and, consequently, packet loss
decreases. MLB presented a packet loss 13 times less com-
pared with Seth’s one and 24 times less compared with ODL
one.

Figure 6. Packet loss for ODL, Seth’s and MLB mechanisms when the
number of flows is 2.

5.2 Four-Flow-Experiments
Again, condition1 and condition2 parameters of the MLB
mechanism are varied to evaluate their impact on the aggre-
gate throughput but using the TCP-4f traffic model. We use
the same set of values as in Section 5.1.
Figure 7 shows similar results for the aggregate through-

put, except when condition2 is equal to 70%. This result
can be attributed to the difficulty of finding a new path with
less than 30% of the occupation of the current path in use, a
very low value for a scenario with a considerable number of
flows and, consequently, a considerable traffic volume. We
maintain the first condition equal to 50% and the second one
equal to 10% for the following experiments due to the same
reasons presented in Section 5.1.

Figure 7. Aggregate throughput for MLB when different values of the pair
condition1-condition2 and four flows are used.

]

Also taking into account the ODL controller and Seth’s
mechanism, Figure 8 presents the aggregate throughput re-
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sults. It is possible to observe that the aggregate throughput
using ODL is below 10 Mbps. Without load balancing, the
three main flows and the background flow are routed through
the default path.

Figure 8. Aggregate throughput for ODL, Seth’s and MLB mechanisms
when the number of flows is 4.

In Seth’s mechanism, load balancing allows the aggregate
throughput to approach 14 Mbps. In this mechanism, only
one of the main flows is balanced, the other unbalanced main
flows are routed by the default path formed by nodes 1-2-6-
8 together with the background flow, as can be seen in Fig-
ure 9. In addition, during balancing, the balanced main flow
is switched to the default path, starting the bandwidth dispute
with the other flows. This occurs because the mechanism al-
ways verifies which of the paths presented the lowest volume
of transmitted data. In this way, any slight variation in the
values of the data volume makes Seth’s mechanism perform
the switching between them, a situation that tends to occur
with great frequency.

First unbalanced main flow
Second unbalanced main flow
Balanced main flow
Background flow
Default path

Figure 9. Switching for one of the main flows to the path 1-3-6-8 using
Seth’s mechanism.

In the MLBmechanism, the aggregate throughput reaches
27 Mbps. This result can be attributed to the following facts:

load balancing is applied to the three main flows, the com-
puted paths do not share links, and the switching control
function prevents switching from occurring when its oper-
ating conditions are not met (see Section 4.2). One of the
main flows has an average throughput of 8.8 Mbps, the other
two main flows have an average throughput of 8.5 Mbps and
the background flow reaches 1.2 Mbps. According to the
path switching example shown in Figure 10, assume the fol-
lowing. The first main flow is switched by the path formed
by nodes 1-4-7-8. The second main flow is switched by the
path formed by nodes 1-3-6-8, performing bandwidth dispute
with the background flow in the link composed by nodes 6-8.
And the third main flow is switched by the path formed by
nodes 1-2-5-8, performing dispute with the background flow
in the link formed by nodes 1-2. This configuration of flow
switching and similar ones (each flow following a different
disjoint path) provide a high value of aggregated throughput.
Table 2 presents one execution of the MLB algorithm during
10 rounds, with each round corresponding to one execution
of the while loop (Lines 7 to 25 of the Algorithm 2). As pre-
viously stated, our algorithm does not change the path of the
background traffic, so this traffic is not shown in the table.
At Round 0, all three main flows use path 1-4-7-8 since its
occupation was zero (the background traffic uses path 1-2-
6-8). Then at Round 1 first and third flows change to other
paths since their occupations are lower. At this moment, all
main flows use disjount paths. This behavior is maintained
until Round 8. At Round 9, as the first main flow and the
background traffic were disputing the link 1-2, one or both
the flows reduce the sending rate and so the third flow starts
to use the path 1-2-5-8. Nevertheless, at Round 10, the first
main flowmoves to the path 1-4-7-8 and again all three flows
use disjoint paths. Considering Table 2, disjoint paths are
used for most of the time. It is worth mentioning that its ag-
gregated throughput exceeds by 181% the aggregate through-
put presented by the ODL and by 94% Seth’s one.

First balanced main flow
Second balanced main flow
Third balanced main flow
Background flow
Default path

Figure 10. Example of switching for the main flows using the MLB mech-
anism.

Figure 11 presents the fairness index results for the TCP-
4f traffic model. ODL reaches 0.99, which means that the
four flows similarly occupied the default path bandwidth.
The average throughput of each flow reached 2.3 Mbps.
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Table 2. Example of switching for the main flows using the MLB
mechanism in function of time.

Round Time (hh:mm:ss) Main flow Path Changed?

1
00:00:00
00:00:28
00:00:56

First
Second
Third

1-4-7-8
1-4-7-8
1-4-7-8

-
-
-

2
00:01:23
00:01:50
00:02:18

First
Second
Third

1-2-5-8
1-4-7-8
1-3-6-8

Yes
No
Yes

3
00:02:45
00:03:12
00:03:39

First
Second
Third

1-2-5-8
1-4-7-8
1-3-6-8

No
No
No

4
00:04:06
00:04:33
00:05:00

First
Second
Third

1-2-5-8
1-4-7-8
1-3-6-8

No
No
No

5
00:05:28
00:05:55
00:06:22

First
Second
Third

1-2-5-8
1-4-7-8
1-3-6-8

No
No
No

6
00:06:49
00:07:16
00:07:43

First
Second
Third

1-2-5-8
1-4-7-8
1-3-6-8

No
No
No

7
00:08:10
00:08:38
00:09:05

First
Second
Third

1-2-5-8
1-3-6-8
1-4-7-8

No
Yes
Yes

8
00:09:32
00:09:59
00:10:27

First
Second
Third

1-2-5-8
1-3-6-8
1-4-7-8

No
No
No

9
00:10:54
00:11:21
00:11:48

First
Second
Third

1-2-5-8
1-3-6-8
1-2-5-8

No
No
Yes

10
00:12:16
00:12:43
00:13:10

First
Second
Third

1-4-7-8
1-3-6-8
1-2-5-8

Yes
No
No

The use of Seth’s load balancing results in a fairness index
close to 0.89. This can be explained by the fact that it bal-
ances only one main flow, the other flows are routed through
the standard path formed by nodes 1-2-6-8. When the bal-
anced flow shares the bandwidth with the other flows, either
because it is on the standard path or because it is on a path
that has a shared link, the bandwidth occupation between the
flows tends to be equal. However, when the balanced flow
is switched to a path in which there is no link sharing with
the other flows, such as the path formed by nodes 1-4-7-8, as
shown in Figure 12, the balanced flow tends to occupy the
entire bandwidth of this path. With this, its bandwidth oc-
cupancy becomes higher when compared with that reached
by the other flows that continue to share the bandwidth of
the standard path. In this case, the three flows have simi-
lar throughputs of 2.8 Mbps while the balanced main flow
reaches an average throughput of 5.5 Mbps.

For the MLB load balancing, the fairness index has
reached 0.81. Although the load balancing of the three main
flows allows each flow to be routed through one of the three
paths formed by disjoint links, the background flow routed
through the default path consumes the bandwidth of two of
the paths with disjoint links, paths 1-2-5-8 and 1-3-6-8 (see
Figure 10). That way, the flows that are switched to these
two paths compete for bandwidth with the background flow
routed through the default path. In this case, the background
flow has an average throughput of 1.2 Mbps, while one of
the balanced flows has an average throughput of 8.6 Mbps

Figure 11. Fairness index for ODL, Seth’s and MLB mechanisms when the
number of flows is 4.

First unbalanced main flow;
Second unbalanced main flow;
Balanced main flow;
Background flow;
Default path

Figure 12. Switching for one of the main flows to the path 1-4-7-8 using
Seth’s mechanism.

and the other two have an average throughput of 8.5 Mbps.

Figure 13 presents the packet loss results for the UDP-4f
traffic model. The results presented in this figure are simi-
lar to those obtained in the experiment with two flows, but
with higher loss values, since now four flows are transmit-
ted. The difference between the ODL and Seth’s mechanism
decreased. The ODL reached a 74%-packet loss and Seth’s
mechanism has a loss close to 65%. This is likely due to
the congestion caused by the simultaneous transmission of
the four flows. Seth’s mechanism turns out to behave very
similarly to ODL. This is because, as already mentioned, in
Seth’s mechanism only one main flow is balanced; the rest
are transmitted through the standard path, similar to ODL.
The MLB packet loss rate is close to 42%. This is because
the three main flows are switched to less busy paths. MLB’s
load balancing and switching control allow more packets to
be delivered to their destinations over less congested paths.
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Figure 13. Packet loss for ODL, Seth’s and MLB mechanisms when the
number of flows is 4.

6 Conclusion

This work has proposed a load balancing mechanism be-
tween paths that includes a switching control function. We
conclude that the MLB mechanism is a good solution to
avoid idle links caused by protocols such as STP and con-
sequently contributes to increasing the aggregate bandwidth
of the network. An evaluation comparing pure ODL, Seth’s,
and MLB mechanisms is performed. The MLB mechanism
outperforms the standard ODL mode of operation and Seth’s
mechanism. This better performance can be attributed to the
use of path computation with disjoint links and the switch-
ing control function, which is based on the occupation of the
path by the data load. The use of paths with disjoint links
can avoid bandwidth sharing by flows and consequently can
lead to a reduction in packet loss. Switching control, on the
other hand, prevents flow switching to paths with saturated
occupancy levels that may cause congestion in the network
instead of avoiding it.
As a direction for future work, new load balancing experi-

ments with theMLBmechanism in a real environment can be
performed, in which hardware switches compatible with the
OpenFlow protocol and data traffic generated by real hosts
are necessary. A second path to be followed is to use more
than one network controller simultaneously. In this way, it
is expected to make the network more robust and tolerant to
faults caused by unpredictable situations, such as the drop
in communications between the switch and the network con-
troller, which may be caused by unavailability in the server
that hosts the controller. Furthermore, with the use of more
controllers, it is possible to increase the scalability of the
network by adding new hosts. In this way, it will be pos-
sible to monitor the performance of the MLB mechanism in
a network composed of a larger number of switches and with
communications between sources and destinations through a
larger number of hops. In this network, a greater number
of disjoint paths and a greater number of flows can be used.
Moreover, we need to investigate an approach to fine-tune
condition1 and condition2 values in function of the network

traffic. We also aim to evaluate the complexity of both al-
gorithms. Moreover, in our performance evaluation, we as-
sume that the network links have no failure or intermittency.
We aim to evaluate our mechanism by taking into account
link failures. At last, it is not easy to obtain near-real-time
information regarding link occupation. For this, we can use
solutions such as in-band network telemetry.
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