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Abstract Today, grid resilience as a feature has become non-negotiable, significantly when power interruptions
can impact the economy. The widespread popularity of Intelligent Electronic Devices (IED) operating as smart
meters enables an immense amount of fine-grained electricity consumption data to be collected. However, risks
can still exist in the Smart Grid (SG), as valuable data are exchanged among SG systems; theft or alteration of this
data could violate consumer privacy. The Internet of Things for Smart Grid (IoSGT) is a promising ecosystem of
different technologies that coordinate with each other to pave the way for new SG applications and services. As a use
case of IoSGT for future SG applications and services, fraud detection, ıNon-technical losses (NTL), emerges as an
important application for Smart Grid (SG) scenarios. A substantial amount of electrical energy is lost throughout the
distribution system, and these losses are divided into two types: technical and non-technical. Non-technical losses
(NTL) are any electrical energy consumed and not invoiced. They may occur due to illegal connections, issues with
energy meters such as delay in the installation or reading errors, contaminated, defective, or non-adapted measuring
equipment, very low valid consumption estimates, faulty connections, and disregarded customers. Non-technical
losses are the primary cause of revenue loss in the SG. According to a recent study, electrical utilities lose $89.3
Billion per year due to non-technical losses. This article proposes ensemble predictor-based time series classifiers
for NTL detection. The proposed predictor ministers the user’s energy consumption as a data input for classification,
from splitting the data to executing the classifier.It encompasses the temporal aspects of energy consumption data
during preprocessing, training, testing, and validation stages. The suggested predictor is Time Series (TS) oriented,
from data splitting to the classifier’s performance. Overall, our best results have been recorded in the fraud detection-
based time series classifiers (TSC) model scoring an improvement in the empirical performance metrics by 10% or
more over the other developed models.
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1 Introduction

The main benefits expected from the Smart Grid (SG) are
increasing grid resilience and improving environmental per-
formance Gunturi and Sarkar [2021]. Today, grid resilience
as a feature has become non-negotiable, significantly when
power interruptions can potentially impact the economy. SG
promises to provide flexibility and reliability by enabling ad-
ditional dispersed power supply, facilitating the integration
of new resources into the grid, and enabling corrective ca-
pabilities when failures occur Wang et al. [2019]. However,
risks can still exist in the SG since any interruptions in power
generation could disturb SG stability and potentially have
considerable socio-economic impacts.
The widespread popularity of Intelligent Electronic De-

vice (IED) as smart meters enables an immense amount
of fine-grained electricity consumption data to be collected,
which are transmitted across network connections in the form
of telemetry data Modesto et al. [2022]. Billing is no longer
the only function of IEDs since high-resolution data from
IEDs provide rich information on the electricity consumption
behaviors and lifestyles of the consumers Wang et al. [2019].
In addition, as valuable data are exchanged among SG sys-
tems, theft or alteration of this data could violate consumer
privacy. Because of these weaknesses, the SG has become
the primary target of attackers, which attracted the attention
of government, industry, and academia Gunturi and Sarkar
[2021].

To tackle the bottleneck of the Internet of Things (IoT),
various new technologies are proposed and investigated in
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academic and industrial areas Deng et al. [2022]; Meena
et al. [2023]; Lobato et al. [2023]. In this context, secure
versions of the IoT and extensive data systems are challeng-
ing and have become a research trend in the last decade. In-
ternet of Things devices are known to possess limited stor-
age, energy resources, and computational abilities Belhadi
et al. [2022]. However, the Internet of Smart Grid Things
(IoSGT) Santos et al. [2022] appear as a promising ecosys-
tem of diverse technologies orchestrated to pave the way for
new SG applications and services. Specifically, the cloud-
native approach of the IoSGT advances across servers that
are settled at both core (cloud computing) and edge (edge
computing) facilities, establishing an IoT-to-edge-to-cloud
continuum. Hence, the IoSGT accelerates SG automation
and control by enabling functions to be executed at edge data
centers, i.e., close to IED, rather than in cloud computing
where data must be sent to faraway centralized data centers
(likely in a different country). Our findings from the IoSGT
validation outcomes suggested that SG functions running at
edge servers are proven to have improved performance than
in central clouds (among other benefits) due to the high prox-
imity between IEDs and computation, data storage, and SG
control application capabilities.
As a use case of IoSGT for future SG applications

and services, fraud detection, i.e., Non-technical losses
(NTL), appears as an important application for SG scenar-
ios de Souza Savian et al. [2021]. Expressly, NTLs repre-
sent the electricity consumed but not billed to the user, which
various illegal methods can cause, such as using a different
billing system for the day, very low valid consumption esti-
mates, and others Chuwa and Wang [2021]. Intruders may
attack such a communication environment. This results in
leaks and interruptions in data transfer. Data that is both
stored and in transit must be protected Ramana et al. [2022].
NTL is a common phenomenon and a significant problem for
electricity providers Zheng et al. [2017], where NTL is one
of the main sources of economic loss for power distribution
enterprises Ramos et al. [2018]. For instance, electrical util-
ities lose $89.3 Billion per year due to NTLs. Developing
countries like India and Brazil are each losing 42% and 8%
of the total electricity produced annually due to energy theft
Chuwa and Wang [2021]. Energy losses in developed coun-
tries range from 0.5% to 3% of annual revenues. Though
the amount might seem small, financial losses in the United
States alone are as high as up to 6 billion Chuwa and Wang
[2021]. However, there is no recipe for developing effective
NTL recognition techniques de Souza Savian et al. [2021].
Although adding categories to a classification problem

adds complexity to the classification process, it is crucial to
identify the types of fraud committed by end-users. For ex-
ample, accurately detecting any fraud will allow companies
to better identify the root causes of fraud and calculate its fi-
nancial impact, develop new security measures, and improve
the accuracy and efficiency of inspection teams. However,
according to Chuwa and Wang [2021], existing NTL detec-
tion methods cannot effectively identify all types of fraud
simultaneously. In addition to being challenging to classify
fraud, distinguishing and detecting different types of fraud
is more complex using unique Machine Learning (ML) tech-
niques. In this context, ensemble learning is an ML tech-

nique where multiple predictors are trained to solve the same
problem and combined to get better results Araujo et al.
[2020]. For instance, ML models often perform not so well
by themselves either because they have a high bias or vari-
ance, and the idea of ensemble methods combining several
of them to create an aggregated learner (or ensemble model)
that achieves better performances.
Ensemble predictors, i.e., aggregatedMLmodels, have be-

come increasingly popular after showing excellent results in
various research fields by combining the outputs of multiple
ML algorithms to achieve better performance than a single
classifier Araujo et al. [2020]. The integration ismore hetero-
geneous by considering the different time series classifiers
types to classify these different parameters and attributes
found in the user class. In this case, ensemble predictors that
consider the time-dependent nature of energy consumption
data tend to improve the accuracy and efficiency of detecting
fraud, which remains an open question Messinis and Hatziar-
gyriou [2018].
This article proposes a time series classifiers (TSC)-based

ensemble predictor for NTL detection as a use case for the
IoSGT system, called HybridForest. In this context, the
IoSGT system allows fraud detections in edge data centers
close to users, rather than cloud computing, where data must
be sent to distant centralized data centers (probably in a dif-
ferent country). Our findings from the IoSGT validation re-
sults suggested that SG functions running on edge servers
demonstrably perform better than on core clouds (among
other benefits) due to the high proximity between users and
computing, data storage, and control application resources
SG. hybridForest considers an ensemble predictor with dif-
ferent TSC classifiers, namely, time series Forest (TSF),
Catch22, Weasel, k-NN for time series, and Arsenal. After
training, the generated predictor classifies new data into thir-
teen classes (either honest or one of twelve different types
of fraud), which facilitates the development of methods to
improve the detection of specific types of fraud.
We evaluate the HybridForest (HybridForest) using smart

energy data from the Irish Smart Energy Trial Archive
[2012], which consists of approximately 4700 users with 535
days of sample data. Following the approach of existing
work, we add twelve fraud types already defined in the lit-
erature to create a synthetic dataset of honest and fraudulent
customers and randomly select the amount of fraud data gen-
erated among users. The results underscore the performance
of the HybridForest over other state-of-the-art NTL predic-
tors. For example, the HybridForest predictor classifies dif-
ferent types of high-performing fraudulent users, regardless
of their category.
This article extends the previous work described in Santos

et al. [2022], and its main research contributions include

1. Introduce an intelligent method for fraud detection as a
use case implemented on the IoSGT system.

2. The HybridForest method classifies the data into thir-
teen classes (either honest or one of twelve different
types of fraud).

This article is organized as follows. Section 2 analyzes
the existing works about NTL detection. Section 3 describes
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fraud detection based on the IoSGT system. Section 4 intro-
duces an experiment analysis. Finally, Section 5 concludes
the paper and presents future work suggestions.

2 Related Works
Previous studies have introduced techniques to classify NTL;
therefore, the literature offers many ways to characterize and
classify NTLs through models, algorithms, and techniques.
Some of them follow the approach of using ML.
Passos Júnior et al. [2016] evaluated the optimum-path for-

est (OPF) clustering for NTL. This work considers two pri-
vate datasets of a Brazilian electrical power company: one
composed of commercial profiles and another managed to
find industrial consumers. Another main contribution of
such work is to model the problem of NTL identification as
an anomaly detection task. The classifier is trained with reg-
ular consumers only.
Barja-Martinez et al. [2021] proposed a holistic analysis

of ML applications in distribution power systems after iden-
tifying and classifying the different data-driven techniques
for power systems and the data sources involved in the data
acquisition. These applications include operation and moni-
toring, predictive maintenance, non-technical loss detection,
forecasting, flexibility management, and planning of distri-
bution grids.
Gunturi and Sarkar [2021] proposed an energy fraud detec-

tor based on ensemble classifiers, which uses real-time data
from IEDs to analyze trends in user consumption behavior.
The proposal uses Synthetic Minority Over-sampling Tech-
nique (SMOTE) re-sampling techniques to balance the mi-
nority class data and generate synthetic fraud data using the
same work fraud case. After re-sampling, the data is normal-
ized and trained. The authors used six ensemble algorithms
to classify users, including ADaptive Boosting (ADB), CAT-
egorical boosting (CAT), extreme gradient Boosting (XGB),
Light Gradient Boosting (LGB), Random Forest(RF), and
Extra Trees (ET). The proposal generated promising results,
mainly when comparing ensemble predictors. Still, it did not
consider the time series of the data when separating the train-
ing and testing, and the approach didn’t use any TSC to com-
pare with their classifiers.
Jokar et al. [2016] proposed a consumption pattern-based

energy theft detector. This detector uses a Support Vector
Machine (SVM) classifier to analyze each user’s samples and
classify them as either honest or fraudulent. However, the re-
sults were different from otherML algorithms that performed
better. Punmiya and Choe [2019] considered three state-of-
the-art gradient boosting algorithms, namely XGBoost, cat-
Boost, and LightBoost, for NTL detection. The detector
shows significantly better results compared to related meth-
ods. However, the authors did not use techniques to select
hyperparameters for the classifier, nor did they use cross-
validation techniques to split the data.
Belhadi et al. [2021b] developed a new framework based

on privacy reinforcement learning to accurately identify
anomalous patterns in a distributed and heterogeneous en-
ergy environment. The local outlier factor is first performed
to derive the local simple abnormal patterns in each site of the

distributed energy platform. Reinforcement privacy learn-
ing is then established using blockchain technology to merge
the local anomalous patterns into global complex abnormal
patterns. Besides, different optimization strategies are sug-
gested to improve the whole outlier detection process. To
demonstrate the applicability of the proposed framework, in-
tensive experiments have been carried out on the well-known
CASAS (Center of Advanced Studies in Adaptive Systems)
platform.
Zanetti et al. [2019] presented an approach to create a tun-

able profile-based by showing that using only a small set of
recent measures to define a consumption pattern is possible.
Fraud inspection is triggeredwhen a discrepancy between the
energy supplied by the grid and that registered by the meters
is detected. Consumption reports registered shortly before
and after the discrepancy detection are compared to detect
fraud. Consumption patterns are created from consumption
data using unsupervised learning clustering algorithms and a
semiautomated feature extraction method. They called these
patterns short-lived (SL) because they are expected to repre-
sent a consumer’s behaviour for a short period, only enough
to detect an ongoing fraud.
Yip et al. [2018] presented two anomaly detection

schemes that adopt linear programming (LP) to overcome
some problems associated with existing NTLs detection
schemes. They design two anomaly detection schemes for
detecting energy theft attacks against AMI and locating
metering defects in smart grid environment regardless of
whether they occur all the time or at varying rates during in-
termittent periods in a day; NTLs detection accuracy and re-
duce false positives by taking the impact of technical losses
(TLs) and measurement noise on the detection framework
into consideration. Two metrics, referred to as loss factor
and the error term, are introduced for capturing the percent-
age of TLs and amount of measurement noise, respectively,
in the service area, and; Investigate and generate a diverse
set of NTLs attack functions such that they closely resemble
real-world AMI energy frauds/metering defects scenarios.
Messinis et al. [2019] proposed a hybrid system for detect-

ing NTLs consisting of three modules based on different prin-
ciples. It ensures that a large variety of frauds can be detected.
The first module (entitled SVMmodule) utilizes breakout de-
tection and other features to detect frauds in yearly consump-
tion time series by training an SVM. The second (SENS)
module calculates voltage self-sensitivities from meter mea-
surements and compares them to their theoretical values (ex-
tracted from network topology). Finally, the third module
(entitled NTL-MIN module) solves an optimization problem
where the objective is to minimize losses. The decision vari-
ables are consumers’ active energy consumptions, while volt-
age magnitude measurements are introduced as constraints.
Our previous work presented in Santos et al. [2022]

showed that the Internet of Smart Grid Things (IoSGT) ap-
pears as a promising ecosystem of diverse technologies or-
chestrated to pave the way for new SG applications and ser-
vices. Specifically, the cloud-native approach of the IoSGT
advances across servers that are settled at both core (cloud
computing) and edge (edge computing) facilities, establish-
ing an IoT-to-edge-to-cloud continuum. Hence, the IoSGT
accelerates SG automation and control by enabling functions
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Table 1. Summary of Related Work

Works Split
for TS Techniques Ensemble

Predictor Data Type TSC # of
Classes

Passos Júnior
et al. [2016] No OPF, k-Means, GMM, AP, Birch,

SVM No Electricity Consumption No 2

Barja-
Martinez
et al. [2021]

No Correlation, DT, LR, LogR, MLP,
DNN No

Customer behavior,
Operational, Weather,
Social Media, GIS,

Electricity Consumption

No 2

Gunturi and
Sarkar [2021] No ADB, CAT, XGB, LGB, RF, ET Yes Electricity Consumption No 2

Jokar et al.
[2016] No SVM No Electricity Consumption No 2

Belhadi et al.
[2021b] No CASAS No Electricity Consumption No 2

Messinis
et al. [2019] No SVM No Voltage No 2

Zanetti et al.
[2019] Yes FDS No Electricity Consumption No 2

Yip et al.
[2018] Yes Linear Programming (LP) No Electricity Consumption No 2

Punmiya and
Choe [2019] No XGBoost, CatBoost, LightBoost No Electricity Consumption No 2

HybridForest Yes
Signature, CatBoost, XGBoost,

LightBGM, ROCKET, Weasel, TSF,
SVM, Catch22, k-NN

Yes Electricity Consumption Yes 13

to be executed at edge data centers close to sgs rather than in
cloud computing, where data must be sent to faraway central-
ized data centers (likely in a different country). Their find-
ings from the IoSGT validation outcomes suggested that SG
functions, such as, NTL detection, running at edge servers
are proven to have improved performance than in central
clouds (among other benefits) due to the high proximity be-
tween SG service and computation, data storage, and SG con-
trol application capabilities.

Table 1 summarizes the main characteristics of previous
works aimed at NTL detection in terms of the split for time
series, ML algorithms employed, ensemble predictor consid-
ered, data used for NTL prediction, TSC, and several out-
put classes for NTL prediction. First, the ensemble enables
different TSC types for classifying other classes to classify
the parameters and properties in the user class. Second, a
single classifier has many application dependencies, as they
are limited tomaking binary classifications (either fraudulent
or non-fraudulent) and cannot accurately classify different
classes. NTL detection remains an open issue based on our
analysis of state-of-the-art approaches. However, enabling
NTL detection to be executed at edge data centers close SGs
from IoSGT SG facilities be verified quickly. In this con-
text, developing methods that compare different ML algo-
rithms and maintain the temporal dependence of the data
is paramount in providing results that better reflect real-life
scenarios. Additionally, we deployed our algorithm into an
Edge Cloud Data Center (DC) to emulate a more realistic
data-gathering environment.

3 An Intelligent Method for IoSGT
System

IoSGT ecosystem aspires to deliver means for directing and
surveying SG service with high dexterity and efficiency by
harnessing the IoT-to-Edge-to-Cloud continuum. Especially,
IoSGT integrates these physical machines into a frauds do-
main for a more flexible, monitorable, and adaptable envi-
ronment to accommodate new SG services and applications
without causing significant changes to the adjacent land-
scape. In this section, we propose SG service to predictively
detect fraud by applying ML at the Edge Cloud DCs.

3.1 IoSGT Architecture
We developed a ML framework at the network edge and the
Cloud DC to process SG data. We deployed an Internet of
Smart Grids for IoT (IoSGT) system divided into three main
layers, namely Extreme Edge, Edge Cloud DC, and Central
Cloud DC, as shown in Figure 1. The Extreme Edge layer
consists of SGs to gather energy-consumption information
at a given period. The SG measures voltage, current, active
and reactive power, and others and fetches into an embed low
capacity storage. The sets of SGs organized in groups have
common similarities in terms of installed location, version,
technical specifications, and consumption profile (i.e., Resi-
dential, commercial, and industrial). Each SG transmits the
collected data to the Edge Cloud DCs using a well-known
Internet of Things (IoT) communication protocol, such as
Message Queuing Telemetry Transport (MQTT). The Edge
Cloud DC acts as a gateway and manager for SG groups,
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inter-mediating data transmission to ML services atop the
IoSGT platform. Edge Cloud DC could be deployed at IoT
gateways, and network access points, routers or dedicated
edge nodes. On the other hand, the extreme edge could be
deployed at On the other hand, the extreme edge could be
deployed at the IED

Figure 1. IoSGT Architecture

The IoSGT considers the FIWARE ecosystem using
Docker containers to enable greater scalability to merge or
fork Edge Cloud DCs according to chosen policies. The Ex-
treme Edge interacts with the Edge Cloud DC through the
IoT Agents suitable for computing constrained IoT devices.
IoT Agents group devices to allow them to send their data to
and be managed using their native and lightweight communi-
cation protocols for IoT. These protocols enable authentica-
tion and authorization of the channel between devices and the
Context Broker. The SGs interact using lightweight based on
Ultralight 2.0 protocol. The Context Broker acts as an inter-
face of the Ultralight protocol, enabling context information
querying. For instance, we use the Orion Context Broker as a
Publish/Subscribe interface between Ultralight and the Next
Generation Service Interfaces (NGSI).
In effect, this brings a standard interface to all IoT inter-

actions at the context information management level. Each
group of IoT devices are able to use their own proprietary
protocols and disparate transport mechanisms under the hood
whilst the associated IoTAgent offers a facade pattern to han-
dle this complexity.
The Connector Framework creates the history of contex-

tual data into persistent databases. Specifically, we use
Cygnus to automate and manage the flowing data toward
Storage in third-party databases. For instance, we store real-
time data in a MongoDB database to keep the last read-
ings. Moreover, we persist long-term data into a relational
database using MySQL to organize groups of SGs. We use

the stored data to extract useful information attaching our pro-
posed service Edge Machine Learning Framework (EMLF).
In this context, we consider a scenario with periodic en-

ergy consumption readings produced by SGs, stored at the
persistent data module of IoSGT architecture. In this sense,
we define EC as a vector with real daily consumption read-
ings over a 24-h period that comprises n samples, such that
EC = ec1, ..., Ecn. In this sense, we create a dataset where
each row represents a daily reading, and each column repre-
sents the value of one reading over a time interval for a given
user.
The EMLF service consists of ML classifier. The persis-

tent data collected from SGs needs formatting to feed the ser-
vice. Therefore, we developed a Data Handler to perform
pre-processing, such as cleaning errors, and null values, de-
tecting outliers, transforming data types, and re-sample data
into different granularity. We store pre-processed into our
Storage and feed the Ensemble Classifier. Periodically, the
classifier updates its models using newly collected and pre-
processed data with the Training Scheduler. The training
generates enhanced Ensemble ML Models for each group of
SGs and saves them into a persistent database for further us-
age to detect, for example, frauds on energy consumption.
Finally, within the IoT-to-Edge-to-Cloud continuum, the

Central Cloud DC layer complements the IoSGT with high
processing and storing capabilities, enabling a global view of
the SG system. For instance, the Central Cloud DC collab-
orates with the Edge Cloud DCs services with powerful an-
alytics, ML models merging for more accurate models and
decision-making schemes, personalized SG domain predic-
tions from the global model, and others. Our prototyping em-
ploys an edge-based approach; therefore, the Central Cloud
DC instance is not in the scope of our current work.

3.2 Predictive Fraud Detection as a service at
EMLF

Figure 2 presents the HybridForest overview for predictive
fraud detection as a service for the EMLF module at the
IoSGT architecture. Since users may have different energy
consumption patterns, we introduce a fraud detectionmethod
for users individually. For example, a commercial user will
most likely consume a lot more energy when compared to
a residential user. In this case, it does not make sense to
work with frauds that try to detect the user’s variation from
his consumption pattern. The methodology adopts the fol-
lowing steps: i) Data acquisition, ii) Data treatment, and
iii) model evaluation. In this sense, we consider the energy
consumption value stored in the persistent data module of
IoSGT architecture. Afterward, it is required to perform pre-
processing and ensemble prediction to detect different types
of fraud. Besides, we have a testbed with a set of SGs, cloud,
and fog instances, as introduced by Santos et al. [2022]; it
might not be enough to validate a fraud detection method
with a large dataset.
To cope with this issue, we consider the Irish smart en-

ergy dataset Archive [2012], a widely used dataset for SG
scenarios. The Irish dataset contains the consumption data of
4710 domestic and commercial clients and 535 days of read-
ings collected in Ireland between 2009 and 2010, enabling
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validation of the fraud detection method in a large-scale sce-
nario. This dataset considers IEDs registering consumption
readings every half hour, where the first reading corresponds
to the interval between 0h0min0s and 0h 29min 59s, and the
second reading corresponds to the interval between 0h 30min
0s and 0h 59min 59s and so forth. Thus, every day is com-
posed of 48 sequential readings, i.e., sample n of vector EC
equals 48.

Grid SearchB. Time Series Standardization

Ensemble predictor

EnsembleTrainingPrediction

Generation of fraudulent data

Data Cleaning Daily Time 
   Series

Fraud Pattern 
  Generation

   Fraud 
detection

Database

Pre-processing

Figure 2. Adopted methodology for Fraud Detection as a service for EMLF

3.2.1 Generation of Fraud Data Phase

The generation of fraud data phase starts with the load of
the vector with real daily consumption readings. Afterward,
we need to clean the data to find errors or null values in
the dataset, detect outliers, and transform them into accept-
able types using scale-changer methods Gunturi and Sarkar
[2021]. For instance, the number of samples must be the
same for each daily vectorEC since some classifiers can not
handle different length time series. Hence, we drop daily vec-
tors without the expected samples, as those could represent
failures in the SG, meaning non-reliable information. This
step represents a reduction of only 1% in the original num-
ber of daily vectors and does not represent a significant loss
of information.
The Irish dataset organization consists of four columns:

the id column uniquely identifies each user in the dataset; the
day column indicates the day each measurement was made;
the measurement column identifies each of the 48 samples
for a certain day; the consumption column contains the mea-
sured energy consumption for that day. In this sense, we need
to rearrange the readings into daily vectors, where each row
represents a daily reading, and each column represents the
value of one reading over a time interval. The reorganiza-
tion into daily vectors is crucial, given that fraud cases are
based on daily readings and need this organization to gener-
ate fraud data. Specifically, each row contains a time series
with samples ranging from 0 to 47, the class label (i.e., either
zero for regular consumption or a number between 1 and 12
for fraudulent patterns), the day this data, and the correspond-
ing user.
It is reasonable to assume that this dataset contains only

honest consumption data since it was generated in uninter-
rupted monitoring of knowing customers who previously ac-

cepted the terms of the agreement and who had to answer a
questionnaire before and after the measuring period. Simi-
lar to other work using the Irish dataset, we also add differ-
ent types of fraud to generate a synthetic dataset with honest
and fraudulent customers due to the lack of real attack sam-
ples in the dataset Chuwa and Wang [2021]. Specifically,
we add twelve fraud types already defined in the literature
for the whole time series, from the first to the last reading,
as other works Punmiya and Choe [2019]; de Souza et al.
[2020]; Gunturi and Sarkar [2021] have also done. In gen-
eral, frauds report less energy than the actual energy con-
sumed or redistribute the energy consumption at different
times to take advantage of the varying billing system Gun-
turi and Sarkar [2021]. It is important to mention that the
amount of samples for each fraud in the dataset is smaller be-
cause those classes would be less frequent than the normal
class on a real problem. For instance, the abnormal classes
have 25% fewer samples than the regular class.
Attack 1: Introduced by Jokar et al. [2016], this attack con-
sists of multiplying all the readings ect with the same real
pseudo-random number α in a predetermined interval be-
tween min and max values as Eq. (1) shown.

ect = ect ∗ α, (where α = random(min, max)) (1)

It is considered the most commonly observed attack on the
SG scenario Chuwa and Wang [2021]. Specifically, α val-
ues closer to min mean higher attack severity. It is a fraud
attack in which the user artificially reduces daily consump-
tion continuously (e.g., α value of 0.3 means that SG reports
only 30% of energy consumption) by the same proportion be-
tween daily measurements, as shown in Figure 3. This fraud
is a complex attack to detect, especially when it started be-
fore the observation window Chuwa and Wang [2021].
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Figure 3. Energy consumption considering attack 1

Attack 2: Introduced by Jokar et al. [2016], this attack, also
known as an on-off attack, multiplies each meter reading ect

with a different integer random number γt ∈ [0, 1], as Eq. (2)
shown.

f2(ect) = ect ∗ γt, (where γt = randint(0, 1)) (2)

Besides being indicative of fraudulent behavior, this pat-
tern can also indicate the malfunction of a grid infrastructure
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or SG. For this pattern, the readings are either interrupted
or canceled for periods of the day, i.e., it replaces the con-
sumption samples for zero each day in a random duration,
as shown in Figure 4. This attack is easily detected, espe-
cially after a long period of zero reporting Chuwa and Wang
[2021].
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Figure 4. Energy consumption considering attack 2

Attack 3: Defined by Jokar et al. [2016], we generate the
abnormal pattern by multiplying each meter reading ect by
a different real pseudo-random number βt between min and
max values in a predetermined interval, as equation 3 shown.

ect = ect ∗ βt, (where βt = random(min, max)) (3)

Similarly to attack 1, the fraud level increases as βt value
decrease. Although this attack has a similar equation com-
pared to fraud 1, the βt value is different for each sample
reported, as can be seen in Figure 5. This difference means
the pattern shows different attack intensities for each sample.
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Figure 5. Energy consumption considering attack 3

Attack 4: Passos Júnior et al. [2016]; Yip et al. [2017] intro-
duced this attack, which simulates an energy theft that takes
place over a certain period, as shown in Eq. (4).

ect = γt ∗ ect, γt =

{
α, ts < t < tx

1, else
(4)

This attack is similar to attack 1, but attack 4 occurs in
a specific time interval instead of occurring throughout the
entire time series. The duration, intensity, and beginning of
this attack are selected randomly and according to the attack-
ers’ needs. However, the attackers would most likely reduce
energy consumption during peak hours, days, and seasons,
since the energy fee is usually higher, as shown in Figure 6.
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Figure 6. Energy consumption considering attack 4

Attack 5: Introduced by Jokar et al. Jokar et al. [2016], we
generate this attack using the mean values of the readings
multiplied by a real pseudo-random number θt in a predeter-
mined interval between min and max values, as shown Eq.
(5).

ect = mean(ec) × θt, ( where θt = random(min, max))
(5)

In this attack, the user produces a new pattern utterly differ-
ent from the regular energy consumption, as shown in Figure
7. It represents the average of the readings made over the day
with a continuous reporting of ”fraudulent” values.
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Figure 7. Energy consumption considering attack 5

Attack 6: Introduced by Zanetti et al. [2019], this attack pat-
tern consists of selecting a random cut-off point and replac-
ing all readings above that point with the cut-off value, as
shown in Eq. (6).

ect =

{
ect, ect ⩽ α

α, ect > α
(6)

The attacker does not exceed the maximum pre-defined
limit, as shown in Figure 8. In this sense, the attacker must
carefully choose the cut-off point for this type of attack since
low values result in constant measurements that can be eas-
ily detected, while high cut-off points might not benefit the
attacker.
Attack 7: Also introduced by Zanetti et al. [2019], this attack
picks a random cut-off point and subtracts from the actual
samples, returning zero if the result is less than zero and the
subtracted value otherwise, as shown in Eq. (7).

ect = max (ect − α, 0) (7)
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Figure 8. Energy consumption considering attack 6

If the result obtained is less than zero, zero is reported.
This attack may be due to injecting false data or bypassing
the meter by connecting the load directly to the distribution
transformer. Thus, the amount consumed by the load is not
recorded by the meter, as shown in Figure 9.
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Figure 9. Energy consumption considering attack 7

Attack 8: This attack is also known as an intelligent attack
proposed by Messinis et al. [2019], where energy gradually
decreases until it reaches maximum intensity, staying at that
point for the rest of the attack. The gradual decrease depends
on the change in the intensity of the attack. Equation 8 de-
scribes the mathematical formulation of this attack, where
the attack intensity (0 < it < 1), s indicates the rate of
change in attack intensity, and t max is the time with maxi-
mum intensity.

ect = (1 − it) ect, it =

 imax,t ⩾ tmax
s (t − ts) , ts < t < tmax
0, t < ts

(8)

Figure 10 illustrates this attack. s indicates the rate of
change in attack intensity, while tmax is when the maximum
intensity takes place.
Attack 9: Defined by Jokar et al. [2016], this attack pattern
replaces each measurement in a day with their mean value,
as shown in Eq. (9).

ect = mean(ec) (9)

This fraud represents the exact average of readings over
the day, as shown in Figure 11. This attack can be easily
detected since the pattern does not reflect a regular consump-
tion that changes randomly Chuwa and Wang [2021].
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Figure 10. Energy consumption considering attack 8
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Figure 11. Energy consumption considering attack 9

Attack 10: Introduced by Jokar et al. [2016], this attack pat-
tern consists of changing the chronological order of the read-
ings, as defined in Eq. (10).

ect = ecT −t (where T is the sample size per day) (10)

Although the method does not steal energy, the attacker
might reduce the overall bill by shifting high consumption
periods to peak from off-peak, as shown in Figure 12. This
attack patterns of target systems that bill clients differently
according to the time of the day.
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Figure 12. Energy consumption considering attack 10

Attack 11: As described by Yip et al. [2018], this attack only
reduces energy consumption by a specified period, as defined
by Eq. (11). Where ts is the starting time of the highest
consumption n time period,N is the total number of samples,
tx = ts + n, and ∈=

∑n
j=1 ect+j−1. In this sense, the

reduced amount of energy is distributed for the remaining
time of that day.
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ect =
{

et − λect, ts < t < tx

ect + ϵ/N − n, else (11)

The overall consumption for this attack stays the same.
However, the billing could be lower if the company uses
time-varying pricing systems, as shown in Figure 13. In this
sense, this type of attack is only valid if there is no fixed
pricing system.
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Figure 13. Energy consumption considering attack 11

Attack 12: Also described by Yip et al. [2018], this attack
happens when an attacker switches their consumption pattern
with another user z, as described in Eq. (12).

ect = ectz (12)

In this case, the legitimate user will end up paying for the
attacker’s electricity. Additionally, this attack may happen
when users under-report their consumption and over-report
the same proportion to their neighbors Krishna et al. [2016].
This type of attack can not be easily detected. Figure 14
shows the attack.
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Figure 14. Energy consumption considering attack 12

Most attacks caused by injecting false data need attackers
to have full or partial network information to modify the me-
ter readings. Besides, attackers need to know the trend of real
consumption before generating attack vectors so that attacks
can occur successfully with little chance of being detected
by the electricity provider. In some attacks, attackers should
be familiar with the pricing system used to maximize their
benefit. Attackers often need help to gain full access to the
smart grid network. Although there is a low probability of
such attacks, they can not be ignored.

3.3 Pre-processing
Energy consumption data is conventionally sampled in a uni-
dimensional time series whose readings follow a chronolog-
ical order. One of the essential steps of the pre-processing
phase consists of adjusting this data. The Algorithm employs
a time series cross-validation technique to generate compar-
atively more reliable and solid results. First, the data is split
into two subsets: the training and test sets. Blocking time se-
ries divides the data into n Folds, each with specific training
and test sets. Each fold contains the same number of sam-
ples, and each sample is sequentially divided. The classifiers
are then trained with each training subset, and the parame-
ters shown to reduce classification error for each validation
set are selected. Lastly, the predictor is configured with the
best-performing parameters and trained with the complete
training set. The final performance is the mean value of the
individual performances for every fold.
The Blocking time series split adds margins in two direc-

tions. One margin prevents the classifiers from memorizing
future trends, and the other contains the classifiers from re-
memorizing patterns in-between interactions. Despite the in-
creased complexity of cross-validation, it is indispensable be-
cause it makes the predictors more error-resistant. This ap-
plication needs to consider time series attributes when split-
ting data, guarantee that the predictors learn from past data
(training stage), and make predictions about what future data
should look like (test stage), making it better at working with
real-world scenarios.
After being split, the training sets are normalized in the

standardization step. Normalization brings all features to the
same scale, between 0 and 1. Normalized entries prevent
the classifiers from leaning towards features with more out-
standing orders of magnitude, which will improve predictor
generalization.
Afterward, we apply a grid search method to find the

best hyperparameters using the validation set. As the perfor-
mance of a classifier is highly dependent on the tuned hyper-
parameters, the grid search method will test different combi-
nations of the hyperparameters we specified and then find the
best combination among them. In our case, this is done ex-
haustively, and all the possible combinations are tested in the
method. In that way, we can better estimate the real perfor-
mance of the evaluated classifiers without making assump-
tions based on a particular result.
The grid search method relies on a cross-validation (CV)

strategy to provide good results. The idea behind CV con-
sists of splitting a dataset into two parts, one for training and
another for testing, repeating the process is repeated for dif-
ferent iterations. However, as we are working with time se-
ries, data partitioning must be made with care since we could
erroneously train the models using data from the future and
making predictions about the past, which would provide un-
realistic results. Therefore, we use a CV strategy to handle
time series known as blocking time series split.

3.4 Ensemble Predictor
In HybridForest method, multiple TSC algorithms (i.e., sig-
nature, Catch22, Weasel, TSF, K-NN for time series, and Ar-
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senal) are trained to detect frauds in a given dataset. Then
ensemble learning builds a more robust predictor by combin-
ing multiple TSC algorithms to provide better results than
single classifier predictors Géron [2019]. In ensemble learn-
ing theory, we can obtainmore accurate and/or robust models
as soon as we correctly combine weak models. Specifically,
We call weak learners (or base models) models that can be
used for designing more complex models by combining sev-
eral of them. These basic models often perform poorly by
themselves because they have a high bias, such as low degree
of freedom models, or because they have too much variance
(e.g., high degree of freedom models). Hence, an ensemble
predictor reduces the bias and/or variance of basic classifiers
by combining several to create an aggregated learner (or en-
semble predictor) that achieves better performances Araujo
et al. [2020].
We consider a voting class classifier for the ensemble pre-

dictor, combining different ML classifiers conceptually. For
a classification problem, if the base models return the class
labels, then one way of combining is by considering the class
returned by each weak classifier (base model) as a vote, and
the class with the highest number of votes is returned by the
ensemble model (hard voting). Afterward, the ensemble pre-
dictor is created and trained with the training set; the predic-
tor must be evaluated. We rely on a CV strategy to analyze
the performance of HybridForest method to provide good re-
sults. In this sense, we split the data into two sets for each
CV iteration: testing and training. Specifically, classifiers
are always trained with data from the past and evaluated on
new occurrences. In terms of Big-0 analysis, the complexity
of the proposed HybridForest ensemble is: O(C) for training
and inference, where C is the number of the ML classifiers
used. The ensemble’s complexity for searching, however, is
exponential O(2C) since the voting strategy belongs to the
NP-hard complexity class, as seen in Fersini et al. [2014]. In
the following, we describe the considered TSC algorithms to
combine in the proposed ensemble.

3.4.1 Signature

The signature transform is a mathematical technique used in
TSC as a feature extraction tool, where the discrete time se-
ries is transformed in continuous paths through interpolation
techniques, and an infinite set of features, known as signa-
tures, can be computed from the new sequence Chevyrev
and Kormilitzin [2016]. These signatures are combined
with a traditional ML classifier to produce an output. This
method employs augmentations, windows, transformation,
and rescaling, all grouped in a single mathematical frame-
work.

3.4.2 Catch22

22 Canonical TS Characteristics (catch22) is a dynamic and
commonly used technique for time series data. Catch22 cap-
tures time series’ diverse and interpretable characteristics ac-
cording to their properties, including linear and nonlinear
autocorrelation, continuous differences, value distributions,
outliers, and volatility scaling properties Lubba et al. [2019].
This technique utilizes a reduction in dimensionality from

4791 to 22, correlates with a roughly 1000-fold decrease in
computation time, and scales almost linearly with time se-
ries length, despite an average 7% reduction in classification
accuracy.

3.4.3 Weasel

Word extraction for time-series classification (WEASEL) is
a TSC based on the bag-of-patterns, which is scalable and
accurate. Weasel has considered the differences between
classes in the feature discretization process rather than re-
lying on fixed, data-independent intervals; this results in a
highly discriminatory feature set. Weasel does not treat each
fixed-length window as an independent feature but uses win-
dows of different lengths and considers the windows’ order.
Weasel applies aggressive statistical feature selection instead
of simply using all features for classification; this results
in smaller function space and dramatically reduces runtime
without sacrificing accuracy Schäfer and Leser [2017].

3.4.4 Time series forest (TSF)

Tree-ensemble classifier: time series forest (TSF) employs
a new measure called the Entrance (entropy and distance)
gain to identify high-quality splits, such as using entropy gain
and two One-nearest-neighbor with dynamic time warping
algorithms Xi et al. [2006]. Using a random feature sam-
pling strategy, TSF has computational complexity linear in
the time series length. Firstly, TSF uses a new splitting cri-
terion named Entrance gain that combines the entropy gain
and a distance measure to identify high-quality splits. Ex-
perimental studies on 45 benchmark data sets show that the
Entrance gain improves the accuracy of TSF. Secondly, TSF
randomly samples features and thusmakes the computational
complexity linear in the time series length. In addition, each
tree in TSF is grown independently, and, therefore, modern
parallel computing techniques can be leveraged to speed up
TSF Deng et al. [2013].

3.4.5 k-NN for Time Series

Due to the importance of interpretation and insight, k-
Nearest Neighbour (k-NN) methods have a prominent po-
sition in data analysis. Because k-NN methods are translu-
cent, they deliver interpretable models. It also applies to
time series analysis, where a side-by-side comparison of time
series can demonstrate similarities and differences between
methodologies. Nevertheless, when using k-NNmethods for
time series analysis, there are extra challenges in developing
metrics that can truly capture the similarity between time se-
ries. Two-time series can still be similar if one is stretched or
shifted relative to the other. It could also be that the similar-
ity depends on short or even tiny signatures in the time series
Mahato et al. [2018].

3.4.6 Arsenal

It is an ensemble of Rocket transformers using a Ridge
classifier with built-in cross-validation. Rocket (Random
Convolutional Kernel Transform) transform time series us-
ing many random convolution kernels, i.e., H. Kernels with
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random lengths, weights, warping, dilation, and padding.
The transformed features are used to train a linear classi-
fier. The Rocket and logistic regression combination form a
single-layer convolutional neural network with random ker-
nel weights, and the transformed features form the input to
the trained softmax layer. However, it uses a ridge regression
classifier on all but the most extensive datasets. It has the
advantage of fast cross-validation on the regularization hy-
perparameters (and no other hyperparameters). Nonetheless,
logistic regression trained with stochastic gradient descent
is more scalable. Extensive datasets use logistic regression
when the number of training samples is significantly larger
than the number of features Dempster et al. [2020].

4 Evaluation
This section describes the methodology and performance
metrics used to evaluate the predictors for NTL detection.
We compared the performance results obtained with the algo-
rithmwith other TSC and non-TSCML algorithms. We used
the following performance metrics: Precision, F1-Score, Ac-
curacy, FPR, Recall, and Area Under the Curve (AUC) to
evaluate the effectiveness of the Ensemble algorithm. More-
over, this is an open-source project available on GitHub1.

4.1 Evaluation Methodology and Metrics
We evaluate the algorithms proposed in the python language.
We used the sktime Löning et al. [2019], a python pack-
age popular for tasks involving time series such as forecast-
ing, classification, regression, clustering, outlier detection,
anomaly detection, and segmentation. The package reunites
many state-of-art algorithms that are recurrent in the time se-
ries literature. We also consider other package modules for
data analysis, such as pandas and NumPy for data manipula-
tion, matplotlib for plotting, and sci-kit-learn for evaluation.
We followed the methodology for fraud detection as a ser-

vice for EMLF introduced in Section 3.2 and depicted in Fig-
ure 2. In this sense, we selected the parameters of the ensem-
ble learning grid search based on tools for hyperparameter
tuning. As mentioned earlier, ML boils down to comparing
different models and trying to find the best one that works.
Furthermore, they are chosen individually for each algorithm
used in the ensemble. First, we try tomaximize the efficiency
of these algorithms individually. We then compare the im-
pact of each algorithm on the ensemble by choosing the best
set of weights for the algorithm. Table 2 shows the best set of
parameters tested for each ML technique and also for the en-
semble, where the values from left to right describe weights
for Catch22, Weasel, TS forest (TSF), k-NN for TS, and Ar-
senal, respectively.
The models were assessed using the blocking time series

split cross-validation (CV) strategy with five folds for each
user, for every user in the dataset. Cross-validation is im-
portant because the performance variance is reduced as the
model is evaluated several times per user, providing more re-
liable results when compared to a single ensemble runMaleki
et al. [2020]. For each metric, we extract variation of the CV

1https://github.com/Euronym/predictive-fraud-detection-smart-grids

Table 2. Table of Parameters

Classifier Predictor

SVM
C = 100
kernel = rbf
gamma = 0.1

Signature

estimators = 100
estimator = Random Forest
window depth = 3
depth = 4

CatBoost estimators = 150
LightGBM estimators = 150
XGBoost estimators = 150

Catch22 estimators = 200
estimator = Random Forest

Arsenal

kernels = 1000
transform = rocket
estimators = 25
estimator = Ridge Classifier

k-NN neighbors = 1
distance = DTW

Weasel
binning strategy = information gain
window increment = 2
bigrams = true

strategy’s iterations that represent the standard deviation of
each one. The standard deviation is a measure of how dis-
persed the data is in relation to the mean. Low standard de-
viation means data are clustered around the mean, and high
standard deviation indicates data are more spread out. Hence,
the statistics obtained provide a better insight into the actual
performance than a single run of the ensemble.
We considered the following metrics to evaluate the per-

formance of the analyzed fraud detection method: Precision,
F1-Score, Accuracy, False Positive Rate (FPR), Recall, and
AUC. For that, we used True Negative (TN) and False Neg-
ative (FN) too. Precision tries to answer the question: what
proportion of attributes are correctly identified? Another
way to express accuracy is the overall ratio of True Positives
(TP) to predicted positives. Precision considers the number
of features correctly assigned to a given class versus the num-
ber of correct and incorrect assignments False Positive (FP).
Precision measures the correctness of the classifier and the
correlation of the positive classification, which is computed
based on Eq. (13). Higher Precision means more true posi-
tives and fewer false positives.

Precision = TP

TP + FP
(13)

On the other hand, the F1-Score is used to assess the data’s
positive predictive value and sensitivity to find some balance
when using the harmonic mean. The F1 score is the most ap-
propriate metric for imbalanced datasets representing differ-
ent class distributions among the five performance metrics.
The F1-Score is the weighted average of the Precision, where
the first value is the ratio of the number of correctly predicted
positive observations to the total number of positive observa-
tions, as shown in Eq. (14).

F1 − Score = 2 ∗ Recall ∗ Precision

Recall + Precision
(14)
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Accuracy is a metric used to evaluate classification mod-
els. The accuracy increases with values of the parameter and
stabilizes when reaching the optimal point. The best param-
eter values obtained in this step are used in the remaining of
the experiments Belhadi et al. [2021a]. Informally, accuracy
is the score our model predicted correctly. Accuracy has the
following definition: accuracy means correct predictions, to-
tal predictions. The false-positive rate is a metric that can
assess the accuracy of ML. A model must know ”basic re-
ality” or the real state of affairs to measure its true accuracy.
The model’s accuracy can then be directly assessed by com-
paring the model’s output with the ground truth.

Accuracy = TP + TN

TP + TN + FP + FN
(15)

FPR evaluates false positives, i.e., misclassified samples
as fraudulent. FPR is proportional to the additional cost
incurred by the utility because a team was mistakenly dis-
patched to a frequent visitor inspection. Of course, this is
also very annoying for misidentified clients.

FPR = FP

FP + TN
(16)

Recall calculates how many of the Actual Positives our
model capture by labeling it as Positive (True Positive), com-
puted according to Eq. (17). Applying the same understand-
ing, we know that Recall shall be the model metric we use
to select our best model when there is a high cost associated
with a False Negative. For instance, in fraud detection, If a
fraudulent transaction (Actual Positive) is predicted as non-
fraudulent (Predicted Negative), the consequence can be ter-
rible.

Recall = TP

TP + FN
(17)

Finally, the AUC spans true positive and false positive
rates and varies between 0 and 1, as in Eq. (18). AUC is an
excellent metric for evaluating imbalanced databases. The
higher the AUC, the more correctly the predictor can predict
the outcome.

AUC =
∫ 1

x=0
Recall(FPR−1(x))dx (18)

4.2 Analysis for each classifier to detect fraud
Figure 15 shows the precision performance of all the classi-
fiers implemented for NTL detection. By analyzing the re-
sults, we can conclude that the precision results closely fol-
low the recall results that will show next, which corroborates
with the possibility of adopting TSC classifiers for NTL de-
tection. It is important to highlight that HybridForest also
shows better Precision than the classifiers analyzed. Specif-
ically, HybridForest provides average precision results of
80.46 %, which is in the average 8% and 5% higher com-
pared to CatBoost (i.e., the best-performing conventional
classifier) and Signature (i.e., the best-performing TSC clas-
sifier), respectively. On the other hand, in the best results of
standard deviation, HybridForest provides precision is 4%

and 3% higher compared to CatBoost and Signature, respec-
tively. Finally, in the worst results, we are higher 2% with
the average standard deviation compared to Signature and
4% to CatBoost. Based on the analysis of precision results,
it is possible to conclude that HybridForest achieve a higher
probability of randomly selecting a relevant sample, i.e., the
number of hits returned that was TP or TN.
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Figure 15. Precision for different TSC algorithms for fraud detection

Figure 16 presents the F1-Score for the analyzed NTL
detection predictor. Accordingly, HybridForest provides a
high ratio of correctly predicted positives to the total num-
ber of real positive samples, suggesting a high recall and pre-
cision. The F1-Score performance confirms the benefits of
HybridForest predictor compared to the predictors analyzed
for NTL detection. Hence, the F1-Score results mean that
HybridForest is efficient for both detecting frauds and for
correctly identifying honest data samples because Hybrid-
Forest considers the temporal nature of energy consumption
data in the pre-processing, training, testing, and validation
steps, and also employs different TSC classifiers to create
an ensemble predictor. The F1-Score average results of Hy-
bridForest is 7% and 4% higher compared to CatBoost (i.e.,
the best-performing conventional classifier) and Signature
(i.e., the best-performing TSC classifier), respectively. On
the other hand, in the best results of standard deviation, Hy-
bridForest provides F1-Score 4% and 3%higher compared to
CatBoost and Signature, respectively. Finally, in the worst
results, HybridForest is 1.5% higher with the average stan-
dard deviation compared to Signature and 3% to CatBoost.
As the results go by, we realize that algorithms with a low
number of features extracted from the data tend to obtain
lower values for attacks with more sensitive data to be de-
tected.
Figure 17 shows accuracy for the analyzed NTL detec-

tion predictor. Based on the results, we can conclude that
the HybridForest with your better accuracy than the classi-
fiers analyzed. Specifically, HybridForest provides an aver-
age accuracy results of 77.33%, which is around 8% and 5%
higher compared to CatBoost (i.e., the best-performing con-
ventional classifier) and Signature (i.e., the best-performing
TSC classifier), respectively. On the other hand, in the best
results of standard deviation, HybridForest provides accu-
racy 4% and 3% higher compared to CatBoost and Signature,
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Figure 16. F1-score for different TSC algorithm for fraud detection

respectively. Finally, in the worst results, we are higher 2%
with the average standard deviation compared to Signature
and 4% to CatBoost.
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Figure 17. Accuracy for different TSC algorithm for fraud detection

Figure 18 illustrates the FPR results, which directly cor-
relate to the inspection costs incurred by utility companies.
A small FPR value represents a small number of false detec-
tion. The FPR results also show the benefits of HybridForest
for fraud detection compared to the predictors analyzed be-
cause HybridForest consider the temporal nature of energy
consumption data and uses different TSC classifiers to create
an ensemble predictor. For instance, HybridForest provides
an average FPR results is 33% and 128% lower compared to
CatBoost (i.e., the best-performing conventional classifier)
and Weasel , respectively. HybridForest achieved a signifi-
cantly lower FPR, in the best results of the standard deviation
of 0.001 compared to 0.004 of Signature, four times lower.
Those results corroborate our method’s validity because it
achieved very low FPR values compared to other NTL de-
tectors, regardless of the classifier.
Figure 19 shows the recall performance of all the classi-

fiers implemented for NTL detection. The recall is the most
used performance metric for NTL detectors, and high recall
values indicate that the predictor is efficient for fraud detec-
tion. By analyzing the results, we observed that all individual
TSC-based predictors (i.e., Catch, Weasel, KNN, SVM, and
Arsenal) performed worst when compared to conventional
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Figure 18. FPR for different TSC algorithm for fraud detection

classifiers (i.e., XGBoost, CatBoost, and LightBoost), and
HybridForest yields the highest recall performance. Hybrid-
Forest has an average recall results of around 8 % and 5 %
higher compared to CatBoost (i.e., the best-performing con-
ventional classifier) and Signature , respectively. HybridFor-
est provides Recall in the best results of the standard devia-
tion of 3% higher compared to Signature and 4% to CatBoost.
In the worst results, 1.5% to Signature and 4% to CatBoost.
Based the evaluation results, we can conclude an ensemble
predictor (combining different TSC classifiers) produces a
more robust and accurate predictor. Consequently, we can
classify user samples with ease based on the recall.
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Figure 19. Recall for different TSC algorithm for fraud detection

4.3 Analysis for each classifier to detect each
kind of fraud

We created two categories to analyze the ROC curve, i.e.,
easy attacks to be classified and difficult ones. We divide it
into two categories to enable better visualization of ROC re-
sults and to show the impact of HybridForest to classify each
kind of fraud regardless of their characteristics. It is because
there are frauds that are very different from regular consump-
tion, thus facilitating their detection, and others are called
smart frauds that try to imitate the characteristics of regular
consumption. Figures 20 and 21 show the ROC curves for
each class predicted for HybridForest, TSC-based predictors
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with the best performance (i.e., Signature), and the conven-
tional classifiers (i.e., XGBoost). The ROC curve illustrates
the relationship between recall and FPR, where an optimal
result should achieve the highest possible recall value while
maintaining the lowest possible FPR.We can observe that the
performance varies among the different predictors and also
among the different classes (i.e., honest data and twelve dif-
ferent types of Attacks described by Eqs. 1-12). It is due to
each class having different patterns and characteristics. Hon-
est and fraudulent f1 data follow the same consumption pat-
tern but with different amplitudes. It makes it difficult for
predictors to distinguish one class from the other, especially
when it started before the observation window Chuwa and
Wang [2021]. Attack 4 has the worst performance regardless
of the predictor. It is important to highlight that some pre-
dictors yield different performance results for attacks, e.g.,
HybridForest results in an AUC of over 80% to identify At-
tack 7, while XGBoost and Signature yield an AUC value of
under 70% for the same class.
In Attack 9, the actual samples are replaced by their mean

value Jokar et al. [2016], which facilitates prediction. In addi-
tion, Attack 12 can be easily detected because it occurs when
an attacker switches their consumption pattern to a user with
a low consumption pattern Yip et al. [2018]. In this way,
for both Attacks 12 and 9, the Attack patterns yield the best
results, i.e., high recall and low FPR (close to 1), regard-
less of the predictor. Finally, Attack 3 multiplies each me-
ter reading xt by a different real pseudo-random number βt

between min and max values in a predetermined interval.
Specifically, the Attack level increases as βt value decrease.
It means the NTL might not occur continuously, and there
may be some discontinuous reporting of “fraudulent” values.
Therefore, the user produces different reduction rates across
measurements in this attack pattern. It confuses conventional
classifiers incapable of accounting for the time-dependent na-
ture of the data and processing it point by point. Therefore
conventional classifiers will not be able to discern between
this type of Attack and honest samples readily.
We can also observe that honest data and Attack patterns

1, 4, 6, 8, and 11 have the worst results compared to other
classes (i.e., 2, 3, 5, 7, 9, 10, and 12), regardless of the predic-
tors. For instance, the XGBoost predictor in Figure 20c and
21c shows the worst results for honest data and Attack pat-
terns in the 3 for easy and 4 for hard classes compared to the
remaining classes. The curves for these classes take longer
to reach the maximum value on the y-axis, which means that
these classes have a lower recall than the others, i.e., a lower
detection rate. On the other hand, detecting Attack patterns 2,
5, 7, and 9 for easy classes and Attack patterns 1, 6, and 8 for
challenging classes show better performance, as their curves
illustrate, in most cases, higher than the average curve of all
classes. It demonstrates that it is easier to make predictions
for those classes, i.e., they have a higher detection rate.
By analyzing the results of each predictor, we conclude

that HybridForest obtained high performances regardless of
the classes, reaching the maximum y-axis value very quickly,
especially for Attack patterns 2, 5, and 9 for ROC easy and
1, 6, 8 for ROC hard. It is attributed to HybridForest rely-
ing entirely on TS data processing combined with an ensem-
ble predictor. On the other hand, the individual TSC-based

predictor (i.e., Signature) also obtained reasonable results to
detect each Attack pattern because they were specifically de-
signed to process TS data. Lastly, the Conventional predic-
tor (i.e., XGBoost) showed the worst performances because
they treated the data in a tabular format, which can hinder
classification for this application.
We conclude from the analysis of the results obtained that

HybridForest achieved a higher Recall, precision, and F1-
score compared to the other predictors. In addition, Hy-
bridForest outperformed all the other detectors in terms of
FPR (i.e., 1.9), which directly translates into tangible bene-
fits (such as the reduction of inspection costs) to utility com-
panies as an expected trade-off for a more comprehensive
and practical NTL predictor. Usually, binary NTL detectors
group all Attack patterns in a single class, which can confuse
the predictor by having different patterns being part of the
same class, which increases FPR values. In this context, Hy-
bridForest took advantage of the time dependence inherent
to time series in the classification process. Therefore, our
methodology not only brings benefits to utility companies
but also improves NTL detection. It is achieved by explor-
ing the available data in novel ways and by employing and
combining the most recent resources for classification prob-
lems more efficiently to detect specific types of NTL.

5 Conclusion
Despite many efforts to detect fraud, the challenge remains
an open issue. In this article, we presented a heterogeneous
ensemble predictor for NTL detection as a use case in our
IoSGT system with ML framework at the network edge. Hy-
bridForest relies on the heterogeneous Ensemble to perform a
multi-classification of fraudulent users (i.e., classifying sam-
ples as honest or as a specific type of fraud) with high perfor-
mance against other methods such as SVM, XGBoost, Cat-
Boost, LightBoost to identify specific types of fraud. In addi-
tion, we consider that frauds in the electrical system are not
only binary, and our predictor can also classify these varia-
tions among frauds and their different unique aspects. In this
context, the Edge Cloud DC hosting HybridForest identifies
specific types of fraud and considers the temporal nature of
energy consumption data in the pre-processing, training, test-
ing, and validation stages while considering different TSC
classifiers to create an ensemble predictor.
For evaluation, we considered the Irish dataset as input

into our IoSGT system, which has a considerable number
and type of customers, and a long duration of measurements.
This database stored in IoSGT includes only honest consump-
tion data because it was generated in a scenario of uninter-
rupted monitoring of known customers who earlier accepted
the terms of the compact and who had to respond to a ques-
tionnaire before and after the measuring period. The EMLF
counted twelve types of fraud already described in the liter-
ature in this dataset to create a synthetic dataset with honest
and fraudulent consumers. In this context, we can determine
different types of fraud, whereas existing related works only
make binary categories (fraudulent and non-fraudulent). We
also followed the method adopted in similar works, where
the fraudulent data generated were randomly selected among
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Figure 20. ROC for different TSC algorithm to detect each type of easy Attack
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Figure 21. ROC for different TSC algorithm to detect each type of hard Attack

users. It is essential because fraudulent samples are heavily
unbalanced and must be used by ML algorithms.

The algorithm employs TS of user consumption data to
build a predictor capable of classifying samples as honest or
a specific type of fraud. We tested and compared multiple
TSC algorithms in our experiments. The TSC algorithms per-
formed better than the conventional classifiers for all metrics,
demonstrating the benefits of using this classifier to create a
prediction for NTL detection. By employing TSC classifiers
to build an ensemble predictor , we obtained a performance
improvement with an FPR value equal to 1.9% and precision
of 80.5% for heterogeneous data and kinds of frauds. The al-
gorithm focuses on TS data, which enables the development
of a method that better interprets real-world scenarios and
is more error-resistant. For future work, we aim to evaluate
other aspects from the network point of view, such as mem-
ory (execution and persistent data storage), CPU, and time
response. In addition, we could evaluate other aspects of the
cloud can directly impact the training time of the ensemble.
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