
Journal of Internet Services and Applications, 2023, 14:1, doi: 10.5753/jisa.2023.3207
 This work is licensed under a Creative Commons Attribution 4.0 International License.

NetOr: A Microservice Oriented Inter-Domain Vertical Service
Orchestrator for 5G Networks
Rafael Direito [Instituto de Telecomunicações and Universidade de Aveiro | rdireito@av.it.pt]
Daniel Gomes [Instituto de Telecomunicações and Universidade de Aveiro | dagomes@av.it.pt]
João Alegria [Instituto de Telecomunicações and Universidade de Aveiro | joao.p@av.it.pt]
Daniel Corujo  [Instituto de Telecomunicações and Universidade de Aveiro | dcorujo@av.it.pt]
Diogo Gomes [Instituto de Telecomunicações and Universidade de Aveiro | dgomes@av.it.pt]

 Instituto de Telecomunicações, Campus de Santiago, Universidade de Aveiro, Aveiro, Portugal.

Received: 01 March 2023 • Accepted: 05 June 2023 • Published: 12 September 2023

AbstractMost modern 5G Vertical Service Orchestrators present various limitations. Among these, one may high-
light (i) the employment of monolithic architectures, (ii) the lack of standardized APIs and methodologies, (iii)
the minimum support for inter-domain scenarios, and (iv) the impossibility of performing run-time operations over
Vertical Services. To achieve a fully-fledged Vertical Service Orchestrator, these problems must be solved. This is
the focus of the work presented in this article. Our work presents a new 5G Vertical Service orchestration system
named NetOr, which tackles all the listed limitations and can support complex and intricate use cases. NetOr was
implemented according to a microservice architecture. Thus, it has increased flexibility, scalability, and maintain-
ability. Moreover, NetOr inherited most advantages of the modern Vertical Service Orchestrators and, therefore,
can be considered an improvement of said orchestrators. Furthermore, this work also presents a Proof-of-Concept
solution to achieve inter-domain communication through the orchestration of an End-To-End Network Slice that
establishes several VPN tunnels between the domains encompassed by the Network Slice.

Keywords: 5G, Vertical Service, Orchestrator, Inter-Domain, Slicing, Microservices, NFV

1 Introduction

In addition to being a new generation of radio networks,
Fifth Generation (5G) technologies take into account key ba-
sic concepts such as Service-based Architectures, Software-
Defined Networks (SDN), Network Functions Virtualization
(NFV), and End-to-End (E2E) Network Slicing (Erunkulu
et al., 2021). These technologies foster the virtualization of
specialized network gear, lowering infrastructure costs while
expanding the number of scenarios supported without mod-
ifying the infrastructure. With the expansion of NFV and
the attempts to support and integrate such technologies, more
complex scenarios and services emerged.
Some of these include inter-domain, in which an E2E ser-

vice crosses multiple administrative domains, extending the
service’s coverage area. These scenarios are highly valu-
able for specific Vertical sectors. An example of one Ver-
tical sector that may heavily leverage inter-domain scenarios
is the transportation one. In this sector, most times, there
are geographically distributed assets. Furthermore, the dif-
ferent geographical regions where the assets are distributed
across, may be controlled by different operators (Fonseca
et al., 2021). Thus, this Vertical Sector requires E2E Ver-
tical Service orchestration mechanisms, that can coordinate
and manage services distributed among different domains.
To deploy a fully-fledged E2E inter-domain Vertical Ser-

vice across several administrative domains with no prior
knowledge of each other, a new strategy is required. This ap-
proach largely relies on network slicing capabilities for seg-
menting the whole network, which includes the Radio Ac-

cess Network (RAN), the Transport Network (TN), and the
Core Network (CN). In this scenario, the network slice is
an entity that encompasses and administers various network
services or other network slices, playing an important part in
the establishment of inter-domain vertical services.
Solutions and systems to handle these scenarios already ex-

ist, although they are restrictive or in their early stages. Most
of the existing inter-domain solutions are offered as mono-
liths, and thus cannot scale when a high number of services
is being orchestrated/managed, which is restrictive. Further-
more, most existing solutions suffer from insufficient inter-
domain support, being very limited in the actions they can
perform over the services distributed across the different do-
mains. Lastly, one of the most troublesome drawbacks of the
current solutions is the fact that they do not contemplate well-
accepted network slicing standards. This makes it extremely
complicated to integrate these solutions with network slic-
ing systems, and thus reduces the impact and the adoption of
such solutions.
Vertical Service orchestrators may be extended to deliver

distributed inter-domain vertical services since they can han-
dle the instantiation and administration of these services ef-
fortlessly. However, the previously mentioned issues (fur-
ther described in Section 2) may risk the proper construction
and maintenance of E2E inter-domain services.
With this work, we aim to address the shortcomings of

today’s Vertical Service orchestrators by presenting a Proof-
of-Concept (PoC) for a new E2E Slicing Platform. This Plat-
form was developed through a service-oriented architecture,
resulting in better maintainability, flexibility, and scalability.

https://doi.org/10.5753/jisa.2023.3207
https://orcid.org/0000-0002-9094-4659
mailto:rdireito@av.it.pt
https://orcid.org/0000-0002-5400-3210
mailto:dagomes@av.it.pt
mailto:joao.p@av.it.pt
https://orcid.org/0000-0002-7484-1027
mailto:dcorujo@av.it.pt
https://orcid.org/0000-0002-5848-2802
mailto:dgomes@av.it.pt

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

Furthermore, our solution addresses most of the problems
the existing inter-domain solutions suffer from, providing (i)
adequate support for inter-domain, (ii) network slicing mech-
anisms that obey the current slicing standards, and (iii) mech-
anisms to perform run-time operations on Vertical Services,
for instance. We consider our solution to be novel in the way
it offers a fully-fledged system that does not suffer from the
various problems addressed before.

The paper is arranged as follows. Section 2 discusses and
contrasts the current State of the Art (SotA) to modern Ver-
tical Service Orchestrators. Section 3 presents NetOr; a Net-
work Orchestrator developed to address the issues identified
and discussed in Section 2. Section 4 describes the proce-
dures for providing multi-domain E2E slices, and Section
5 presents the achieved results. Finally, Section 6 provides
some concluding remarks.

2 Related Works
This Section examines multiple Vertical Service orchestra-
tors, outlining how they orchestrate E2E Vertical Services
and describing their strengths and weaknesses. Furthermore,
it also comprises some solutions that, although they cannot
be considered fully-fledged Vertical Service orchestrators,
address network slicing and inter-domain orchestration.
The literature review methodology consisted on a Scopus

search for ”NFV”, ”5G”, ”MANO”, ”OSS” and ”BSS” key-
words (take into consideration that both the abbreviated and
expanded form of the acronyms were searched). Our ini-
tial Scopus search resulted in 94 works, published between
2016 and 2022. Then, the abstracts of these articles were
screened for the foundational principles associated with our
work, which allowed us to reduce our initial list of 94 arti-
cles to 22 works. This filtered set of papers was thoroughly
analized, selecting the ones that provided novel insights, ap-
proaches or addressed critical challenges associated with the
work, leading to the final list of nine selected papers.

We now move on to further elaborate on the Vertical Ser-
vice orchestration systems that resulted from our SotA re-
search strategy.

2.1 Openslice
Openslice, a 5GinFIRE1 spinoff, offers an open-source Op-
erations Support System (OSS)/Bussiness Support System
(BSS) platform. It also allows users to onboard Virtual
Network Functions (VNFs), Containerized Network Func-
tions (CNFs), and Network Services (NSs), as well as
instantiates NSs. Moreover, it provides TMForum2 Open
APIs for Service Catalog Management, Ordering, and more.

Openslice defined some abstractions over the VNFs,
CNFs and NSs complexities, allowing verticals to request a
given service in the most seamless way possible, focusing
solely on the problem’s logic. The first abstraction is the
Service concept, which enables abstracting all underlying
complexities and allows for the provision of a single, co-
herent, and precise service that is ready to be instantiated

1https://5ginfire.eu/
2https://www.tmforum.org/

and deployed. Other concepts include Resource Facing Ser-
vices (RFSs), which encapsulate all services that are directly
connected to the infrastructure (such as Network Service
Descriptors (NSDs)) and Customer Facing Services (CFSs)
that encapsulate all services and specifications that interact
directly with the user. RFSs and CFSs are both crucial parts
of the Service concept. To design a Service, a CFS Specifi-
cation must be developed, which may include Service Spec-
ification Relationships to connect RFSs to CFSs (Tranoris,
2021). Furthermore, Openslice also includes two special-
ized web portals to simplify the client’s interaction with the
system.
This platform has the benefits of high-level Service ab-

straction, segregation of customer/resource facing services,
and specialized individual Web Portals. The downsides of
this system are its lack of network slicing capabilities, low
multi-domain support, and monolithic design.

2.2 ONAP
Open Network Automation Platform (ONAP) is an open-
source platform that enables quick administration of services
and their lifecycles through real-time, policy-driven orches-
tration, management, and automation of network and edge
computing services (Rodriguez et al., 2020). It offers E2E
5G Network Slicing, in which an E2E Slice is defined as
a network service consisting of RAN, TN, and CN slice
subnets. ONAP relies on the three layers of slice manage-
ment functions specified in 3GPP TR 28.801 (3GPP, 2018)
to provide Network Slicing. These functions include an inter-
nal Communication Service Management Function (CSMF),
a Network Service Management Function (NSMF), and
a Network Slice Subnet Management Function (NSSMF).
However, ONAP also permits the employment of external
NSSMFs, which is made feasible via an adapter created par-
ticularly to handle this feature. ONAP additionally provides
transparentmonitoring ofNetwork Slice Instances (NSIs) via
slice management interfaces that expose a huge variety of
Key Performance Indicatorss (KPIs), allowing for the contin-
uous and comprehensive monitoring of these slices. On top
of these KPIs, it is possible to specify many Service Level
Agreements (SLAs) and rules, which ONAP will then use to
avoid the deterioration of NSIs (Rodriguez et al., 2020).
To do this, the creation, administration, and operation

of network slices are delegated to a multitude of internal
ONAP components: (i) the Service Orchestrator (SO), which
prompts the creation, update, and termination of services; (ii)
the ONAP Optimization Framework (OOF), which is meant
to provide a policy-driven placement of VNFs throughout
multi-domain infrastructures, but has not been fully ex-
ploited; (iii) the SDN Controller (SDN-C), which provisions
and administrates network resources and (iv) the Application
Controller (APP-C), which manages the lifecycle of VNFs
and (v) the Active and Available Inventory (AAI), which
monitors the services and resources in real-time.

2.3 Free5GMano
Another approach to the coordination of network slices’ life-
cycles is presented in (Chang and Lin, 2021). There, the au-

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

thors suggest the integration of a Management and Orches-
tration (MANO) with an OSS/BSS system to achieve such
coordination. This system relies on open-source solutions,
such as free5GMANO, Openstack, Tacker, and free5GC.
Free5GMANO is the solution’s OSS/BSS. However, only
its NSSMF was fully integrated within the presented sys-
tem. Regarding the solution’s MANO components, the Net-
work Function Virtualization Orchestrator (NFVO) was pro-
vided through Tacker, while the Virtual Infrastructure Man-
ager (VIM) relied on Openstack. Finally, free5GC was em-
ployed to enable the 5G Core Network provision.
To offer all intended functionalities, the authors of

(Chang and Lin, 2021) developed new protocols and inter-
faces. These aimed to facilitate communication between the
MANO and the OSS/BSS, which resulted in a cooperative
workflow. One of the authors’ desired functionalities was
the integration of the Element Management System (EMS)
with the employed OSS. However, such functionality was
not provided by free5GMANO and thus had to be imple-
mented by them. This integration enabled the provisioning
of 5G Network elements through the OSS by having this sys-
tem activate the EMS and afterward send a request toMANO.
Consequently, the MANO allocates the required virtualized
resources and takes control of the remaining Network Ser-
vices’ lifecycle. This lifecycle includes (i) instantiating, (ii)
supervising, and (iii) healing. Moreover, the authors’ solu-
tion also offers fault tolerance mechanisms to handle VNFs
failures. To this end, two types of VNF failure causes were
identified: virtualized resources and VNF-specific failures.
A monitoring service was then designed and integrated with
the MANO’s Virtual Network Function Manager (VNFM)
to monitor virtualized resource failures. Besides detecting
faults, this service also provides recovery mechanisms to
deal with them.
The solution showcased in (Chang and Lin, 2021) heavily

profits from its automation, interoperability, and improved
resource utilization. However, some issues are yet to be ad-
dressed. The solution can only provision 5G local network
slices rather than end-to-end ones. Additionally, it needs to
provide more abstraction for the Verticals to deal with the
intrinsic complexities of managing NFV artifacts and their
requirements. Such abstraction could have been achieved
through Vertical Service Blueprints (VSBs) and Vertical Ser-
vice Descriptors (VSDs). Finally, only Tacker is supported
as the solution’s NFVO. This system is rather limited when
compared to Open Source MANO (OSM) and ONAP. Thus,
it restricts the potential of the developed solution.

2.4 Decoupled Inter-Domain Framework for
NFV MANO

The authors of (Choi et al., 2022) proposed a cloud-native
federation and orchestration framework for managing and
orchestrating inter-domain NFV environments. This frame-
work enabled decoupling the federation processes from the
orchestration one across networks and cloud and edge do-
mains. To this end, the overall framework comprises two
internal frameworks: the federation framework and the or-
chestration one.
The federation framework employs hierarchical brokering

and distributed binding. Hierarchical brokering is supported
by a publish/subscribe paradigm to enable the exchange of
abstracted information related to accesses, connectivity, cat-
alogs, and blueprints. Furthermore, this framework mini-
mizes overhead costs and enables a more flexible federation
across domains.
The orchestration framework is responsible for resource

and services provisioning, configuration, and life cycle man-
agement in a cross-domain environment. Besides this, it also
ensures that the resources and services being provisioned
meet the required SLAs. To achieve this, it performs admis-
sion control. This involves evaluating the availability of the
resources and services necessary to meet the defined SLAs.
Several advantages result from the solution proposed in

(Choi et al., 2022) and are mainly related to the management
and orchestration of services in inter-domain environments.
The strengths of this solution are (i) its compliance with Eu-
ropean Telecommunications Standards Institute (ETSI) NFV
standards, (ii) efficient resource usage, (iii) the abstraction
for Verticals through VSBs and VSDs, and (iv) the man-
agement and assurance of the Services’ SLAs. Regardless
of these advantages, the proposed system has several draw-
backs, including the lack of support for run-time operations
and not following the relevant network slicing Standards. De-
spite the authors’ assertions that the solution complies with
ETSI NFV standards, the network slicing mechanisms do
not.

2.5 Vertical Slicer - 5G-Transformer
The 5G-Transformer project was a 5G Infrastructure Pub-
lic Private Partnership (5G-PPP) initiative to enhance
the mobile transportation network and its transition into
a SDN/NFV-based network. Furthermore, it also ad-
dressed network slicing scenarios (de la Oliva et al., 2018).
This project developed a 5G platform comprised of three pri-
mary components: the Mobile Transport and Computing
Platform, the Service Orchestrator, and the Vertical Slicer.
The 5G-Transformer (5GT)-Vertical Slicer (VS) is the

system’s entry point for verticals and the OSS/BSS compo-
nent of the 5GT administrative domain. This entity coordi-
nates vertical services, making them accessible to verticals
via a high-level interface tailored to their logic and require-
ments (Mangues-Bafalluy et al., 2019). A vertical must ne-
gotiate a SLA with the 5GT platform, which is comprised
of a collection of Service Level Objectives (SLOs) specified
by verticals and centered on their service’s needs (for exam-
ple, the maximum desirable E2E latency). By jeopardizing
the technical behavior of the services, a degraded SLA can
pose significant issues for verticals. Sometimes, such degra-
dations may even affect the vertical’s reputation and com-
mercial leadership. The 5GT platform offers VSBs to deal
with the high-level abstraction that is required by verticals.
These blueprints can define a network service’s composition,
creating a scaffold ready to be used when that topology is
needed. As a VSB extension, a vertical may design a VSD.
This descriptor comprises Quality of Service (QoS) param-
eters, yielding a deployment procedure that instantiates the
established topology and respects the specified QoS values.
The platform links each VSD to network slices, which in the

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

5GT system are an extension of ETSINFVNSDs (de laOliva
et al., 2018).
The strengths of 5GT-VS include (i) the abstractions of

VSBs and VSDs over the intrinsic complexities, (ii) the pre-
liminary support of network slicing through extended NSDs,
(iii) the support for multi-domain, and (iv) the SLA manage-
ment. In regard to drawbacks, (i) the network slicing support
does not follow the current slicing standards, (ii) the multi-
domain support is rather restricted, (iii) and its architecture
is monolithic.

2.6 Vertical Slicer - 5Growth
5Growth (5GR) was another 5G-PPP initiative attempting
to expedite the adoption of 5G empowered vertical markets.
Its purpose was to validate 5G solutions from the technical
and business perspectives. Consequently, this project opted
to leverage the achievements and advancements in network
slicing, virtualization, and multi-domain solutions of phase 2
5G-PPP projects, such as 5G-Transformer and 5G-Monarch.
In addition, the project selected two ICT-17-2018 5G E2E
systems, namely 5G-EVE and 5G-VINNI, to test their im-
provements (5G-PPP, 2019). 5Growth aimed to support in-
dustry verticals by offering four key features: (i) a vertical
portal for bridging the gap between verticals and 5G facili-
ties, (ii) closed-loop automation, (iii) SLA control for the ser-
vices lifecycle, and (iv) an Artificial Intelligence (AI)-driven
E2E network solution to optimize access, transport, and core
networks, along with cloud, edge and fog resources, across
multiple domains and technologies(5G-PPP, 2019).
The 5GR project initially leveraged the 5G-Transformer

platform, to which expansions and improvements were
added. These improvements focused mainly on its build-
ing blocks (5GT-VS, 5GT-SO, and 5GT-Mobile Transport
and Computing Platform (MTP)). The enhancements com-
ply with both the functional and service requirements of
the project’s use cases. The platform work plan com-
prised twelve innovations, each chosen to address a spe-
cific deficiency in the underlying platform provided by
the 5G-Transformer project. As a continuation of this
project, 5GR inherited many of its advantages and flaws.
In addition to VSBs and VSDs abstractions over the in-
trinsic complexities and SLA management, the 5GR project
included network slicing according to standards and im-
proved multi-domain support (both in the Vertical Slicer and
the Service Orchestrator). However, 5GR’s architecture re-
mainedmonolithic, and since the added innovations were im-
plemented as add-ons, the final platform’s quality may not be
ideal.

2.7 Comparison of the Vertical Service Or-
chestrators

Having briefly introduced numerous Vertical Service orches-
trators and other network slicing and inter-domain orches-
tration tools, we can now summarize them, along with their
strengths and drawbacks, in Table 1. This summary aims to
make it easier to compare them. Furthermore, the last row of
Table 1 describes the solution proposed by this work - NetOr.
When compared to the SotA Vertical Service orchestrators,

currently, NetOr only does not offer SLA management capa-
bilities, even though we aim to provide such capabilities in
a near future, as addressed in Section 6. Sections 3 and 4
address how NetOr provides the remaining capabilities/func-
tionalities listed in Table 1.

3 Network Orchestrator(NetOr)
Considering the SotA vertical service orchestration solu-
tions, we defined a collection of issues that our PoC plat-
form should address: (i) non-standardized network slicing,
(ii) insufficient multi-domain support, and (iii) monolithic
architectures. In an effort to move forward the SotA,
we created Network Orchestrator (NetOr), a system that
provides an OSS/BSS system that operates on top of the
operator’s 5G infrastructures and services.
We do not consider NetOr to be a novel and revolution-

ary platform for network slicing. Instead, we consider it a
platform that improves the existing Vertical Service orches-
trators by mending some of their deficiencies.
A critical deficiency is the employment of monolithic ar-

chitectures by almost all SotA solutions. Even though some
vertical service orchestrators state their design is highly mod-
ular, many are comprised of various Java Springboot applica-
tions3, whichmust be deployed together. Thus, making these
orchestrators monoliths. However, monolithic applications
are not the best solution for the scalability, flexibility, and
maintainability required for this kind of orchestration system.
Considering network slicing, only ONAP, Free5GMano, and
5GR’s VS (through an add-on) provide mechanisms that fol-
low the current standards. This issue is highly critical since,
without support for current network slicing standards, the
interoperability and integrability of these orchestrators are
severely diminished. Lastly, regarding multi-domain sup-
port, only the 5GR-VS and the solution presented in (Choi
et al., 2022) provide adequate support. Still, in the case of
the 5GR-VS, this is offered through an add-on. Again, this is
a crucial problem because, without proper support for inter-
domain situations, intricate vertical use cases that need such
capabilities can be provided.

3.1 System Architecture
NetOr, by being an OSS/BSS system that operates on top
of the operator’s 5G infrastructures and services, abstracts
both the intrinsic operations required to establish a network
service, and the complexity of the infrastructure and network.
Furthermore, by providing such abstractions, it allows for the
end-users (vertical industry) to focus solely on designing and
developing the services and functions required to accomplish
the organization’s goals.
NetOr follows a microservice and event-driven architec-

ture. Each entity in the system is handled by a unique
component, which communicates with others through a cen-
tralized message bus to exchange event messages asyn-
chronously. Several studies have shown the relevance of
asynchronous communications in microservice architectures.

3https://spring.io/projects/spring-boot

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

Table 1. Comparative analysis of the presented solutions

Vertical
Service Or-
chestrator

VSBs and
VSDs

Abstraction

Web Portal Uses the
Defined
Slicing

Standards

Multi-
Domain

Support for
Network
Slices

Service
Oriented
Architec-
ture

SLA Man-
agement

Run-time
Operations
on Vertical
Services

Openslice

ONAP
(ONAP,
2022)

(ONAP,
2022)

Free5GMano

Decoupled
Inter-
Domain
Frame-
work

(Choi et al.,
2022)

Vertical
Slicer - 5G
Trans-
former

Vertical
Slicer -

5GROWTH

NetOr
(Proposed
Solution)

Currently
not

available

In (Shafabakhsh et al., 2020), the authors evaluate the trade-
off between synchronous and asynchronous communication
in inter-process communication. The results have shown that
asynchronous communication induces higher performance,
efficiency, and availability with a large scale of users. More-
over, in (Karabey Aksakalli et al., 2021), despite not reach-
ing a consensus regarding the ideal communication pattern,
the authors defend that synchronous communication induces
more coupling between services. Consequently, this com-
munication pattern may cause timeouts leading to the disrup-
tion of services. Such timeouts happen since the communica-
tion service must continuously be available to ”finish transac-
tions” (Karabey Aksakalli et al., 2021). NetOr’s architecture
makes the system more scalable, flexible, modular, and effi-
cient.

Distinct and isolated components compose the system, en-
abling it to scale a unique microservice if needed, easily cre-
ating more workers to manage and handle that specific set of
operations and entities. That was made possible by having
each microservice as a stateless component, meaning they
don’t need to persist any information. Whenever a microser-
vice needs to persist any information, it will store it in an
external memory cache or database, enabling a fault-tolerant
mechanism that guarantees data persistence even if the mi-
croservice fails at some point. Given such a loose coupling
between the services, scaling services in micro-service archi-
tectures is easier when compared to monolithic architectures

(Kalske et al., 2018). Thus, NetOr will present higher perfor-
mance with a large scale of Vertical Services instances com-
pared to other orchestrators in Section 2.

Flexibility is another system characteristic achieved again
by having separate and independent components. With
each microservice having a robust communication interface
aligned with the most recent standards, it allows a seam-
less replacement of any sub-component, given that the new
component provides the same functionalities and follows the
same interfaces and standards. With this flexibility, any mi-
croservice’s internal implementation can be quickly replaced
and updated without restrictions over the language or tech-
nologies used. This substitution can occur without interfer-
ing with the remaining system. Due to its decentralized na-
ture, microservice architectures adopt a “Decentralized Gov-
ernance” property. In other words, each system component
can be developed using its most suitable technology, lead-
ing to higher flexibility (Shakir et al., 2021). Such property
is not present in monolithic architectures where all system
modules must share the same underlying code basis, leading
to a lower capacity for replacing or adding new modules.

Modularity, although similar to flexibility, focus on allow-
ing an effortless addition of new components. With a cen-
tralized message bus containing all published events, a new
microservice can use that information and add new function-
alities to the system without impacting the remaining plat-
form. Even if the new component interacts with others, given

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

that the environment is as decoupled as possible, minimal
changes are needed. In addition, modularity also facilitates
removing any microservice, assuring the modifications to
the system are as minimal as possible. On the other hand,
in monolithic architectures, providing updates to the system
can be a complex process. As the code basis increases, it
becomes complex to maintain, deploy and scale the systems
that adopt monolithic architectures (Kalske et al., 2018). The
reason for such complexity is that the whole system must be
tested and redeployed again, making it impractical to make
small changes to the system in short periods (Kalske et al.,
2018).
Event-driven architectures prioritize asynchronous com-

munication by default. In contrast to a sequential approach,
asynchronous communications enable parallel processing,
resulting in enhanced performance and efficiency of opera-
tions in most scenarios. Because of its high scalability, Ne-
tOr can increase the performance of complex servicemanage-
ment operations compared to other orchestration platforms.
However, service-oriented architectures also have their lim-
itations. One of which is the necessity to exchange signifi-
cantly more messages over the network compared to mono-
lithic systems. This is due to the continuous information
flow between microservices. As a result, NetOr may not out-
perform monolithic Vertical Service Orchestrators if dealing
with minor system loads. Contrastingly, when dealing with
larger system loads, NetOr is expected to outperform the Ver-
tical Service orchestrators mentioned in Section 2, given the
high scalability provided by its microservice architecture.
NetOr is composed of 8 main components:

• VSB/VSD/Network Slice Template (NST) Catalogue:
Offers a centralized persistence layer responsible for
Create, Read, Update and Delete (CRUD) operations
on descriptors and templates related to Vertical Ser-
vices. These descriptors and templates are the follow-
ing: VSBs, VSDs, NSTs, NSDs, and Virtual Network
Function Descriptors (VNFDs), highlighting the VSBs.
A VSB is a template tailored for a specific vertical
service defined by an operator. Thus, it defines the
topology, QoS parameters, policies, and lifecycle de-
tails. Based on such blueprints, verticals can develop
VSDs, which are specifications of the determined ser-
vice structure and the QoS requirements their scenario
requires. Moreover, this service’s operations are sup-
plied via a REST API.

• Group/TenantManager: Handles both the groups and
the tenants of the system, providing an Identity Provider
(IdP) to authenticate tenant and group clients. Addition-
ally, the system users, i.e., tenant and group clients, are
handled through CRUD operations offered via a REST
API.

• Domain Manager: Manages all aspects related to do-
mains. Besides the CRUD operations that are offered, it
is also responsible for communicating with the orches-
tration entities accountable for handling each domain,
such as NFVOs and SDN controllers. Thus, the Domain
Manager deals directly with the NFV artifacts orchestra-
tion. Furthermore, this module is agnostic to technol-
ogy, allowing the integration with different solutions of

the orchestration services.
• Vertical Service Instance (VSI)/NSI Coordinator:
Responsible for triggering the VSI orchestration pro-
cesses. This component is in charge of keeping track of
each VSI’s record. Thus, the coordinator has full con-
text and observability about every aspect of all vertical
services, including their status. Similarly to the previ-
ously described services, it exposes a REpresentational
State Transfer (REST) Application Programmable In-
terface (API) to interact and trigger the operations pro-
vided.

• VSI/NSI LifeCycle Manager (LCM) Manager: Re-
sponsible for following up on the Vertical Services af-
ter their instantiation. It manages and operates the VSIs
and their sub-components, such as NSIs and NSs. To
enable these mechanisms, the LCM Manager creates a
new agent for each vertical service that manages all op-
erations related to it. Thus, such an agent handles the
VSI’s lifecycle.

• Placement Arbitrator: Processes all blueprints and de-
scriptors related to Vertical Services, defining each Ver-
tical Service sub-components deployment location and
possible restrictions. Furthermore, it considers dynami-
cally defined parameters during instantiation and SLAs
related to the tenant.

• Metrics Repository: Supports Vertical Service use
cases that require the Verticals to persist service metric.
Verticals can use these metrics to arbitrate over specific
service operations. As it is an optional service accord-
ing to each use case, this component is not an intricate
part of NetOr’s orchestration lifecycle.

• Domain Name System (DNS) Server: Allows for Ser-
vice Discovery mechanisms to be employed by the Ver-
ticals that use NetOr. Thus, it allows Verticals to imple-
ment Service Discovery in their services. Furthermore,
Vertical Service developers may lean on Internet Engi-
neering Task Force (IETF)’s RFC 6763(Cheshire and
Krochmal, 2013) to standardize their solution’s DNS-
Based Service Discovery (SD).

Additionaly, when designing NetOr, we also aimed to pro-
vide a straightforward interaction between the verticals and
our system. Therefore, a web portal was also developed to
facilitate interaction between the NetOr system and vertical
users. Through a basic graphical interface, the portal dis-
plays all available activities in the most straightforward man-
ner feasible while greatly abstracting the underlying intrica-
cies of orchestrating vertical services.
Figure 1 presents NetOr’s architecture.
We now move on to present an overview of an internal

workflow of NetOr, describing all the messages exchanged
between its components.
The Instantiation of Vertical Services is achieved through

a complex workflow between NetOr’s components. Once
the Coordinator receives a request to instantiate a new VSI,
a new zone in the DNS Server is created. The created zone
only concerns the newly created VSI for Service Discovery
purposes. Consequently, the Coordinator will notify the re-
maining services related to the VSI Creation via the message
bus, preparing them to start performing their duties. For in-

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

Figure 1. NetOr’s Architecture

Figure 2. NetOr’s VSI Instantiation Workflow

stance, the Catalogue will collect the VSI Blueprints and De-
scriptors information and send it to the LCM Manager and
Tenant. TheDomainManager and Tenant will also gather the
information related to the Domains required and Tenants in-
volved and send it to the same components. Upon receiving

the information from (i) the DomainManager, (ii) the Tenant,
and (iii) the Catalogue, the Placement Arbitrator can define
each Vertical Service sub-component deployment location.
The result of such a task is then sent to the LCM Manager
to start the VSI sub-components Instantiation. To do so, the

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

LCMManager creates an agent, as mentioned earlier, which
interacts with the Domain Manager. Subsequently, the Do-
main contacts each Domain’s NFVO to deploy the required
services at the Domain’s VIM. This workflow is illustrated
in Figure 2.

3.2 APIs and Data Models

There are two independent NetOr interfaces that must be stan-
dardized. These are NetOr’s Northbound Interface (NBI)
and Southbound Interface (SBI). The NBI had to comply
with widely acknowledged NFV standards to facilitate the
system’s adoption by other third-party platforms. This en-
ables NetOr to replace analogous platforms seamlessly and
guarantees that the necessary parameters for the underlying
systems are always available to them. NetOr accomplishes
this by leveraging widely known data models. On the other
hand, NetOr’s SBI is the interface that interacts with under-
lying orchestrators, such as the NFVOs. Thus, it must also
abide bywell-accepted andwidely employed standards. This
way, NetOr may support a plethora of different NFVOs. Fur-
thermore, adopting such standards also allows the necessary
parameters for the resources of these NFVOs to be correctly
detailed in NetOr’s data models.

Regarding the NBI, after evaluating various significant
standards, we selected the most adequate ones for the data
models exchanged in CRUD operations regarding the VSIs
and their additional resources. These standards consist of TS
28.541(ETSI and 3GPP, 2021), SOL005(ETSI, 2021a), and
SOL006(ETSI, 2021b) and are all related to the management
of the information models. Moreover, the data structures em-
ployed by NetOr were based on the models embraced by the
most mature SoA Vertical Service orchestrator, the 5GR-VS.
However, 5GR-VS’s VSBs had to be extended in order to
accommodate the actions and parameters that specific VSIs
may require. Additionally, the VSI instantiation data model
was also enhanced to accommodate dynamic instantiation pa-
rameters and domain deployment selection.

Regarding the SBI, a proper analysis of the most relevant
standards of the area was also conducted. We concluded
that the most appropriate standards for the data models
and operations were TS 28.530(ETSI and 3GPP, 2020), TS
28.531(ETSI and 3GPP, 2022), TS 28.541(ETSI and 3GPP,
2021), TR 28.801(3GPP, 2018), SOL005(ETSI, 2021a), and
SOL006(ETSI, 2021b). Even though these standards are
fairly comprehensive and complete, their expansion was re-
quired to support all NetOr operations. Specifically, it was
required to expose management functions to enable the exe-
cution of run-time actions over already instantiated network
services and network slices. Moreover, the models and op-
erations adopted by 5GR-VS’s SBI were also taken into ac-
count when designing NetOr’s SBI.

4 Inter-domain Automatic Mecha-
nism

Regarding mobile service and network coverage, various op-
erators administer different geographic areas, restricting the
locations in which each operator can directly offer its ser-
vices. Currently, the process for instantiating Network Ser-
vices, Network Slices, and Vertical Services assumes that a
single domain would supply them. When the users are in a
domain controlled by a different operator, it will route end-
users’ data and requests to the domain where the intended
services are located. However, onemay conceive several sce-
narios in which these redirection techniques may affect the
final E2E services, such as medical or automotive scenarios
that need extremely low latency. In such circumstances, the
best approach is to instantiate the required services across
all domains with which the end user may interact. Con-
sequently, inter-domain mechanisms were developed to ad-
dress this issue. These allow the on-demand connection of
separate geographical areas. Thus, the novelty of such so-
lutions. As previously stated, nowadays, service providers
abide by norms and limitations that require their clients to be
serviced exclusively by them, i.e., all network and service-
related functions are hosted and deployed within their do-
main. However, given the potentialities of inter-domain so-
lutions, these can disrupt the current modus operandi of the
service providers.
Several standards and scientific works have begun to ad-

dress and suggest the best practical and architectural ap-
proaches for addressing the complexity of inter-domain sce-
narios. The TR 28.801 (3GPP, 2018) standard is an example
of one of these. It proposes three distinct methods for man-
aging the coordination of multiple operator domains. The
first strategy proposes that the client that wishes to orches-
trate an inter-domain solution controls the CSMF and com-
municates with the multiple NSMF-providing operators. A
second possibility involves the consumer interacting with a
primary operator hosting the CSMF, which will engage with
the client’s and other operators’ NSMFs. Finally, the third
approach proposes that the client communicate with the pri-
mary operator hosting the CSMF and delegate the operations
to its own NSMF, which will then leverage the different op-
erators’ NSSMFs.
The work presented in (Bernini et al., 2020) proposes

a 5G vertical service orchestration system centered on net-
work slicing in an inter-domain scenario. This work pro-
vides some contextualization on inter-domain scenarios, in-
troducing Verticals/Digital Service Consumers (DSCs) that
leverage the services supplied by Digital Service Providers
(DSPs). However, these DSPs are dependant on the re-
sources and functionalities provided by Network Service
Providers (NSPs). In this scenario, the DSPs are responsi-
ble for managing the services’ lifecycles and exposing them
to Verticals. Ultimately, (Bernini et al., 2020) describes
and proposes an inter-domain orchestration framework. This
framework comprises three different entities for the orches-
tration of inter-domain domain solutions in network slicing
scenarios: (i) the Resource Orchestrator, the Slice Orchestra-
tor, and the Service Orchestrator.

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

Figure 3. E2E NSI with Subnets comprised of Network Slices

The selected architecture for NetOr is based on the one sug-
gested in the first multi-operator coordination solution given
in TR 28.801 (3GPP, 2018) and the one proposed in (Bernini
et al., 2020). Both approaches suggest a centralized agent
for service orchestration (CSMF/Service Orchestrators) that
interacts with other lower-level orchestrators (NSMFs/Slice
Orchestrators).
Regarding our inter-domain mechanism, the primary goal

of our PoC is the instantiation of an E2E Virtual Private Net-
work (VPN) Service across various domains without previ-
ous negotiation. Technically, this can be accomplished by
employing an E2E Network Slice, ideally with subnets com-
prised of Network Slices, as shown in Figure 3. Considering
the VPN Service, our proposal is to design and set up a VPN
tunnel, thereby establishing a secure communication channel
between the domains. The technology that we relied upon to
instantiate the proposed VPN tunnel was Wireguard4, a sim-
ple and minimalist framework that enables the swift instanti-
ation and deployment of VPNs.
Hypothetically, inter-domain connectivity would require

the existence of a centralized service agent that is indepen-
dent of all domains and enables the connecting of VPN tun-
nels’ peers. This agent would gather and process all VPN
Nodes’ related information and share it with all remaining
Nodes of the VPN. Thus, providing the required information
for establishing the VPN tunnels between the different VPN
Nodes. However, NetOr also makes available a DNS Server
that may be used for DNS-Based SD, according to IETF’s
RFC 6763(Cheshire and Krochmal, 2013). Thus, two ap-
proaches were employed to design and implement our inter-
domain service.
The first approach, Approach A, relies on NetOr’s VSI/NSI

LCM component to configure the VPN tunnels. Thus, it re-
lies on a centralized management and configuration agent.
Contrastingly, our second approach, Approach B, delegates
this responsibility to the VPN Nodes themselves.
Both approaches result in an automated orchestration of

a full-mesh VPN between different domains, without prior
negotiation. Besides this, our approaches are also consid-
ered zero-touch since no human intervention is needed to
achieve the desired scenario. Furthermore, it is possible to
fully orchestrate it through NetOr since it provides all re-
quired functionalities and mechanisms. To make available
Wireguard Servers in each domain we deploy a Wireguard

4https://www.wireguard.com

VNF in the NSs distributed across the different domains. The
initial configuration of such VNF is achieved by employing
the VNFMs provided by the NFVOs residing in the domains.

Approach A assumes that NetOr’s VSI/NSI LCM compo-
nent will constantly monitor the status of the VPN Nodes.
When Wireguard is installed on the Nodes, NetOr’s VSI/NSI
LCM will become aware of this and trigger the establish-
ment of new VPN tunnels. This assumes that the VSBs and
VSDs contain information that NetOr’sVSI/NSI LCM com-
ponent may use to get acquainted will all management oper-
ations that will be required. Such information could stipulate
that whenever a new VPN Node has finished installing Wire-
guard, the VSI/NSI LCM component would have to invoke
an operation to retrieve the Node’s information and then use
this information to trigger the establishment of newVPN tun-
nels with the remaining VPN Nodes. To trigger the tunnels’
establishment process, NetOr’s VSI/NSI LCM invokes day-1
operations on the VPN Node VNFs.
On the other hand, Approach B assumes that the VPN

Nodes are in charge of configuring the VPN tunnels them-
selves. However, to achieve this, the VPN Nodes will have
to interchange information between them. This information
will then be used to configure the VPN tunnel endpoints.

In Approach B, NetOr’s DNS Server may be used for the
VPN Nodes to share information among themselves. Upon a
request to instantiate our solution, NetOr’s Coordinator com-
ponent generates a specific DNS zone that shall be used by
the Vertical Service to employ SD practices. The Coordina-
tor will also inject all parameters required to provide such
functionality. One of these parameters is a cipher key that
the Vertical Service members shall use to publish and share
protected information. In our scenario, such information can
be the public keys of the Wireguard Servers or even the net-
works that should be forwarded through the VPN tunnels.
The cipher key is the same for all Vertical Service members,
which enables them to share protected information by sym-
metrically encrypting it. After this step, theCoordinatorwill
request theDomain component to submit the extended instan-
tiation request to the NFVOs residing in the desired domains.
When the VPN Node VNFs are fully instatiated and have

configured Wireguard, the VPN Nodes can then share the in-
formation required for the establishment of the VPN tunnels.
Thus, they will exchange between one another their (i) public
key, (ii) their location, and (iii) information on the networks
that should be accessible to the other VPN Nodes with all
nodes that shall be part of the mesh VPN. In this phase, the

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

Table 2. DNS Records Created by a VPN Node

DNS Records
Name Type Value

_wg._udp PTR _wg < id > ._wg._udp. < zone_name > .netor.

_wg < id > ._wg._udp SRV Priority = 0Weight = 0Port =< wg_port >

Target = wg < id > . < zone_name > .netor.

wg < id > A < vpn_node_public_ip >

_wg < id > ._wg._udp TXT public_key =< encrypted_key >

allowed_networks =< encrypted_allowed_network >

local_port =< encrypted_peer_local_port >

local_ip =< encrypted_peer_local_ip >

Figure 4. Architecture of the presented Full Mesh VPN Solution (Approach B)

cipher key injected by NetOr is necessary. The information
shared by a VPN Node through NetOr’s DNS Server obeys
IETF’s RFC 6763(Cheshire and Krochmal, 2013) standard
and is presented in Table 2.

After a VPN node has published its information to the
DNS Server, it will continue to probe this entity to find addi-
tional eligible VPN Nodes. As soon as a new VPN Node is
discovered, the process of establishing a VPN tunnel begins.
Wireguard’s configuration file is updated with the new VPN
Node’s information, and a new VPN tunnel is created. The
scenario in which a full-mesh VPN is established is depicted
in Figure 4. The presented scenario comprises a VPN mesh
composed of 3 VPN nodes, but more nodes could be added
to this mesh VPN. It is worth mentioning that throughout
the VPNNodes’ lifecycle, they can leverage NetOr’sMetrics
Repository to publish their service-level metrics. These can
then be used by the Vertical Service clients to monitor their
service and enforce service-level SLAs. The usage of the

Metrics Repository applies to both our design approaches.

5 Results

As previously stated, the primary objective of NetOr is to
address some of the identified problems of existing Vertical
Service orchestrators. Section 3 has already addressed our so-
lution’s design and the standards it complies with. From that
section, one is already aware that (i) NetOr was developed
adopting a service-oriented design, (ii) NetOr adheres to all
relevant Network Slicing standards, (iii) NetOr totally sup-
ports inter-domain scenarios, and that (iv) NetOr may con-
duct runtime operations over the Vertical Services.
However, evaluation of our solution’s performance com-

pared to other SotAVertical Service orchestrators is still lack-
ing. If NetOr’s performance is significantly inferior to the
one of the other Vertical Service orchestrators, there will be

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

Table 3. 5GR-VS and NetOr System’s added delays

Measurement System Max Min Avg StDev

Added Instantiation Delay 5GR-VS 234 ms 81 ms 113,86 ms 29,20 ms
NetOr 345 ms 135 ms 190.93 ms 24.82 ms

Added Termination Delay 5GR-VS 108 ms 19 ms 45,90 ms 17,20 ms
NetOr 187 ms 59 ms 101,24 ms 20,90 ms

resistance to adopting our solution, even though we have
addressed numerous recognized problems. In this section,
we compare the performance of NetOr with the 5Growth
Vertical Slicer, one of the current most mature Vertical Ser-
vice orchestrators. This comparison was made through the
orchestration of the solution we presented as Approach A,
where NetOr’s VSI/NSI LCM component manages the VPN
Nodes configuration. This approach is more impactful to
the performance of the Vertical Service orchestrator, thus be-
ing employed to compare the performance of NetOr with the
5Growth Vertical Slicer’s one. Besides this, Approach A is
fully aligned with the features offered by the 5Growth Ver-
tical Slicer. We also evaluated which approach has better
performance, having NetOr’s VSI/NSI LCM managing the
VPNNodes or relinquishing their management to themselves
through the usage of the provided DNS Server. Finally, we
conducted additional performance tests on NetOr to discover
how it deals with several simultaneous Vertical Service in-
stantiation requests and with the complexity of orchestrating
an E2EVertical Service across a high number of independent
domains.

5.1 Testing Environment
Since the inter-domain scenario requires a minimum of two
domains, two separate OSMswere deployed, one for each do-
main. Each OSM was deployed in a Virtual Machine (VM)
with 12 GB of RAM, 4 VCPUs, and 150 GB of storage. The
first OSM has as a VIM an OpenStack cluster with the limita-
tions of 30 VM instances, 60 VCPUs, 70 Gb of RAM, 1 TB
of storage, and 10 networks. On the other hand, the second
OSM was integrated with a DevStack with the limitations of
10 VM instances, 20 VCPUs, 50 Gb of RAM, 1 TB of stor-
age, and 100 networks. Moreover, during our tests, NetOr
was deployed in an Ubuntu 18.04 VM with 8 GB of RAM, 4
VCPUs, and 32 GB of storage.

5.2 Comparison Between NetOr’s and 5GR-
VS’s Performance Considering the Solu-
tion Developed Using Approach A

Regarding the performance tests, using the solution pre-
sented as Approach A (where the VPN tunnels’ configuration
is achieved via NetOr’s VSI/NSI LCM), we evaluated the de-
lays added by each orchestrator during the processing of an
initial instantiation request and its forwarding to the under-
lying NFVOs. Moreover, we also compared both orchestra-
tion systems regarding the time needed to fully orchestrate
and configure all the VPN Node VNFs. Each test was per-
formed 30 times. Regarding the full orchestration and con-
figuration of the VPN Nodes, we followed the same method-

ology to evaluate NetOr, whereas the results from (Fonseca
et al., 2021) were employed to evaluate the 5GR-VS’s perfor-
mance, given that (Fonseca et al., 2021) presented the same
tests we did in the same environment but on the 5GR-VS.
The first comparison test focused on the delay added by

each orchestrator to the vertical service instantiation process.
This measurement was achieved by computing the time delta
between the orchestrator’s receiving an instantiation request
and its forwarding to the underlying NFVOs. On the other
hand, the second test evaluated the delay added by each or-
chestrator to the vertical service termination process. Table
3 presents the obtained results.
Analyzing Table 3 , we conclude that NetOr engenders

higher instantiation and termination delays than the 5GR-VS.
However, the difference between NetOr’s and 5GR-VS’s de-
lays is minimal, differing in less than 80 milliseconds regard-
ing the added instantiation delay and less than 40 when con-
sidering the added termination delay. These results could be
anticipated when considering the architectures of both Ver-
tical Slicers. NetOr was designed as a microservice archi-
tecture, where NetOr’s components exchange asynchronous
messages through a Broker. Even though this architecture
provides better scalability, it also results in additional de-
lays in the message exchange process. In a low-usage sce-
nario, this is further highlighted. Contrastingly, 5GR-VS
was built according to a monolithic architecture. This ar-
chitecture involves synchronous messages between its com-
ponents, and no communication Brokers are needed. Thus,
systems built according to a monolithic architecture perform
operations very fast in low-usage scenarios. However, when
under heavy loads, the performance of monolithic applica-
tions heavily degradates. Since the tests previously described
were performed in a low-usage scenario, and the operations
required for processing a Vertical Service instantiation/ter-
mination request and forwarding it to the NFVOs are fairly
simple, the architectures of each Vertical Slicer justify the
obtained results.
However, we must still evaluate the performance of

both Vertical Slicers under more real-world alike conditions.
Thus, we conducted end-to-end tests to obtain and analyze
the time required for NetOr to fully instantiate and configure
our inter-domain service. Additionally, we also computed
the time needed for NetOr to terminate the Vertical Service.
The results are presented in Table 4. Then, we compared our
results to the ones of the 5GR-VS, gathered from (Fonseca
et al., 2021).
Table 4 showcases that NetOr requires around 5,8 minutes

to fully instantiate our inter-domain solution when developed
according to Approach A. The time needed for NetOr to ter-
minate the inter-domain service is, on average, around 1,2
minutes. Contrastingly, 5GR-VS takes around 9 minutes to

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

Table 4. NetOr’s E2E inter-domain service instantiation and termination time

Measurement Max Min Avg StDev
E2E Instantiation Time 409346 ms 279582 ms 348858,9 ms 29334,1 ms
E2E Termination Time 109319 ms 38687 ms 74971,9 ms 16588,7 ms

Table 5. NetOr’s E2E inter-domain service instantiation time for both design approaches

Approach Max Min Avg StDev
Approach A 409346 ms 279582 ms 348858,9 ms 29334,1 ms
Approach B 380147 ms 248024 ms 310395,1 ms 31432,3 ms

instantiate the same solution and 46 seconds to terminate it
(Fonseca et al., 2021). Since most Operators are more con-
cerned with the instantiation time of their solutions rather
than the termination one, we can affirm that our solution,
performance-wise, is a better fit for these organizations. Fur-
thermore, NetOr also solves several known issues of most
Vertical Service orchestrators, further accentuating its advan-
tages over them. Once again, the performance differences
are justified by the different architectures employed by each
orchestrator. By following a microservice-oriented design,
NetOr can manage several service components and services
concurrently. This parallelization enables this orchestrator
to save valuable minutes by simultaneously processing the
separate service subnets involved in the Vertical Service.

5.3 Comparison Between Both Approaches
Followed to Design our Inter-Domain Ser-
vice

We followed to evaluate the performance of both inter-
domain solutions we developed. As stated before, the first
solution follows what we have named Approach A, where the
VPN tunnels’ configuration is achieved via NetOr’s VSI/NSI
LCM component. On the other hand, our second solution
(Approach B) delegates the VPN tunnels’ configuration to
the VPN Nodes themselves. NetOr only provides a DNS
Server for the VPN Nodes to publish their information, mak-
ing it available to the remaining Nodes. These will consume
that information to configure and establish VPN tunnels.
To evaluate bot solutions, we only focused on their instan-

tiation time since their termination time will be the same, and
this measure was already obtained and presented in Table 4.
The testing scenario where these tests were performed is the
one described in Section 5.1, and we followed the same test-
ing methodologies as we did for comparing the performance
of NetOr with the one of 5GR-VS. The obtained results are
presented in Table 5.
As shown in Table 5, the solution where the configuration

of the VPN tunnels is delegated to the VPN Nodes was in-
stantiated and configured faster. This can be justified by the
fact that, in this approach, the configuration of the tunnels
is not managed by a single entity, NetOr, but is distributed
among the VPN Nodes. When NetOr’s VSI/NSI LCM com-
ponent is responsible for configuring the VPN tunnels, it will
have to collect the VPN Nodes information, to validate that
they have alreayd installed Wireguard and are ready to be
part of a VPN tunnel. Then, NetOr will process this infor-

mation, evaluate to which VPN Nodes it must be sent, ob-
tain their location, and forward it to them. Once this infor-
mation reaches the remaining VPN Nodes, they may start
establishing the tunnels. On the other hand, the solution
relying on the DNS Server simplifies all the processes that
take place before a VPN Node receives information regard-
ing other Nodes, to which it will establish VPN tunnels. All
VPNNodes will publish their information to the DNS Server,
sharing it with the remaining ones. Furthermore, the informa-
tion published by the VPN Nodes already encompasses their
location, which, in Approach A, had to be obtained by Ne-
tOr’s VSI/NSI LCM. Thus, the approach involving the DNS
Server removes many operations that NetOr’s VSI/NSI LCM
component executed, diminishing the end-to-end instantia-
tion and configuration time of the inter-domain service.

5.4 Additional Performance Tests on NetOr

We further tested the performance of NetOr, to evaluate how
it deals with several simultaneous Vertical Service instanti-
ation requests and with an increasing number of domains
where a Vertical Service spans across. To this end, we trig-
gered until 10 simultaneous Vertical Service instantiation re-
quests and instantiated our inter-domain solution (Approach
B) across 3 to 10 mock domains. These domains ultimately
are only mapped to the 2 domains presented in Section 5.1,
but in NetOr they were configured as being fully independent
domains.
The first test, where 10 simultaneous Vertical Service in-

stantiation were requested, allows for evaluating the perfor-
mance of NetOr when dealing with an high number of Ver-
tical Service requests, while the second test, where we or-
chestrated our inter-domain solution (Approach B) across 3
to 10 mock domains, allows for evaluating how NetOr be-
haves when it manages complex services distributed across
and high number of domains.
Each test was executed 10 times. Since the major impact

of these stress tests will be on the initial processing of the
instantiation requests, we evaluated the instantiation delay
added by NetOr. The obtained results are showcased in Fig-
ures 5, and 6. Figure 5 showcases the results obtained when
several equal Vertical Services were instantiated simultane-
ously, while Figure 6 showcases the results of the instantia-
tion of our inter-domain solution across 3 to 10 domains.
Looking at Figure 5, we can affirm that NetOr can pro-

vide a good throughput when dealing with several simul-
taneous Vertical Services being instantiated simultaneously.

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

Figure 5. Performance test where several Vertical Services were instantiated simultaneously

Figure 6. Performance test where the same Vertical Service was instantiated across several domains

Furthermore, we can say that NetOr’s performance will re-
main almost the same when instantiating 3 to 10 Vertical
Services simultaneously. Since we always orchestrated the
same VSI across the same domains, the information on these
domains was cached byNetOr’s Placement Arbitrator, which
enables it to be very rapidly accessed, thus diminishing Ne-
tOr’s added instantiation delay.
Contrastingly, Figure 6 points out that NetOr’s perfor-

mance may decrease when deploying a Vertical Service
across an increasing number of domains. This is because
whenever a Vertical Service spans across a new domain, Ne-
tOr will have to obtain information on the location of the new
domain and how to communicate with its NFVO. Thus, the
increase in the NetOr’s added instantiation delay. However,
this increase is almost irrelevant. For instance, orchestrating
our inter-domain solution in 3 domains resulted in an aver-

age added instantiation delay of 246,37 milliseconds, while
when considering 10 domains, the average added instantia-
tion delay was of 403,49 milliseconds. Both measurements
are in the same order of magnitude and differ in less than 200
milliseconds. Thus, this delay will be almost imperceptible
when considering our solution’s end-to-end instantiation and
configuration time.

6 Conclusion
As shown by the results presented in Section 5.2, NetOr’s per-
formance is identical to the one of the 5GR-VS (currently one
of the most mature Vertical Service orchestrators). Using its
parallelization capabilities, NetOr substantially reduces the
time required to instantiate a Vertical Service. The results

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

showcased in Section 5.4 also point out that NetOr is able to
maintain its good performance when dealing with various si-
multaneous Vertical Service instantiation requests and when
the number of domains where a Vertical Service spans in-
creases.
In addition, NetOr already offers alternatives and proce-

dures that the vast majority of Vertical Service orchestrators
lack, which was the fundamental impetus for the work pre-
sented in this article. We must emphasize that, while having
a performance comparable to the one of the 5GR-VS, Ne-
tOr complies with all applicable Network Slicing standards,
(ii) it was developed in accordance with a service-oriented
architecture, (iii) it completely supports multi-domain sce-
narios, and (iv) it can execute runtime operations over the
Vertical Services. In addition, like the 5G-Transformer and
5Growth VSs, our orchestrator also offers a layer of abstrac-
tion through VSBs and VSDs.
Furthermore, the results shown in Section 5.3 also point

out that our inter-domain solution’s configuration can be op-
timized by not having a central entity configuring all VPN
tunnels, in our case NetOr’s VSI/NSI LCM component. In-
stead, better performance can be achieved when this config-
uration is distributed among the VPN Nodes.
Regarding future developments, we want to improve Ne-

tOr by including SLA management, hence accelerating the
acceptance of our solution in Vertical Services Orchestration
use cases.

Funding

This work was supported by the European Horizon 2020 Pro-
gramme for research, technological development and demonstra-
tion under Grant 101016448 (5GASP).

Authors’ Contributions

D. Gomes contributed to the problem formalization and steered the
research direction to reach the results presented in this article. More-
over, he revised the final manuscript. D. Corujo participated in the
literature review of the 5G-GrowthVertical Slicer and evaluated this
orchestrator. Furthermore, he contributed to the revision of the fi-
nal manuscript and provided meaningful insight into the writing of
the final manuscript. J. Alegria contributed to the literature review
and was responsible for the initial implementation of NetOr, evalu-
ating and implementing the different standards applied to NetOr’s
SBI and NBI. He was also responsible for the initial implementa-
tion of the Inter-Domain Service presented as Approach A. Finally,
he participated in the experimentation of the Inter-Domain Service
presented as Approach A and in its results’ analysis. Da. Gomes
contributed to the relatedwork presented in this article. Besides this,
he adaptedNetOr to provide all functionalities needed to orchestrate
the Inter-Domain Service presented in Approach B. Moreover, he
also participated in the experimentation of both our Inter-Domain
Service approaches. He also contributed to the writing of the final
manuscript. R. Direito contributed to the related work presented
in this article. He developed and implemented the Inter-Domain
Service presented in Approach B and also improved the implemen-
tation presented in Approach A. He was the main writer of the fi-
nal manuscript and was also responsible for analyzing the obtained

results. Alongside R. Direito, Da. Gomes also contributed to the
analysis of the results.

Competing interests
The authors declare that they have no competing interests.

References
3GPP (2018). TR 28.801 - V15.1.0 - Study on
management and orchestration of network slic-
ing for next generation network. Technical re-
port. Available at: https://portal.3gpp.org/
desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=
3091.

5G-PPP (2019). 5Growth. Available online. Available
at: https://5g-ppp.eu/5growth/. Accessed on De-
cember 29, 2022.

Bernini, G., Giardina, P. G., et al. (2020). Multi-domain or-
chestration of 5G vertical services and network slices. In
IEEE ICCWorkshops 2020 - Proceedings. IEEE Inc.. DOI:
10.1109/ICCWorkshops49005.2020.9145221.

Chang, W.-C. and Lin, F. J. (2021). Coordinated manage-
ment of 5g core slices by MANO and OSS/BSS. Journal
of Computer and Communications, 09(06):52–72. DOI:
10.4236/jcc.2021.96004.

Cheshire, S. and Krochmal, M. (2013). DNS-Based Service
Discovery. (6763). DOI: 10.17487/RFC6763.

Choi, J. S., Chun, S. J., and Lee, S. (2022). Hierarchical
distributed overarching architecture of decoupled federa-
tion and orchestration frameworks for multidomain nfv
manos. IEEE Communications Magazine, 60(9):68–74.
DOI: 10.1109/MCOM.005.20949.

de la Oliva, A., Li, X., Costa-Perez, X., Bernardos, C. J.,
Bertin, P., Iovanna, P., Deiss, T., Mangues, J., Mourad, A.,
Casetti, C., Gonzalez, J. E., and Azcorra, A. (2018). 5g-
transformer: Slicing and orchestrating transport networks
for industry verticals. IEEE Communications Magazine,
56(8):78–84. DOI: 10.1109/MCOM.2018.1700990.

Erunkulu, O. O., Zungeru, A. M., Lebekwe, C. K., Mos-
alaosi, M., and Chuma, J. M. (2021). 5g mobile com-
munication applications: A survey and comparison of use
cases. IEEE Access, 9:97251–97295. DOI: 10.1109/AC-
CESS.2021.3093213.

ETSI (2021a). GS NFV-SOL 005 - V3.5.1 - Network
Functions Virtualisation (NFV) Release 3; Protocols and
Data Models; RESTful protocols specification for the
Os-Ma-nfvo Reference Point . Etsi group specification.
Available at:https://docbox.etsi.org/isg/nfv/
open/Publications_pdf/Specs-Reports/NFV-
SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%
20APIs%20spec.pdf.

ETSI (2021b). GS NFV-SOL 006 - V3.5.1 -Network
Functions Virtualisation (NFV) Release 3; Proto-
cols and Data Models; NFV descriptors based on
YANG Specification . Etsi group specification.
Available at:https://docbox.etsi.org/isg/nfv/
open/Publications_pdf/Specs-Reports/NFV-

https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3091
https://5g-ppp.eu/5growth/
https://ieeexplore.ieee.org/document/9145221
https://doi.org/10.4236/jcc.2021.96004
https://www.rfc-editor.org/info/rfc6763
https://ieeexplore.ieee.org/document/9789436
https://ieeexplore.ieee.org/document/8436050
https://ieeexplore.ieee.org/document/9466493
https://ieeexplore.ieee.org/document/9466493
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf

NetOr: A Microservice Oriented Inter-Domain Vertical Service Orchestrator for 5G Networks Direito et al. 2023

SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%
20APIs%20spec.pdf.

ETSI and 3GPP (2020). ETSI TS 128 530 - V16.2.0 - 5G;
Management and orchestration; Concepts, use cases and
requirements (3GPP TS 28.530 version 16.2.0 Release
16) . Etsi technical specification. Available at:https:
//www.etsi.org/deliver/etsi_ts/128500_128599/
128530/16.02.00_60/ts_128530v160200p.pdf.

ETSI and 3GPP (2021). ETSI TS 128 541 - V16.8.0
- 5G; Management and orchestration; 5G Net-
work Resource Model (NRM); Stage 2 and stage
3 (3GPP TS 28.541 version 16.8.0 Release 16).
Etsi technical specification. Available at:https:
//www.etsi.org/deliver/etsi_ts/128500_128599/
128541/16.08.00_60/ts_128541v160800p.pdf.

ETSI and 3GPP (2022). ETSI TS 128 531 - V17.3.0
- 5G; Management and orchestration; Provision-
ing (3GPP TS 28.531 version 17.3.0 Release 17)
). Etsi technical specification. Available at:https:
//www.etsi.org/deliver/etsi_ts/128500_128599/
128531/17.03.00_60/ts_128531v170300p.pdf.

Fonseca, J., Alegria, J., et al. (2021). Dynamic Inter-domain
Network Slicing for Verticals in the 5Growth Project.
2021 IEEE Conference on Network Function Virtualiza-
tion and Software Defined Networks, SDN-NFV 20201.
DOI: 10.1109/NFV-SDN53031.2021.9665037.

Kalske, M., Mäkitalo, N., and Mikkonen, T. (2018). Chal-
lenges when moving from monolith to microservice archi-
tecture. In Garrigós, I. and Wimmer, M., editors, Current
Trends in Web Engineering, pages 32–47, Cham. Springer
International Publishing. DOI: 10.1007/978-3-319-74433-
93.

Karabey Aksakalli, I., Çelik, T., Can, A. B., and Teki
�
ner-

doğan, B. (2021). Deployment and communication pat-
terns in microservice architectures: A systematic litera-
ture review. Journal of Systems and Software, 180:111014.
DOI: 10.1016/j.jss.2021.111014.

Mangues-Bafalluy, J., Baranda, J., Pascual, I., Martínez,
R., Vettori, L., Landi, G., Zurita, A., Salama, D., An-
tevski, K., Martín-Pérez, J., Andrushko, D., Tomakh,
K., Martini, B., Li, X., and Salvat, J. X. (2019). 5g-
transformer service orchestrator: design, implementation,
and evaluation. In 2019 European Conference on Net-
works and Communications (EuCNC), pages 31–36. DOI:
10.1109/EuCNC.2019.8802038.

ONAP (2022). ONAP - Project’s Documenta-
tion. Available online. Available at:https:
//docs.onap.org/.Accessed on October 13, 2022.

Rodriguez, V. Q., Guillemin, F., and Boubendir, A. (2020).
5g e2e network slicing management with onap. In
2020 23rd Conference on Innovation in Clouds, Internet
and Networks and Workshops (ICIN), pages 87–94. DOI:
10.1109/ICIN48450.2020.9059507.

Shafabakhsh, B., Lagerström, R., andHacks, S. (2020). Eval-
uating the impact of inter process communication in mi-
croservice architectures. In :, volume 2767 of CEUR
Workshop Proceedings, pages 55–63. CEUR-WS.org.
QC 20210114. Available at:http://ceur-ws.org/Vol-
2767/07-QuASoQ-2020.pdf.

Shakir, A., Staegemann, D., Volk, M., Jamous, N., and Tur-
owski, K. (2021). Towards a concept for building a big
data architecture with microservices. Business Informa-
tion Systems, 1:83–94. DOI: 10.52825/bis.v1i.67.

Tranoris, C. (2021). Openslice: An opensource OSS for de-
livering network slice as a service. CoRR, abs/2102.03290.
DOI: 10.48550/arXiv.2102.03290.

https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf
https://docbox.etsi.org/isg/nfv/open/Publications_pdf/Specs-Reports/NFV-SOL%20005v3.5.1%20-%20GS%20-%20Os-Ma-nfvo%20APIs%20spec.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128530/16.02.00_60/ts_128530v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128530/16.02.00_60/ts_128530v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128530/16.02.00_60/ts_128530v160200p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128541/16.08.00_60/ts_128541v160800p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128541/16.08.00_60/ts_128541v160800p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128541/16.08.00_60/ts_128541v160800p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128531/17.03.00_60/ts_128531v170300p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128531/17.03.00_60/ts_128531v170300p.pdf
https://www.etsi.org/deliver/etsi_ts/128500_128599/128531/17.03.00_60/ts_128531v170300p.pdf
https://ieeexplore.ieee.org/document/9665037
https://doi.org/10.1007/978-3-319-74433-9_3
https://doi.org/10.1007/978-3-319-74433-9_3
https://doi.org/10.1016/j.jss.2021.111014
https://ieeexplore.ieee.org/document/8802038
https://docs.onap.org/
https://docs.onap.org/
https://ieeexplore.ieee.org/document/9059507
http://ceur-ws.org/Vol-2767/07-QuASoQ-2020.pdf
http://ceur-ws.org/Vol-2767/07-QuASoQ-2020.pdf
https://doi.org/10.52825/bis.v1i.67
 https://doi.org/10.48550/arXiv.2102.03290

	Introduction
	Related Works
	Openslice
	ONAP
	Free5GMano
	Decoupled Inter-Domain Framework for NFV MANO
	Vertical Slicer - 5G-Transformer
	Vertical Slicer - 5Growth
	Comparison of the Vertical Service Orchestrators

	Network Orchestrator(NetOr)
	System Architecture
	APIs and Data Models

	Inter-domain Automatic Mechanism
	Results
	Testing Environment
	Comparison Between NetOr’s and 5gr-vs’s Performance Considering the Solution Developed Using Approach A
	Comparison Between Both Approaches Followed to Design our Inter-Domain Service
	Additional Performance Tests on NetOr

	Conclusion

