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Abstract The advent of B5G networks has revolutionized the telecommunications landscape by transitioning hard­
ware resources to software components, predominantly running on cloud­based infrastructures. However, this ‘soft­
warization’ extends across the radio access, transport, and core networks, introducing complex challenges in real­
time network management. In this context of the ‘softwarization’, it is imperative to make the behavior of B5G
systems readily observable for effective management and fault diagnosis. This article presents a comprehensive
empirical investigation of observability within a B5G system, specifically focusing on its radio access and core
networks. The study enhances the system’s observability by combining advanced metric analysis and log parsing.
Our method integrates Commercial Off­The­Shelf machine learning algorithms to diagnose anomalies and automate
failure tasks. Besides that, our evaluation of the Cloud­Native Observability Tools services revealed a significant
memory footprint, accounting for 86% of the total memory usage and 22% overall CPU utilization. The findings
also highlight that our approach mitigates the issue of non­standardization in log data, thereby facilitating proactive
failure anticipation. This study can aggregate significant value for developing automated, self­healing B5G network
systems.

Keywords: Observability, 5G Systems, Metrics, Log Processing, Machine Learning, COTS

1 Introduction
Telecommunication networks are undergoing groundbreak­
ing architectural transformations, particularly deploying
fifth­generation (5G) mobile communication systems world­
wide. Innovations such as edge computing, network function
virtualization, network programmability, and multi­tenancy
are integral to 5G. These technologies pave the way for new
approaches to design, provision, and manage end­to­end ser­
vices that can adapt to various needs. Additionally, 5G in­
corporates ‘softwarization’ and ‘cloudification’ functionali­
ties and utilizes a fine­grained distributed system architec­
ture, often realized through the Function­as­a­Service (FaaS)
paradigm and microservices, to meet these diverse require­
ments.
Looking ahead, Beyond 5G (B5G) systems are set to sup­

port various applications and use cases, each with unique
requirements. This diversity brings unique challenges for
network observability not typically seen in traditional net­
works. Factors such as the large scale and increased complex­
ity of B5G systems, device heterogeneity, dynamic network
conditions, stringent security and privacy requirements, and
the demand for real­time or near­real­time responses all con­
tribute to these challenges, making existing methods from
traditional networks less effective in the B5G context.
The advent of 5G networks has been a significant mile­

stone in the evolution of telecommunication systems. As of
June 2022, around 70 countries had deployed 5G networks,

up from just 38 in mid­2020 Statista [2023]. Furthermore,
the number of 5G users is also rapidly increasing. By the
end of 2021, the total number of 5G users reached 507 mil­
lion people [Gizchina, 2021]. This widespread deployment
and adoption underscore the importance and complexity of
managing these networks. In this context, transitioning from
traditional monolithic services tightly coupled with propri­
etary hardware to a microservices architecture in telecom­
munication networks brings unique challenges. As network
operators navigate this new landscape, understanding the be­
havior of these complex systems becomes crucial. Insuffi­
cient observability of B5G systems brings significant risks
and challenges. Network operators may face difficulties de­
tecting and diagnosing anomalies and failures without com­
prehensive observability, leading to prolonged downtime, de­
graded performance, and compromised security. However,
existing literature, such as John et al. [2017]; Surantha and
Putra [2022]; Leliopoulos and Drigas [2023], has not thor­
oughly explored the observability of 5G systems. Most cur­
rent research focuses solely on the metric dimension of ob­
servability, neglecting other essential aspects such as logs
and traces. This gap in knowledge presents a significant prob­
lem that this article aims to address, given the critical role of
5G networks in modern telecommunications.
This article addresses a research gap by offering a unique

empirical analysis of how B5G system platforms make their
internal states observable through standard Cloud­Native Ob­
servability Tools (CNOT). Unlike prior studies that primar­
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ily focus on individual dimensions of observability, such as
metrics, or that only employ Machine Learning (ML) for
anomaly detection in a 5G context, our study takes a mul­
tifaceted approach. We harmoniously combine metrics, logs,
and ML techniques to view system behavior comprehen­
sively.
We build a testbed that emulates a cloud­native B5G sys­

tem consisting of the Core Network (CN) and the Radio Ac­
cess Network (RAN) to validate the efficacy of these tools
in metric collection, log analysis, and anomaly detection.
We deploy this system as microservices on a Kubernetes
(K8S) cluster using open­source platforms widely used in
5G network research, Free5GC [2023] andOpenAirInterface
[2023]. Our empirical methodology distinguishes this work
from the predominantly theoretical and narrow­scope prac­
tical studies in the existing literature. Furthermore, we care­
fully consider the structure and intelligibility of logmessages
generated by the system, identifying areas for improvement
tomake the logsmore structured and easier to interpret. Most
existing research in this area has focused either on specific
dimensions of observability [Zheng et al., 2022; Hung et al.,
2022] or on the application ofML techniques for anomaly de­
tection in a 5G context [Joda et al., 2022; Hakiri et al., 2022],
often neglecting a holistic approach that combines these ele­
ments. The main contributions of this article are:

• Designing and implementing a testbed that reproduces a
cloud­native B5G system, filling a critical research gap.

• Deploying a CNOT based on standard tools to gather
metrics and logs, providing a comprehensive view of
the B5G system’s internal states.

• Demonstrating empirically the effectiveness of a mul­
tifaceted approach that combines metrics, logs, and a
Commercial Off­The­Shelf (COTS) ML solution for di­
agnosing anomalies in B5G systems.

• Evaluating the structure and interpretability of log mes­
sages, identifying areas that need improvement.

To the best of our knowledge, this is the first empirical
contribution to shed light on the suitability of exposing the
internal state of B5G systems through standard CNOTs. The
rest of the article is organized as follows. Section 2 provides
the necessary background for our investigation. Section 3
discusses the related work. In Section 4, we provide a de­
tailed description of the testbed implementation. Section 5
discusses the results of our experimental evaluation. We con­
clude and propose future work in Section 6. Moreover, Ta­
ble 2 summarizes the commonly­used abbreviations.

2 Background

This section provides a comprehensive overview of the essen­
tial principles associated with system observability, particu­
larly emphasizing its three main components: metrics, logs,
and traces. In addition, we introduce the foundational aspects
of 5G systems, concentrating predominantly on the CN and
RAN elements.

2.1 Observability

In this context, observability represents the capacity to
perceive and understand a complex system’s behavior via
telemetry gathered during runtime. Distinct from traditional
black­box monitoring, observability aims to decrease the
time system operators take to gain a comprehensive and ac­
curate understanding of the system’s functionality and per­
formance. Telemetry extracted from the system often falls
into one of three categories: metrics, logs, and traces [Gatev,
2021]. Figure 1 illustrates these three main pillars of observ­
ability.

TracesLogsMetrics

2023-08-03 18:13:40.282 INFO 1 --- [ main] 
org.oransc.ics.Application : Starting Application 
v1.4.0 using Java 11.0.16 on informationservice-0 with 
PID 1 
(/opt/app/information-coordinator-service/information-
coordinator-service.jar started by nonrtric in 
/opt/app/information-coordinator-service)
2023-08-03 18:13:40.288 INFO 1 --- [ main] 
org.oransc.ics.Application : The following 1 profile 
is active: "prod"
2023-08-03 18:13:43.703 INFO 1 --- [ main] 
o.apache.catalina.core.StandardService : Starting 
service [Tomcat]
2023-08-03 18:13:43.704 INFO 1 --- [ main] 
org.apache.catalina.core.StandardEngine : Starting 
Servlet engine: [Apache Tomcat/9.0.60]
2023-08-03 18:13:43.937 INFO 1 --- [ main] 
o.a.c.c.C.[Tomcat].[localhost].[/] : Initializing 
Spring embedded WebApplicationContext
2023-08-03 18:13:45.003 INFO 1 --- [ main] 
o.o.ics.configuration.ApplicationConfig : Http proxy 
is not used
2023-08-03 18:13:48.138 INFO 1 --- [ main] 
org.oransc.ics.Application : Started Application in 
9.674 seconds (JVM running for 11.862)
2023-08-03 18:14:00.333 INFO 1 --- 

Figure 1. Three pillars of observability.

Metrics are countable or quantifiable attributes with val­
ues that are collected at consistent intervals, typically using
twomethods [Scrocca et al., 2020]: (i) direct extraction from
the operational process via a library or (ii) through the infras­
tructure that is executing the process. In the former case, met­
rics are defined and collected at the application level. In the
latter case, metrics pertain to using infrastructure resources,
e.g., Central Processing Unit (CPU), Random Access Mem­
ory (RAM), and communication networks. In most research,
metric collection and persistence processes are considered
monitoring, which constitutes one of the primarymethods for
detecting anomalies in a computing system [Gomez Blanco,
2023].
Conversely, logs are text­based records of the operations

(or errors) a system performs during runtime. Such as, met­
rics and logs are gathered directly from operational processes.
Moreover, in contrast, the generation of log records is unpre­
dictable as they correspond with discrete events that occur
at specific points in time. Logs can contain structured or un­
structured information from various sources, making them
rich data sources for anomaly detection and root cause anal­
ysis. However, the usefulness of logs is closely tied to the
quality of the generated messages. Inefficiently produced
logs can complicate fault diagnosis, require additional main­
tenance effort, and lead to performance degradation [Chen
and Jiang, 2021].
Traces are identifiers that capture request flows within

a system comprising several components, revealing the se­
quence of events within a system [Esteves et al., 2021]. This
knowledge is crucial in distributed systems where precise
synchronization of nodes is often impossible. However, gen­
erating traces requires the system under observation to be in­
strumented. In summary, metrics, logs, and traces are the
backbone of system observability, and collectively, they pro­
vide a comprehensive view of complex systems’ behaviors
[Li et al., 2022], such as in the 5G system.
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Figure 2. 5G network basic architecture.

2.2 5G System

Figure 2 depicts a 5G system consisting of RAN, CN, and the
Transport Network (TN) [3GPP, 2020]. The RAN domain
uses diverse access technologies to connect User Equipment
(UE) and the operator’s network. The Next­Generation RAN
(NG­RAN), defined to meet 5G requirements, is composed
of a set of Next Generation Base Stations (gNBs) providing
connectivity to UE through the 5G New Radio (NR) tech­
nology [Saavedra et al., 2018]. A gNB can be logically di­
vided into three entities: Centralized Unit (CU), Distributed
Unit (DU), and Radio Unit (RU) [Larsen et al., 2019], with
the NR protocol functions being determined by split options,
leveraging the scalability and centralization benefits offered
by virtualization and the FaaS paradigm [Polese et al., 2023].
TN is divided into fronthaul, backhaul, and midhaul, con­

necting diverse components. Fronthaul is the link between
the RU and the DU at the cell site, requiring high capacity
and low latency for communication. Backhaul connects the
cell site to CN, carrying traffic between these points through
fiber, microwave, or satellite links. Midhaul, less commonly
used, refers to the network segment connecting the central­
ized DUs and CUs. Each network segment has distinct band­
width, latency, and reliability requirements [Klinkowski and
Jaworski, 2022]. Indeed, the TN encompasses multiple tech­
nologies, including Multiprotocol Label Switching (MPLS),
Dense Wavelength Division Multiplexing (DWDM), and
more.
The CN allows UE to send and receive mobile traffic to

and from applications hosted on the data network or the In­
ternet. Designedwith cloud­native principles inmind [3GPP,
2020; Abdulghaffar et al., 2021], the 5G CN features a
service­based architecture with a fully decoupled modular
control plane from user plane functions. Figure 2 illustrates
CN’s primary network functions and a RAN disaggregated
with RU, DU, and CU components. The control plane’s
interaction with the RAN is facilitated through the Access
and Mobility Management Function (AMF), supporting en­
crypted signaling connections to UE. The Session Manage­
ment Function (SMF) handles user session creation, modifi­
cation, and termination, while user data is managed by the
Unified Data Management (UDM) function. UE is authen­
ticated by the Authentication Server Function (AUSF) us­
ing access credentials provided by UDM. Policy Control
Function (PCF) administers policy control for access man­

agement, sessions, and mobility. Other network functions
can find services through the Network Repository Function
(NRF). Lastly, the User Plane Function (UPF) is responsi­
ble for forwarding and processing UE data [Cardoso et al.,
2020; Tang et al., 2022].

3 Related Work
The literature offers varied perspectives on 5G network in­
frastructure, anomaly detection techniques, and ML algo­
rithms. A standard topic in the works of [Sun et al., 2020],
[Doan and Zhang, 2020], [Hakiri et al., 2022], [Hung et al.,
2022], [Yuan et al., 2022], and [Kim et al., 2022] is the anal­
ysis and improvement of 5G network functionality, with par­
ticular emphasis on detecting network anomalies. [Sun et al.,
2020] propose an adaptive rule engine for this task, while
[Doan and Zhang, 2020], [Hakiri et al., 2022], [Yuan et al.,
2022], and [Kim et al., 2022] leverage deep learning andML
techniques to identify and mitigate anomalous activity.
Table 1 provides a detailed synopsis of the related work

considering observability and anomaly detection, denoted by
their citation keys in the ”Works” column. Moreover, the ta­
ble categorizes the study into several dimensions. The ”Pil­
lars” represent methodologies or data types employed, en­
compassing metrics, logs, and traces. The ”5G Systems”
column indicates the practical experiments with CN or RAN
components of a 5G system. The columns titled ”Container
Network Function (CNF)” and ”ML” point to the implemen­
tation of these respective concepts. ”Anomaly Detection” de­
notes the analysis of identifying atypical patterns within net­
work or system data. The column ”Practical Experiments”
highlights whether the study incorporates empirical exper­
iments. Moreover, an ’3’ marks the characteristics of the
works found in the literature.

[Sun et al., 2020] present a unique 5G Mobile Edge Com­
puting (MEC) approach by incorporating smart streetlights
equipped with 5G base stations, targeting the C­RAN access
network. [Doan and Zhang, 2020] useNetFlow network flow
data to minimize latency impacts in the 5GCN. [Hakiri et al.,
2022] examines the SECRETED 5G OPS project, aiming
to improve 5G network security and resilience by deploying
ML algorithms and metrics and logs.
[Hung et al., 2022] introduce a distributed architecture for

5G backhaul network monitoring, focusing on Wide Area
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Table 1. Summary of the scope of observability and anomaly detection related work.

Works Pillars 5G Systems CNF ML Anomaly
Detection

Practical
ExperimentsMetrics Logs Traces CN RAN

[Sun et al., 2020] 3 3 3 3 3

[Doan and Zhang, 2020] 3 3 3 3 3 3

[Hakiri et al., 2022] 3 3 3 3 3 3 3

[Hung et al., 2022] 3 3

[Joda et al., 2022] 3 3 3

[Prathiba et al., 2022] 3 3 3 3

[Raja et al., 2022] 3 3 3 3

[Yuan et al., 2022] 3 3 3 3

[Kim et al., 2022] 3 3 3 3

[Zheng et al., 2022] 3 3

[Duong and Kim, 2023] 3 3 3 3 3

[Soldani et al., 2023] 3 3 3 3 3 3 3

This work 3 3 3 3 3 3 3 3

Network (WAN) monitoring. A telemetry collector with
microservices architecture reduces the processing load of
telemetry report data. Furthermore, [Yuan et al., 2022] em­
phasize the importance of interpretability and reliable ex­
planations for ML models, suggesting lightweight federate
learning ML­based systems for efficient anomaly detection
in the 5G CN and RAN. Similarly, [Kim et al., 2022] fo­
cuses on network anomaly detection in 5G networks using
domain adaptation techniques, specifically transfer learning
and unsupervised domain adaptation.
The work of [Joda et al., 2022] offers a distinct view by

detailing the emerging Internet of Senses (IoS) field in sixth­
generation (6G) networks. It focuses on semantic commu­
nications and edge intelligence to improve user equipment
throughput and energy consumption. Partially Observable
Markov Decision Processes (POMDP) and ML are high­
lighted for communication and learning metrics optimiza­
tion.
[Zheng et al., 2022], [Duong andKim, 2023], and [Soldani

et al., 2023] discuss advanced methods for improving net­
work performance and security. [Zheng et al., 2022] focus on
network traffic log analysis to detect CN andRAN anomalies.
[Duong and Kim, 2023] propose a service mesh based 5G
CN using various platforms, enhancing security and observ­
ability. [Soldani et al., 2023] introduce an Berkeley Packet
Filter (eBPF) for cloud­native observability, networking, and
security in mobile networks, discussing the CN and RANs.
Finally, the works of [Prathiba et al., 2022] and [Raja et al.,

2022] explore the role of sensor anomaly detection in au­
tonomous vehicles in a 6G­Vehicle­to­Everything environ­
ment. [Prathiba et al., 2022] introduce a hybrid deep learn­
ing framework, combining multi­agent reinforcement learn­
ing andmaximum entropy inverse reinforcement learning for
highly accurate anomaly detection and classification. [Raja
et al., 2022] propose an efficient trajectory anomaly detec­
tion and classification framework using the deep determinis­
tic policy gradient algorithm to analyze driving patterns and
detect anomalous trajectories. These two works consider var­
ious impact factors to ensure autonomous vehicles’ safe and
efficient functioning.
This study introduces a unique empirical examination of

how B5G system platforms show their internal states using
standard CNOTs, an aspect inadequately explored in the ex­
isting literature. Our study is multifaceted and diverging
from prior research that primarily targets specific dimen­
sions of observability, such as metrics, or employs ML for
anomaly detectionwithin a 5G context. It harmoniously com­
bines metrics, logs, and ML techniques. We empirically vali­
date the efficacy of these tools in metric collection, log analy­
sis, and anomaly detection by establishing a testbed that em­
ulates a cloud­native B5G system and deploying a standard
cloud­native observability solution onto this platform. This
empirical strategy distinguishes it from the literature’s pre­
dominantly theoretical and narrow­scope practical studies.
Furthermore, our study provides a meticulous assessment of
the structure and interpretability of log messages, an element
that needs to be addressed in the surveyed related studies.

4 Methodology and Experimental
Setup

This section meticulously outlines the methodology and ex­
perimental framework employed for the empirical study. It
highlights the decisions undertaken during the establishment
of the testbed, encompassing hardware and software consid­
erations. Moreover, the source code utilized in the testbed
is readily available on GitHub1 for transparency and repro­
ducibility.
Infrastructure of the Testbed: The testbed infrastructure

comprises three DELL PowerEdge M610 physical servers
(pServers). Each pServer has 2 Intel Xeon X5660 proces­
sors and 192 GB RAM. These servers host a Virtual Ma­
chine (VM) running Ubuntu with a low­latency kernel. The
VMs are configured with 18 vCPUs, 24 GB RAM, and a 50
GB disk. VMware ESXi 6.7 serves as the hypervisor. The
servers are connected to a physical switch (pSwitch) via a
virtual switch (vSwitch), emulating the TN. This network
guarantees a bandwidth of 10 Gbps and a latency of 1 ms
for each link. Each VM is connected to a virtual switch. A

1https://github.com/my5G/PMon­5G
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pServer 1

vSwitch

VM 1

pServer 3
VM 3

pServer 2
VM 2

vSwitch vSwitch

pSwitch
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10Gbit

10Gbit

Node 2 Node 3Node 1

Figure 3. Testbed Infrastructure.

Kubernetes (K8s) cluster, consisting of three nodes, is de­
ployed over this infrastructure. Each node operates within a
VM, with one node functioning as the K8s master and the re­
maining two as K8s workers. K8s was selected for container
management and orchestration due to its growing popular­
ity among telecommunication operators [Polese et al., 2023].
Calico2, serving as the container network interface, is also
employed in this setup. The testbed topology is illustrated in
Figure 3.
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B5G System: OpenAirInterface3 is utilized to emulate
RAN and UE, an open­source initiative maintained by the
OpenAirInterface Software Alliance that implements the 3rd
Generation Partnership Project (3GPP) standard on general­
purpose hardware and Software Defined Radio (SDR). Fur­
thermore, free5GC is used to emulate CN, one of the pioneer­
ing open­source implementations of a service­based B5G
core. These platforms are commonly employed in empiri­
cal studies involving B5G. Moreover, OpenAirInterface sup­
ports RAN split. Figure 4 presents the eight disaggregation
options defined by 3GPP [2017]. Our experiment employs
disaggregation options 2 and 6. Option 2 creates a parti­
tion in the RAN protocol stack at the Packet Data Conver­
gence Protocol (PDCP)­Radio Link Control (RLC) bound­
ary, effectively isolating the User Plane from the Control
Plane. This architecture facilitates independent deployment
and scaling of each plane. Conversely, Option 6 disaggre­
gates the Medium Access Control (MAC) low layer from
the PHY high functionalities. This specific division permits
finer control over PHY­layer operations and potentially en­
hances system performance by allowing components to be
deployed closer to the antenna. Therefore, in our testbed,

2https://projectcalico.docs.tigera.io
3https://openairinterface.org

RU is located in Node 3, DU in Node 2, while CU operates
in Node 1, as delineated in Figure 5. The free5GC functions
are installed as a single pod in Node 1. Lastly, the Physical
layer is disabled while the emulated UE operates with RU to
emulate RAN.
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Figure 5. K8s cluster used in our empirical investigation.

Observability Software Stack: The study employs a ro­
bust observability software stack to monitor the performance
and correct functioning of K8s clusters. Metrics are col­
lected by The Prometheus4, polling each cluster node every
30 seconds through a Node Exporter. This polling allows
an accurate monitoring of cluster performance. For network­
specific metrics, Prometheus utilizes third­party Exporters.
These metrics are then stored in a dedicated database, mak­
ing Prometheus a centralized solution for metric collection in
our K8s environment. The Grafana5 tool is integrated with
Prometheus to visualize these metrics. This combination is
commonly used for its seamless compatibility and extensive
customization, enabling comprehensive data visualization.
In addition to metric collection and visualization, our

study also utilizes Elasticsearch6, Fluentd7, and Kibana8
tools for log management, also known as Elastic Search, Flu­
entd, and Kibana (EFK) stack. Fluentd collects and filters
logs from all containers and forwards them to Elasticsearch,
the search engine and storage backend. Elasticsearch struc­
tures and indexes these logs, making them searchable and an­
alyzable. Finally, Kibana is the front­end visualization tool,
enabling detailed log analysis. This architecture ensures a
holistic observability solution, providing real­time metrics
and log analytics for effective K8s cluster management.
Machine Learning Tool: An evaluation is also con­

ducted to determine if a ready­made ML solution can utilize
anomaly detection data collected from the B5G system ob­

4https://prometheus.io/
5https://grafana.com/
6https://www.elastic.co/
7https://www.fluentd.org
8https://www.elastic.co/kibana/
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servability. For this goal, we used the built­in anomaly de­
tection function in Elasticsearch. We chose the Elasticsearch
function because this tool offers a robust and scalable log
management and analysis solution. Moreover, Elasticsearch
is open­source, providing powerful search and indexing capa­
bilities, making it suitable for handling large volumes of log
data generated by the B5G system. Elasticsearch’s ready­to­
use functionality allows for quicker deployment and adapt­
ability, aligning well with the practical needs of our research.
Alternativemethods, such as autoencoders, require extensive
training data, a more complex setup, and higher computa­
tional costs [Finke et al., 2021].
This functionality operates unsupervised and requires

time­series data, as represented in Figure 6. Initially, the log
data extracted by Fluentd from the system is centrally stored
in a single dataset in Elasticsearch (step 1). This dataset is cat­
egorized (steps 2 and 3) using an ML process that tokenizes
a text field, clusteres similar data, and classifies it. This
ML process is particularly suited to logs since they typically
contain a finite set of possible messages. In Elasticsearch,
categorization can be performed for the entire dataset or on
a per­partition basis (e.g., for each service separately). In
the latter case, categories are determined independently for
each partition. The categorized data is stored in a secondary
dataset (step 4), periodically feeding the ML model (step 5).
TheMLmodel (detector) learn each category’s usual volume
and pattern over time (step 6). Anomalies can be detected
in two ways: (i) by observing the event rate of a particular
category (count) or (ii) by identifying categories that seldom
occur over time (a rare event). Finally, the analysis results
are stored (step 6) for future visualization (step 7).

Data Preprocessing

Tokenization

5G
Logs

Categorized 
Data

Detector

Results

2 4
5 6

Visualizer

7

Data
Categorization3

CUDURU Core

1

Anomaly Detection

Figure 6. Unsupervised anomaly detection flow.

5 Results
This section systematically presents the outcomes of our em­
pirical investigation, segmented into three comprehensive
subsections for enhanced clarity and focus. Subsection 5.1
evaluates the effectiveness of traditional cloud­native tools
in detecting anomalies within B5G system. Subsection 5.2
demonstrates the insights gained from leveraging Elastic­
search’s integrated Machine Learning (ML) features for sys­
tem anomaly detection. Finally, Subsection 5.3 analyzes re­
source usage and overhead of CNOTs.

5.1 Anomaly Detection Using Observability
Tools

We aim to detect anomalies using observability tools. In this
context, we realize two experiments. First, the B5G system

under study is subjected to a resource provisioning failure
during a connectivity test using a ping tool between a UE and
the data network. Second, we submit the deployed B5G sys­
tem to a resource provisioning failure during a test between
a UE and the data network, stressing the environment using
the iPerf tool.

Connectivity Test

In the first test scenario, the B5G system under study is sub­
jected to a resource provisioning failure during a connectiv­
ity test between a UE and the data network. This test aims to
verify if metrics and logs extracted from the system can de­
tect the injected failure. The following steps are performed
to achieve the goal: the amount of CPU provisioned for the
pod running the CN services is undersized. This pod receives
only half (0.25 Millicores) of the resources needed for its
regular operation (0.5 Millicores). However, the RAM has
sufficient resources for all pods, and RAN and CN pods are
started (E1). After the initialization of the system, the Ping
tool injects probes into the data session established between
UE and the data network, using UE as the probe source (E2).
Finally, the generation of probes is ended (E3). The metrics
analyzed in this scenario are the CPU and RAM consump­
tion of the pods corresponding to the RAN and CN services
and the average latency of the sent probes. In addition, logs
extracted from pods running these services are analyzed for
the number of messages written per unit of time.
The contrasting outcomes between the undersized and

overprovisioned scenarios in Figure 7 offer valuable insights.
In the test with undersized resources, we observe a consistent
maxing out of CPU consumption in the CN services pod and
a threefold increase in average probe latency, compared to
the overprovisioned test. These results indicate that the sys­
tem is facing a bottleneck in processing capacity, severely af­
fecting the Quality of Service (QoS). However, the overpro­
visioned scenario shows efficient system performance, sug­
gesting that overprovisioning can be a viable but potentially
costly strategy for maintaining system reliability.
Interestingly, the log write rates for CN and RAN services

did not vary significantly between the test scenarios. This
behavior suggests that CPU consumption and probe latency
are effective indicators for diagnosing resource provisioning
issues. However, the log write rates seem less sensitive for
anomaly detection in this context. Therefore, collecting and
analyzing appropriate metrics are vital for accurately detect­
ing and diagnosing system performance and anomalies.

Performance Test

In this evaluation, we submit the deployed B5G system to
a resource provisioning failure during a test between a UE
and the data network. This test aims to verify whether the
extracted metrics and logs analysis are suitable to detect the
injected fault. To this end, we underestimate the CPU pro­
visioned for the CN pod, receiving only a fraction (1 Mil­
licores) of the resource required for its regular operation (4
Millicores). However, the RAM is provisioned with suffi­
cient resources for all pods. Then, we perform the follow­
ing steps. We start RAN and CN pods (E1). After initializ­
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Figure 7. Results for the connectivity test scenario. The first column (a) represents the results of the undersized feature test, while the second column (b)
illustrates the results of the overprovisioned resources test.

ing the system, we generate traffic between UE and the data
network using the Iperf tool (E2). However, after the first
minute of traffic generation, we observe that the data session
established between UE and the data network is abnormally
terminated (E3). Since the data session is abnormally ter­
minated, we finish traffic generation (E4). The metrics ana­
lyzed in this scenario are the CPU and RAM consumption of
the RAN and CN pods and the throughput obtained between
UE and the data network.
From a comparative perspective, the results from Figure 8

(a) and (b) serve as a compelling case study for the im­
portance of adequate resource provisioning in B5G systems.
While the test with CPU underprovisioning led to an abnor­
mal termination of the data session between UE and the data
network, the overprovisioned scenario worked without any
issues. This discrepancy indicates that CPU resources are
a critical factor for the stability of the data sessions in this
architecture. Notably, the CPU consumption in the RAN
pods increased in both scenarios as traffic generation began,
but only the underprovisioned test led to system instability.
Therefore, it is evident that the underprovisioning of CPU re­
sources can lead to critical system failures, affecting the user
experience and overall network reliability.
Another significant observation is the timeline of anomaly

detection. In the underprovisioned scenario, the DU log
emitted an abnormal message even before the throughput
dropped to zero. This result is especially crucial for proactive
fault management. Standard cloud­native tools effectively
detected the injected anomaly, but log observation provided

an earlier warning than metric observation. This early detec­
tion through logs can be instrumental in triggering automated
corrective actions before the user experience is severely im­
pacted. Therefore, while metrics are valuable for understand­
ing the system’s behavior, logs can offer a more immediate
insight into emerging issues, enabling quicker remediation.

5.2 Anomaly Detection Using COTS ML
Tools

We use the logs extracted in the experiments described in
Subsection 5.1 to evaluate whether the built­in ElasticSearch
ML can detect the injected fault. To this end, we create an
anomaly detection job in ElasticSearch to analyze the col­
lected logs separately, i.e., creating one log for each pod ser­
vice (CU, DU, RU, and CN). This analysis is achieved by
partitioning the centralized dataset per pod name. In Elas­
ticSearch, an anomaly detection job can be different. We
use the Categorization anomaly detection, looking for cat­
egories that rarely occur in time. ML feed and processing
is performed every second for each log. Figure 9 shows the
screenshot of a Kibana dashboard where detected anomalies
for each log are displayed for visualization. We can see that
the abnormal messages emitted by the DU log are also cap­
tured by the ElasticSearch ML built­in, as illustrated by or­
ange arrows 1, 2, 3, and 4 in Figure 9. Therefore, we argue
that the deployed B5G system’s logs were suitable for pro­
cessing by a COTS ML solution.
Our experiments demonstrate the effectiveness of standard
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Figure 9. Anomaly detection results from Elastic Search.

CNOTs and a COTS ML solution for anomaly detection in
a deployed B5G system. The ElasticSearch ML built­in was
remarkably able to identify the abnormal messages in the DU
logs, as highlighted in Figure 9. This result confirms the sys­
tem’s ability to make its internal state observable and to val­

idate the reliability of COTS ML solutions for this purpose.

The current message logs in free5GC and OpenAirInter­
face could benefit further structuring and clarification. As
it stands, the logs are not easily interpretable, complicating
the task of visual inspection for anomalies. This observa­
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tion suggests that while COTS ML solutions such as Elastic­
Search can aid in anomaly detection, there is still room for
enhancing the inherent observability of these B5G platforms.
Improved log structuring could lead to more accurate and ef­
ficient anomaly detection, bolstering system reliability.

5.3 Overhead Analysis
Figure 10 presents the analysis of the resource utilization pat­
terns considering CPU and RAM for K8s, Virtual Network
Functions (VNFs), and CNOTs. VNFs, comprised of RAN
and CN, lead in CPU resource usage, exhibiting a mean of
1.31 millicores with a standard error of 0.38. These VNFs
contribute to about 57% of the total CPU overhead. The
CNOT services, including Elastic Search and Kibana (ESK),
Prometheus, and Fluentd, use an average CPU consump­
tion of 2.33 millicores, approximately 22% of the total CPU.
Moreover, considering CPU usage within CNOTs, ESK con­
tributes 15%, Fluentd 2%, and Prometheus 4%. Fluentd,
although critical, is among the least CPU­intensive compo­
nents of the CNOT stack. In the RAM usage context, the
CNOT services are notably high, consuming 86% of the sys­
tem’s total. Moreover, ESK consumes an average of 5.28
GB with a standard error of 0.02.
The orchestration layer, represented by K8s, presents a

unique profile in the study. The orchestration uses 20% of
the overall CPU and 7% of the total RAM, averaging a con­
sumption of 0.57 GB. Given the current RAM usage, we ar­
gue that larger deployments might encounter issues. This
analysis underscores the importance of an effective resource
allocation strategy for efficiently accommodating K8s and
other vital components in the system.
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Figure 10. Resources utilization metrics.

6 Conclusion and Future Work
This empirical investigation explored the observability as­
pects of an open­source, cloud­native B5G system. The
study demonstrates the system’s compatibility with CNOTs
and ML­based solutions, substantiating the potential for ef­
fective internal state monitoring. The study also exposes lim­
itations, most notably the inadequacy of logmessage structur­

ing, particularly in the RAN component. Our evaluation of
the CNOT services revealed a significant memory footprint,
accounting for 86% of the total memory usage and 22% over­
all CPU utilization.
The analysis highlights an essential requirement for more

structured logging mechanisms within B5G systems, not just
for clarity but also to enhance the precision and efficiency of
anomaly detection methods. While metrics remain invalu­
able for long­term monitoring and behavior analysis, prop­
erly structured logs could offer real­time actionable insights,
thus facilitating rapid issue resolution.
In future work, we will extend our study to include tracing,

covering all three observability pillars. Our forthcoming re­
search will involve a more geographically distributed setup
for B5G CN and RAN to capture a robust dataset. Compara­
tive evaluations of various open­source solutions will also be
conducted to provide a comprehensive view of their capabili­
ties. Moreover, we will integrate quantitative metrics to eval­
uate the effectiveness and efficiency of the selected anomaly
detection tools. A focused examination of their scalability
is planned due to the memory­intensive nature of CNOT ser­
vices. Long­term research endeavors will probe into the role
of observability within Open RAN components, including
Service Management and Orchestration (SMO), Non Real­
Time RAN Intelligent Controller (RIC) (non­RT RIC), and
Near Real­Time RIC (near­RT RIC) [O­RAN, 2023]. Fi­
nally, a new line of investigation should address the In­band
telemetry to anomaly detection in mobile networks as intro­
duced by Fida et al. [2023].
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Table 2. Summary of acronyms.

Acronym Definition Acronym Definition
5G fifth­generation 6G sixth­generation
AMF Access and Mobility Management Function AV Autonomous Vehicle
AUSF Authentication Server Function B5G Beyond 5G
BBU Baseband Unit C­RAN Cloud­RAN
CN Core Network CNF Containerized Network Function
CNOT Cloud­Native Observability Tools COTS Commercial­Off­The­Shelf
CPU Central Processing Unit CU Central Unit
DU Distributed Unit DWDM Dense Wavelength Division Multiplexing
EC Edge Computing EFK Elasticsearch, Fluentd, and Kibana
ESK Elastic Search Kibana FaaS Function­as­a­Service
FLML Federate Learning ML gNB Next Generation Base Station
HDAD Hybrid Deep Anomaly Detection IoS Internet of Senses
K8s Kubernetes MAC Medium Access Control
MEC Mobile Edge Computing ML Machine Learning
MPLS Multiprotocol Label Switching NG­RAN Next­Generation RAN
NR New Radio NRF Network Repository Function
PCF Policy Control Function PDCP Packet Data Convergence Protocol
PHY Physical Layer POMDP Partially Observable Markov Decision Processes
RAN Radio Access Network RAM Random Access Memory
RIC RAN Intelligent Controller RLC Radio Link Control
RRH Remote Radio Head RT Real­Time
RU Radio Unit SDR Software­Defined Radio
SMF Session Management Function SMO Service Management and Orchestration
TN Transport Network UDM Unified Data Management
UE User Equipment UPF User Plane Function
VNF Virtualized Network Function VM Virtual Machine
WAN Wide Area Network eBPF extended Berkeley Packet Filter
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