Journal of Internet Services and Applications, 2024, 15:1, doi: 10.5753/jisa.2024.3779

© This work is licensed under a Creative Commons Attribution 4.0 International License.

A distributed computing model based on delegation of serverless
microservices in a cloud-to-thing environment

Antonio Silva ® &I Institute of Informatics, Federal University of Rio Grande do Sul — Brazil, 91.501-
970 | aassilva@inf.ufrgs.br], and [Hamm-Lippstadt University of Applied Sciences, 59063 Hamm,

Germany | antonio.santosdasilva@hshl.de |
Paulo Mendes @® [Airbus,
many | paulo.mendes@airbus.com |

Willy-Messerschmitt-Strasse 1,

82024 Taufkirchen, Ger-

Denis Rosario ® [Federal University of Para | denis@ufpa.br |
Eduardo Cerqueira @ [Federal University of Para | cerqueira@ufpa.br |
Jodo Paulo J. da Costa @ [Hamm-Lippstadt University of Applied Sciences, 59063 Hamm, Ger-

many | joaopaulo.dacosta@hshl.de |

Edison P. de Freitas @ [Federal University of Rio Grande do Sul — Brazil, 91.501-970 | epfie-

itas@inf.ufrgs.br |

&4 Institute of Informatics, Federal University of Rio Grande do Sul, Av. Bento Gongalves 9500, Porto Alegre, Brazil
and Department Lippstadt II, Hamm-Lippstadt University of Applied Sciences, Marker Allee 7678, Hamm, Germany

Received: 22 October 2023 e Accepted: 15 May 2024 o Published: 03 August 2024

Abstract This article explores serverless cloud-to-thing architecture and the virtualization of functions across the
network as a solution for implementing services across the cloud-to-thing continuum. It addresses the challenges
posed by the emergence of 5G and 6G networks, where they require high bandwidth, low latency, and real-time
computing capabilities. The proposed architecture leverages edge computing principles, orchestrating computing
functions across edge/fog infrastructure. A serverless approach with microservices offers flexibility and scalability
for deploying services on heterogeneous devices. The proof-of-concept implementation demonstrates the architec-
ture’s suitability for cloud-to-thing solutions and highlights possible research directions for improving its efficiency
and reliability in dynamic network environments. In Scenario A, simulation results indicated a 23% rise in through-
put at the cloud level within the first 2 seconds. Atthe 12-second mark, the throughput became uniformly distributed,
indicating a significant offloading of computational tasks. Scenario B showed an almost linear throughput distri-
bution between the cloud and the satellite starting at 8 seconds, highlighting the framework’s capacity for dynamic

reallocation of computing functions in real-time.

Keywords: Cloud-to-thing, serverless, distributed computing.

1 Introduction

Services targeting 5G and 6G networks, such as Autonomous
Vehicles (AVs), Internet of Drones, and others, will consume
more bandwidth, need low latency rates, and require exten-
sive real-time computing services [Mahmud and Toosi, 2021;
Kroél and Psaras, 2017]. Edge computing technologies en-
vision an open horizontal architecture for distributed com-
puting that promises to overcome the limitations of cloud-
centric execution for different latency-sensitive services by
providing computing resources closer to data sources and
consumers [Laghari et al., 2021]. However, the location of
the servers is pre-set and cannot be changed according to the
needs of different services and dynamic configurations of the
environment.

In line with the above, researchers are moving towards
a new paradigm of network computing continuum, where
computing functions can be deployed anywhere along the
cloud-edge-fog infrastructure [Dogani ef al., 2023]. In this
scenario, cloud servers may become control nodes for intelli-
gent edge/fog devices, in which case there is a need for com-
prehensive orchestration techniques that can coordinate and

schedule network services across the cloud-to-thing contin-
uum [Rosario et al., 2018]. In this context, serverless com-
puting [Li et al., 2022] emerges as an attractive technology in
which small services run without dealing with the operational
problems of server provisioning and resource management.
In a world of serverless computing, microservices [Cerny
et al.,2022] also play a crucial role in promoting faster, more
manageable deployments of services in a cloud-to-thing con-
tinuum in which devices (cloud, satellite, and drones) have
heterogeneous capabilities [Cili¢ et al., 2021].

There has been much progress in developing serverless im-
plementation models Sarkar et al. [2019]; Goniwada [2022].
However, research in this field is still in the early stages. For
example, existing solutions do not support dynamic execu-
tions on disparate devices, thus compromising the deploy-
ment of microservices solutions [Laghari et al., 2021]. To
tackle the properties of a cloud-to-thing continuum, in this ar-
ticle, the serverless architecture is leveraged, allowing com-
puting functions to run on a set of nearby devices (satel-
lites and drones) and not only on servers. In this sense, this
work presents serverless-cloud-to-thing as the architectural
approach in which programming is isolated from the specifi-

https://orcid.org/0000-0003-3709-4007
mailto:aassilva@iinf.ufrgs.br
mailto:antonio.santosdasilva@hshl.de
https://orcid.org/0000-0003-1059-8272
mailto:paulo.mendes@airbus.com
https://orcid.org/0000-0003-1119-2450
mailto:denis@ufpa.br
https://orcid.org/0000-0003-2162-6523
mailto:cerqueira@ufpa.br
https://orcid.org/0000-0002-8616-4924
mailto:joaopaulo.dacosta@hshl.de
https://orcid.org/0000-0003-4655-8889
mailto:epfreitas@inf.ufrgs.br
mailto:epfreitas@inf.ufrgs.br

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment

cation of infrastructure requirements, allowing the combina-
tion of networking, storage, and computational resources to
deploy, execute, and adapt the operation of services defined
as a set of microservices in the cloud-to-thing continuum.

This proposed serverless-cloud-to-thing model defines ser-
vices as a set of microservices to allow the exploitation of de-
vices with heterogeneous and potentially limited capabilities.
With this serverless [Goniwada, 2022] model, microservices
run on demand in response to triggers that service develop-
ers can configure in advance. The proposal uses a Software-
Defined Networking (SDN) approach to coordinate deploy-
ing a series of microservices [Landmark ez al., 2018], increas-
ing its flexibility. In addition, SDN enables the underlying
network to respond quickly to changes with the proper place-
ment or replacement of microservices in different devices.

Regarding the execution of services, the proposed
serverless-cloud-to-thing model considers a data plane based
on the concept of Named Data Networking (NDN) [Al-
Omaisi et al., 2021], which brings advantages for connecting
small services [Krdl and Psaras, 2017] used to support the ex-
ecution of services in a distributed manner. NDN enables the
development of host-independent network structures better
suited for the dynamic behavior of the cloud-to-thing con-
tinuum. With an NDN-based data plane, users can directly
request the network to execute a specific service without dis-
covering the location of all the previously needed microser-
vices.

The main contributions of this work are the following:

1. Present an overview of serverless architectures for the
cloud-to-thing continuum and an approach for imple-
menting services in heterogencous network environ-
ments.

2. Propose a serverless model for the cloud-to-thing con-
tinuum, allowing computing functions to be performed
on a variety of devices close to consumers, such as satel-
lites and drones, in addition to traditional servers.

3. Providing flexibility and scalability schemes for deploy-
ing services on devices with heterogeneous capabilities
by using microservices and serverless approaches to-
gether.

4. Develop a proof-of-concept for demonstrating the via-
bility of the proposed architecture for cloud-to-thing so-
lutions. In addition, it identifies possible research direc-
tions to improve efficiency and reliability in dynamic
network environments.

Two scenarios were evaluated, one with a normal load and
the other with a high traffic load. The simulations in Scenario
A revealed a 23% increase in throughput at the cloud level
in the first 2 seconds, suggesting that most of the computa-
tional functions were initially processed in the cloud. How-
ever, at approximately the 12th second, the throughput exhib-
ited a linear distribution, suggesting that the functions were
redistributed to other points in the framework, highlighting
the system’s ability to reconfigure itself dynamically to opti-
mize the use of resources. In Scenario B, the load was more
intense, and From the 8th second onward, the simulation de-
picted an almost linear distribution of throughput between
the cloud and the satellite, showcasing the framework’s capa-
bility to dynamically reallocate computing functions in real-

Silva et. al., 2024

time to sustain efficiency, even in challenging circumstances.
These findings highlight the framework’s adaptability to fluc-
tuations in load and connectivity, suggesting its suitability
for fog computing applications requiring adaptability and
fast response.

The remainder of this paper discusses the design princi-
ples and challenges to be addressed so that serverless solu-
tions can effectively contribute to the efficient operation of
a cloud-to-thing continuum, leading to the proposal of a new
serverless-cloud-to-thing model. This paper describes and
evaluates a proof-of-concept that focuses on implementing
a cloud-to-thing continuum over a satellite network connect-
ing remote users to cloud providers’ Point-of-Presence (PoP).
The paper also discusses the current state of the computing
continuum and its main principles, challenges, and opportu-
nities related to the operations and management of dynamic
serverless computing functions.

2 Main Existing Approaches to Cloud-
to-Thing Computing

There has been extensive discussion in the literature about
cloud-to-thing computing [Cheng ef al., 2019; Verginadis
et al., 2021], motivated by the need to manage complex and
heterogeneous computing environments while being aware
of all available resources to perform dynamic resource allo-
cations and enable short time deployment of services [Gusev,
2021]. The need to consider resources located in the edge
and beyond is derived from the fact that cloud resources re-
side at a distance of several hops from end users, leading to
a degradation in the Quality of Services (QoS) [Afrin et al.,
2015].

This requires the deployment and coordination of comput-
ing functions on devices that are typically closer to users
and data sources [Laghari ef al., 2021], meaning that small
Single-Board Computers (SBC) will be widely used as com-
puting nodes [Mahmud and Toosi, 2021]. On the one hand,
these small devices are limited to facilitating multi-location
and resource sharing, and on the other hand, managing com-
puting resources through centralized entities further degrades
the service performance [Mahmud and Toosi, 2021].

Several solutions have been proposed in the computing
continuum space. Con-Pi [Mahmud and Toosi, 2021] relies
on virtualization for edge and fog computing services run-
ning on SBC for IoT services. Other proposals [Cheng et al.,
2019; Verginadis et al., 2021] offer Virtual Machines (VM)
or container services on heterogeneous devices from data
centers to nano servers. Another direction explores routers,
switches, and gateways that are part of the network infrastruc-
ture to run services [Sarkar et al., 2019]. While conceptually,
routers, switches, and gateways can run VMs, these devices
must perform continuous network operations and are often
considered unsuitable for running complex services.

To increase the capability of routers, switches, and gate-
ways to run services, solutions are needed to use computa-
tional resources efficiently, such as by exploring A functions
[Kaur and Mittal, 2021; Mekbungwan et al., 2022] that are
lighter. However, they have several operating limitations
and are more complex for developers. In particular, multiple

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment

services are inaccessible in a single A function, so recursive
calling of multiple A functions leads to the earlier deploy-
ment challenges.

The described proposal reveals the power of the comput-
ing continuum [Cheng ef al., 2019; Verginadis et al., 2021;
Gusev, 2021; Afrin et al., 2015; Laghari et al., 2021; Mah-
mud and Toosi, 2021; Sarkar et al., 2019; Kaur and Mittal,
2021; Mekbungwan et al., 2022]. However, they are all
based on a server architecture, meaning that developers need
to know the application to be developed and the resources
needed for the execution. Finally, deploying server-based
solutions is subject to cost and power issues [Patros et al.,
2021], and CPU power and memory limitations often char-
acterize the increased latencies of edge devices.

Table 1 summarizes the characteristics and approaches of
the different proposed architectures for services in the con-
text of cloud-to-thing. In general, existing frameworks that
could be applied to the cloud-to-thing continuum have lim-
ited flexibility to support dynamic service composition with
a data-driven approach. In addition, existing solutions are
dominated by proprietary silos and incompatible technolo-
gies built around dedicated devices and runtime stacks.

3 Design Principles

This section presents the fundamental principles that guided
the development of the serverless-cloud-to-thing proposal.
An SDN-based approach is used to divide the data and con-
trol planes. In the data plane, an NDN-based approach is
adopted to enable the execution of computational functions
on demand. In the control plane, network infrastructure man-
agement and monitoring functions are deployed.

The proposal is based on microservices for application de-
velopment. Figure 1 shows the logical separation of the pro-
posed service. As shown, the service is divided into two
parts: the first logical part is called the “Service Manager,”
which is responsible for managing a service that contains var-
ious computer modules to serve it. The second part is the
computing modules; in this case, the service is divided into
three computing functions in the example shown, forming a
chain of functions with the “Service Manager.” These func-
tions can be deployed on one or more network devices.

Service X
A

ot ‘ “a 7"“"‘7-»;
+ ' Service + » Computational + » Computational + » Computational
Manager function 1 function 2 function 3

Figure 1. Division of Service X into four processing modules, each repre-
senting a part of a chain of computing functions, with the Service Manager
as the head of the chain.

Computational functions can be implemented using var-
ious technologies, such as Unikernels, Docker Containers,
and WebAssembly. As discussed in section 2, Unikernels
and Docker Containers have significant mobility and service
activation limitations. The proposed architecture uses We-
bAssembly to implement the computational functions. We-
bAssembly functions are built to run without a server.

Silva et. al., 2024

WebAssembly VMs are smaller than other approaches,
which allows their binaries to be transported over the network
more efficiently and quickly. In addition, they can be run on
any device with computing power. This means that comput-
ing functions can be allocated to devices with idle computing
resources. When a chain of serverless computing functions
for a given service is allocated to a set of devices, these de-
vices define a computing cluster, as all the serverless com-
puting functions are interconnected by the NDN data plane.

Figure 2 illustrates the distribution of Service X’s comput-
ing functions, as shown in Figure 1, on various devices in
the data plane. The network infrastructure management and
monitoring functions are deployed in the control plane, as
shown in Figure 2. Each function that makes up the proposed
architecture is detailed in Section 4.

Control plane

+ ' Deployment 4 4+ Monitoring
Agent Agent

Data plane
v + Computational
N function 3

Device D

\

+ % Computational =
- a4
function 2 -y

Device C

P . Computational
N ¢ i
A function 1

Device B

W4

+ ' Service =
b
X Manager R

Device A

/

Consumers
(Users)

Figure 2. Deployment of computing functions in the data plane and control
instances in the control plane. Four devices in the data plane each host a
distinct computing function, while the control and monitoring functions are
in the control plane.

This way, the proposed serverless-cloud-to-thing model
can allow devices, such as cloud servers, to harvest resources
from other nonexclusive and sporadically available devices,
such as satellites and terminals, and expose these resources to
computational services. Computational services are submit-
ted to the network itself, which then can schedule different
microservices to other devices within the network. Each de-
vice has the capability of monitoring resources and providing
state information to other elements of the network. Monitor-
ing network, process, and storage resources are important to
allow the creation of service chaining: a set of connected
devices that offer a particular service by executing interde-
pendent microservices.

The serverless paradigm used in the proposed serverless-
cloud-to-thing model allows system engineers to incorporate
more decentralization. In this way, services can be handled
in a more independent and isolated way. Furthermore, server-
less defines an event-driven programming model, and its ad-
vantages include scalability, focus on business logic, and
high cohesion. However, taking computing out of its con-
ventional places and integrating it into the user environment
poses new challenges due to the heterogeneous capability of
different devices. Hence, the proposed model complements a

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment Silva et. al., 2024

Table 1. Summary of the main cloud-to-thing computing proposals

Network Function Service Dedication of Deployment Service
Proposal o .

approach mobility management resources technology allocation
Mahmud and Toosi [2021] IP” Partial No Dedicated Docker Dynamic

7

Cheng et al. [2019] GeEI){sash Partial No Dedicated Docker Dynamic
Verginadis et al. [2021] IP* Partial No Dedicated Docker Dynamic
Sarkar et al. [2019] IDs” Partial No Dedicated Docker Dynamic
Kaur and Mittal [2021] IP* Partial No Generic Docker Dynamic
Mekbungwan et al. [2022] ICN® No No Dedicated A Static
Gusev [2021] IP” No No Generic No Static
Krél and Psaras [2017] ICNS No No Generic Unikernels Static
Kjorveziroski and Filiposka IP* Yes No Dedicated WebAssembly ~ Dynamic
[2023]
This ICN3 Yes Yes Generic WebAssembly Dynamic

* Internet Protocol (IP).
1dentifiers (IDs).
$ Information-Centric Networking (ICN).

-- - - Comimunication

O Compute cluster

serverless architecture with the idea of microservices, which
can loosely couple the modules that are part of a service so
that independent serverless computing can be redefined in
real time based on replacing different microservices.

The deployment of microservices in the cloud-to-thing
continuum is done based on an SDN-based approach. In
this approach, an SDN controller implements a Deployment
Agent responsible for the serverless microservice delegation
to different devices. In addition, the Deployment Agent is
responsible for maintaining the required service quality, de-
fined by intents submitted by the network operator, based
on network monitoring information and on the definition of
services that dictate the dependencies between different mi-
croservices.

Figure 3. An application scenario with urban and rural environments communicating with the cloud using PoPs and base stations. The red dotted line
indicates the communication between the devices, and a compute cluster of four parked cars is also observed.

4 System Design

The conceptual overview of the serverless-cloud-to-thing
model is illustrated in Figure 3, which shows a satellite-based
cloud-to-thing continuum, interconnecting the cloud with its
PoP, the edge encompassing satellites and the far edge in-
cluding computer clusters, of vehicles in this case. This sce-
nario can be used to deploy front-hauling, backhauling, or
hybrid scenarios. In the front-hauling case, users can access
the satellite directly, for instance, based on the presence of a
5G eNB onboard the satellite. In the backhauling case, users
interface with the satellite system based on a satellite termi-
nal.

In this scenario, satellites can provide extensive coverage
with significantly large bandwidth, as expected in 5G and

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment

6G ecosystems. But in this example, the PoP represents
a communication bottleneck, limiting bandwidth since the
use of converters (optic-to-digital, radio-to-digital, and oth-
ers) limits the processing load and, consequently, the band-
width. This problem can be mitigated by applying the pro-
posed serverless-cloud-to-thing model, in which resources
available from the cloud, PoP, satellite, and terminal are con-
sidered to distribute service logic across the network, consid-
ering available resources and the requirements of the differ-
ent microservices.

As illustrated in Figure 3, users can be autonomous ve-
hicles, vehicles with Advanced Driver-Assistance System
(ADAS), people using smartphones, or IoT devices. These
users connect to the network using an ICN approach and
request services or data from it, stating only their interests.
This procedure is detailed in Subsection 4.1. The services are
available throughout the infrastructure and implemented as
computational functions deployed on demand, as detailed in
Subsection 4.2. After deploying a service, it manages itself
using the Service Manager function, detailed in Subsection
4.3. In general, a service can be reallocated to meet prede-
fined requirements. This reallocation of services occurs dy-
namically and without interrupting the service; this process
is detailed in Subsection 4.4.

4.1 Chain of computational functions

The serverless-cloud-to-thing model operates on named ser-
vices. When users do not implement an NDN-based proto-
col stack, requests are directed to the nearest device. These
requests are then mapped to a name reflecting the service
within the NDN on the infrastructure. This design aspect is
crucial, as location-agnostic services simplify management
for the Deployment Agent installed in the SDN controller. It
enables real-time redefinition of service behavior, including
replacing microservices within the network infrastructure.

The service discovery process is illustrated in the diagram
depicted in Figure 4. This process closely resembles the data
discovery process in the NDN approach. However, instead
of querying the Content Store (CS), the search is conducted
within the Function Store (FS). The functions stored in the
FS, developed in WebAssembly, are stored in the controller
and transmitted to the devices as data packets, where they are
subsequently stored in the FS.

As exemplified by the block diagram in Figure 4, a service
is instantiated by a consumer, a user. The routing process is
similar to that of NDN: on locating the service in its FS, the
device starts executing the request or adds it to a queue if
the service is already running. The computational function
returns using the same concept as NDN. If a service is not
available on the device, routing to the next device is carried
out according to the Forwarding Information Base (FIB), and
an entry is added or updated in the Pending Interest Table
(PIT), in a similar way to NDN.

In this context, an extension to the current WebAssem-
bly VM model is proposed. This change allows indepen-
dent serverless execution and the chaining of functions that
form a service, as presented in Figure 5. In the proposed
serverless-cloud-to-thing model, WebAssembly does not in-
clude “Runtime” operations, and a service manager for each

Silva et. al., 2024

Consumers (Users)

Q—»[Send Interest Packet J

Start

Add function in
queue

Performs

Searchin function

FS

Interest
Packet in
queue

Search in Yes
PIT Update PIT . End
No
Forward using
FIB

¥
Figure 4. Block diagram illustrating the process of discovering and running
a computational function.

No Return result

Add in PIT

Device

service and a service agent for each device are added. For
the “Wasm Module,” the “Imports” mechanism is removed,
and the “Exports” becomes referential, thus guaranteeing the
isolation and independence of each computational function.
Finally, “Chain sequence” is added to reference the position
of the computation function in the chaining formed for the
service.

Wasm Module Computa_tlonal
Function
- Name - Name
- Imports - Exports
- Exports - Chain Sequence

Figure 5. On the left, the components of a WebAssembly module (Wasm
Module) are shown, while on the right are the components of a Compu-
tational Function, an adaptation of a WebAssembly module to support the
chaining of computational functions of a microservice. The component high-
lighted in red represents the removal, while the component in blue indicates
the addition to the implementation.

This way, it can be executed in any device with computa-
tional capacity through a Service Agents that communicates
directly with the device’s hardware, meaning that computing
functions can be allocated to devices with idle computational
resources. When a chain of serverless computing functions
of a certain service are allocated to a set of devices, those
devices define a compute cluster since all serverless comput-
ing functions are interconnected by the NDN data plane (see
Figure 3).

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment

4.2 Deployment

During the development of a service, a developer should not
be concerned with managing the computational and memory
resources required to run the service. During runtime, a ser-
vice must meet the application and user requirements.

Hence, serverless microservice functionality is incorpo-
rated to address the above aspects and extend them to com-
putational functions. In addition, the proposal is a new im-
plementation model of computational functions expressed in
WebAssembly, to ensure the isolation of each computational
function and deployed by the Deployment Agent interdepen-
dently of other computational functions that make a service.

The Deployment Agent onboard the SDN controller is re-
sponsible for knowing all the chain compute functions part
of the serverless service, as well as the requirements of each
service, so that after deployment of the service, it can iden-
tify whether its requirements are being met by monitoring all
microservices. So, when a requirement becomes unmet, the
Service Manager can react by analyzing the best options to
reallocate the underperforming microservices.

Each computational function implemented in We-
bAssembly traverses the network as a data packet named
“/binary/< computational function name>.” Packets with the
prefix “/binary/...” are recognized in networked devices by
Service Agents implementing NDN-based serverless-cloud-
to-thing model as binary VMs. Such Service Agents can put
into execution this VM on their hardware. In this way, any
device (thing) with computing power can run the VMs and
become part of a cloud-to-thing continuum.

As mentioned before, the Deployment Agent is performed
using an SDN-based approach. The choice of the centralized
management approach is linked to the objective of the pro-
posed work, where each function computing behavior can be
redefined in real-time and independently. Thus, the proposed
architecture presents a Deployment Agent in each infrastruc-
ture: a Deployment Agent for the cloud and a Deployment
Agent for the satellite. The Deployment Agents commu-
nicate among themselves, but the infrastructure’s computa-
tional functions respond only to the corresponding infrastruc-
ture’s Deployment Agent. For instance, the computational
functions present in the cloud respond only to the cloud’s
Deployment Agent. In short, the Deployment Agent ensures
QoS and Quality of Experience (QoE) in its network infras-
tructure. Note that the proposal aims at 5G and 6G networks,
so the proof-of-concept aims at applications with the char-
acteristics defined in the proposed standards for 5G and 6G
networks.

Regarding the cloud Deployment Agent, the SDN archi-
tecture allows it to be composed of one or several applica-
tions, for example, applications based on Artificial Intelli-
gence (Al) or static policies. A single static policy-based
application is used for the proof-of-concept, the bandwidth.
The proof-of-concept application uses variables for each type
of data stream. This variable stores the average data traf-
fic per millisecond for a given stream (one application type
is responsible for one stream). Thus, if the bandwidth con-
sumption is close to the maximum, the service with the high-
est data consumption is sent to devices near the data source
by using packets with the prefix “/binary/...”, as described

Silva et. al., 2024

in the previous subsection. Since our proof-of-concept data
sources are satellite users, such as vehicles, the microser-
vices of the service to be replaced are sent to the Deployment
Agent in the satellite infrastructure.

As far as the satellite Deployment Agent is concerned, just
like the cloud Deployment Agent, it can also be composed
of one or more applications. For the proof-of-concept, an
application that monitors the link of the PoP of the service
provider was implemented. In the case of the satellite in-
frastructure, the allocation of the computational functions oc-
curs differently than in the cloud. The satellite’s Deployment
Agent is responsible for allocating and managing the compu-
tational functions and microservices received from the cloud
to install them in devices of the satellite infrastructure with
idle computational resources, aiming to fulfill the QoS re-
quired for the overall service while achieving a fair alloca-
tion of resources in the satellite infrastructure. In this context,
the Deployment Agent creates a cluster for each service, rep-
resenting all idle devices selected to receive and install the
binaries of the microservices. Next, the Deployment Agent
forwards the cluster information to the DN servers to update
the IP addresses of the local Service Agents that can receive
local requests for that service.

4.3 Service Manager

To ensure QoE, the service manager, the first computational
function in the chain of functions that describe the service,
performs traffic monitoring, for example, the delay between
the microservices that are part of the chain. If any monitoring
metric is unsatisfied, the service manager sends this informa-
tion to the responsible Deployment Agent. Upon receiving a
message from the service manager, the responsible Deploy-
ment Agent can reallocate the chaining of the microservices
to guarantee that the service requirements are met. In the
proof-of-concept, the criterion used for reallocating the com-
putational functions related to microservices is the proximity
to the user or the data source, depending on the service.

In this way, the Service Manager plays the role of a local
manager who ensures the quality of the service provided. In
the proposed architecture, all the business logic of a service
must be implemented in the Service Manager function and
the processing in the other functions that will be linked to
the Service Manager. Thus, a user or the data plane of an in-
frastructure has no knowledge of the computational functions
that are part of the service. The only information available
to them and necessary is the Service Manager of the service.

4.4 Reallocation of services

When bottlenecks are detected by the monitor installed in
the Deployment Agent, computational functions may be re-
allocated inside the satellite infrastructure, followed by the
update of DNS servers in order to allow local users to find
the closest Service Agent to request the execution of a ser-
vice. Similarly, the cloud Deployment Agent can request the
satellite Deployment Agent to drop some services installed
on the satellite infrastructure, after which the service may be
stopped or transferred back to the cloud.

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment

During reallocating computational functions, the Deploy-
ment Agent forwards the binaries to the devices determined
by the selection model. During this process, the running func-
tions remain active, the forwarded binaries are copies of the
original functions. During the activation of the functions on
the new devices, the head functions, Service Manager, per-
form the context synchronization, and only after that the pre-
vious functions are deactivated.

5 Evaluation

The serverless-cloud-to-thing was implemented using the
NS3 network simulator, and the computation functions using
Wasm. The aim of this proof of concept is to evaluate the re-
definition of the service’s behavior in real-time and indepen-
dently, to analyze the chaining of computational functions
and their reallocation at runtime. For this, the bandwidth of
all PoPs was reduced to force the reallocation of the compu-
tational functions of the services at various times during the
simulation. The source code is available on GitHub>. The
NS3 runs on Ubuntu 20.04, kernel 5.4, Intel Core i5-7300U,
and 8 GB RAM.

For the proof-of-concept, three services were imple-
mented using the Wasm Module adaptation. With the first
service application, APP1, for each packet the user sends,
one packet is returned; this service comprises three computa-
tional functions. With the second service application, APP2,
for each packet the user sends, two packets are returned; this
application comprises two computational functions. Finally,
with the third service application, APP3, four packets are re-
turned for each packet sent by the user; this application com-
prises five computational functions.

The used topology is presented in Figure 6, composed of
four users (users in this proof-of-concept can be smartphones,
drones and/or IoT devices.), three PoPs, a satellite, a cloud,
and a cluster structure encompassing devices from a third-
party entity connected to the satellite infrastructure.

(8] [H

User 1 @

—— A [Pers
o K 1
User 2 q; = 3
5 K —ay
® E b g | Cloud
H - : ou
User3 @ — \&ﬂ / Satellite PoP3 |
o : NS :
X PoP, :
User 4 @ 1P :

NDNandP| |
................. Network core i

Cluster

Figure 6. Evaluation network scenario.

Two simulation scenarios are configured, scenario A and
scenario B, further described in the following sub-sections.
In each scenario, the total transfer rate passing through the
PoPs’ interface at any given time is considered for the real-
location of computational functions. Figure 7 and Figure 8

Shttps://github.com/aassilva/cloud-to-thing

Silva et. al., 2024

show several different measurements related to: a) the sum
of in/out flow on the interfaces connecting the satellite to
PoP; and PoP5; b) the sum of in/out flow on the interface
connecting PoPj to the satellite. Finally, ¢) the sum of in/out
flow on the interfaces connecting the cluster to User 4 and
POPQ.

5.1 Scenario A

For scenario A, 4 user nodes are considered, the defined con-
figuration is user 1, and user 2 has APP1, user 3 has APP2,
and user 4 has APP3 configured. The main objective of this
scenario is to analyze the dynamic reconfiguration of com-
putational functions on devices with ossified computing re-
sources that are not normally part of the network infrastruc-
ture. To do this, applications that require greater bandwidth
are installed on users 3 and 4 to overload the connection in-
terface with PoP5 and PoP3.

Figure 7 shows each user’s throughput. It is important to
observe that in the initial moment of the simulation, the com-
putational functions are allocated almost completely in the
cloud. This observation can be noticed by the throughput of
little more than 23% in b) at instant 2s. It should also be ob-
served that no function is installed in the cluster (throughput
at 0% for all users). During the simulation, the computational
functions start to be deployed in real-time as expected. This
can be concluded by observing the linear throughput distri-
bution starting at time 12s in graphs a), b), and c).

The throughput results generated by the simulations con-
firm that the computational functions are dynamically allo-
cated in real time according to the throughput measured un-
til that moment. The results indicate a dynamic behavior and
a real-time configuration of the computational functions. It
is possible to state that the QoE and QoS required by the
user and network operator, respectively, may be optimized
using a manager with a more robust algorithm based on Ar-
tificial Intelligence, such as recursive neural networks. Fur-
thermore, the results obtained by the proof-of-concept show
that the computing functions have been moved to locations
where the bandwidth parameter (used by the control appli-
cation) can be optimized in the network infrastructure. This
indicates that the continuum computing model based on the
chaining of computational functions and with mobility could
be an alternative solution for next-generation network infras-
tructure.

5.2 Scenario B

In scenario B, the following configuration is defined: User
1 and User 2 has APP3, User 3 has APP1 and User 4 has
APP2 configured. The main objective of this scenario is to
explore the behavior of the proposed project with load stress
on PoP;, in which users do not communicate with a cluster
without going through PoP; itself.

Figure 8 shows the throughput for each user. Note that up
to time 2s, a similar behavior to the one observed in Scenario
A is obtained. However, from time 4s on, the behavior starts
to diverge from the one observed in Scenario A, specifically
concerning the cluster’s behavior when PoP; is stressed. It is

https://github.com/aassilva/cloud-to-thing

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment

100

¢

Throughput measured
Userl
User2
User3
Userd

80

#11

70 4

throughput [%]

a) in/out flow on the satellite’s interfaces to PoP; and PoPs.

100

Silva et. al., 2024

100

—@— Throughput measured
Userl
User2
User3
User4

80 4

70 4

throughput [%]

10
time [s]

b) in/out flow on the interface connecting PoP3 to the satellite.

—8— Throughput measured
Userl

—— User2

User3

—m— User4

804 e
70 A
60
50

40 4

throughput [%]

30 4

20

10 4

10

12 16 18 20

time [s]

¢) in/out flow on the cluster interfaces connecting User 4 and PoPs.

Figure 7. Throughput measured in Scenario A.

possible to notice an almost linear throughput distribution be-
tween the cloud and the satellite a) and b), respectively, from
instant 8s on, which shows that the deployment agent tried
to balance the levels of operation between the cloud and the
satellite by distributing the computational functions among
themselves.

Curiously, the application deployed all the computational
functions that attend to User 3 and User 4 in the cluster. With
this, there was a flow deviation, as it is possible to see in a)
and b) from instant 12s without the presence of flows for User
3 and User 4. With this, and with the data in c), it is possible
to state that all the computational functions of APP3 were in-
stalled in the cluster. Another curious fact is that it is possible
to observe flows of User 1 and User 2 in the cluster (see in c)
at the instant between 8s and 16s. This can be explained by
observing Figure 9, which shows a higher packet loss, possi-
bly due to the overload in PoP;. This observation suggests
that the Deployment Agent observed the service degradation
and proactively tried to reallocate the functions.

6 Discussion

With the increasing adoption of applications in 5G and 6G,
the realization of the computing continuum concept on a

large scale may soon become a reality. Nevertheless, there
is a long road ahead to decouple computing from the cloud
and dedicated devices to computing on any device (cloud-
to-thing). In this context, serverless-cloud-to-thing provides
valuable insights into an architecture that can support cloud-
to-thing in a model based on the delegation of serverless mi-
croservice.

6.1 Redefinition of service behavior in real-
time

The performance of a service is considered correct if there
is a signature of all computational functions in the payload
of a package and the packet has the expected size. Figure
9 shows scenarios A and B’s packet loss and return service
error rates. The service error rate is relatively low and was
almost stable in both scenarios, which can be explained by
the service load distribution in the infrastructure. Possibly,
this rate could be lower if the application had a more robust
service manager, which will be explored in future implemen-
tations. Additionally, it is possible to observe that scenario
B had a much higher packet drop than scenario A. As this
packet drop had no real impact on the QoS performed by the
application, it is possible to conclude that the packet losses

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment

100

¢

Throughput measured
Userl
User2
User3
User4

80 4

11

704

throughput [%]

T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
time [s]

a) in/out flow on the satellite’s interfaces to PoP; and PoPs.

Silva et. al., 2024

100

—8— Throughput measured
Userl
User2
User3
Userd

80+

70

throughput [%]

T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
time [s]

b) in/out flow on the interface connecting PoP3 to the satellite.

100

¢

Throughput measured
Userl
User2
User3
Userd

80

#1f

70 4

60

throughput [%]

T T T T T T
10 12 14 16 18 20

time [s]

c) in/out flow on the cluster interfaces connecting User 4 and PoPs.

Figure 8. Throughput measured in Scenario B.

B Packet loss
254 Service error

Rate [%]
&

"
=)

)

Scenario

Figure 9. Packet loss and service error rate in Scenarios A and B.

happened on the links connecting User 1 and User 2 to PoP;.

It is possible to state that the proof-of-concept presented
an expected performance. As mentioned, future implemen-
tations may improve the performance and make the solutions
more robust, particularly, Al and Graph Neural Network
(GNN) algorithms can be explored in the service manager
implementation, making the service more resilient to real-
time dynamic changes. Furthermore, future research aims to
study a more intelligent data plane with the support of GNN
algorithms. Moreover, scalability can be enhanced through
controller replication techniques. Additionally, alternative

models for controller implementations could be explored in
future research, such as deploying the controller as a chain
of computational functions distributed across the network.

6.2 Independence of computational functions

This work anticipates that future serverless microservice so-
Iutions will need to consider design options for the direc-
tion of independent computational functions and execution
in a simple interface. Take containers, for example. One
can use containers for more generic execution implementa-
tions at the operating system level. As a side effect, it in-
troduces some overhead that may not be suitable for appli-
cations that require low-latency response or hardware plat-
forms with limited resources, such as those served by edge
computing environments. One can also look at ‘heavier’ so-
lutions such as hypervisors, excluding the possibility of using
embedded, domain-limited devices, etc. Similarly, different
devices must be able to perform different functions because
they have different storage, caching, aggregation, and data
processing capabilities.

Depending on the services and heterogeneity of the net-
work devices, multiple applications can perform complex ser-
vices in the network core, with resource allocation and ser-

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment

vice chain priorities being defined. In addition, the large im-
ages result in fewer RAM and disk functions, higher network
usage (for downloading the images), and longer cold-start
time, all of which affect overall network performance.

7 Closing Remarks

This article explored the serverless, cloud-to-thing contin-
uum, addressing the growing demand for low-latency, high-
bandwidth computing services in 5G and 6G networks. The
proposed model takes advantage of serverless architecture to
deploy computing functions on a variety of devices, includ-
ing satellites and drones, in addition to traditional servers,
allowing for a more flexible and distributed computing envi-
ronment. Furthermore, by adopting an SDN approach and
taking advantage of NDN at the data plane, the proposed
model facilitates the dynamic deployment and management
of computing functions across the network infrastructure.
WebAssembly technology is used to implement computing
functions, ensuring efficiency and compatibility between de-
vices.

The results obtained in simulation by the serverless-cloud-
to-ting proof-of-concept indicate that the deployment of mi-
croservices in the cloud-to-thing continuum orchestrated by
a Deployment Agent dynamically allocates resources based
on service requirements and network conditions. Real-time
monitoring and reconfiguration of services ensure adaptabil-
ity to changing network conditions. Moreover, the reported
experience with serverless-cloud-to-thing allowed the iden-
tification of other promising research directions. One is to
develop models for maintaining Forward Information Base
(FIB) entries, which can be done using a name-based rout-
ing protocol. Another involves proposing an improvement
of SDN reliability in the presence of intermittent connectiv-
ity that can degrade the deployment agent. One possible so-
lution may involve developing a distributed system built as
chains of microservices, each responsible for a particular con-
trol task. Interacting with the community using serverless-
cloud-to-thing, the intention is to discuss directions to pro-
vide insights into an efficient computing continuum model
suitable for the new 5G and 6G networks.

Declarations

Acknowledgements

This study is partially supported by CNPq, Project 309505/2020-8
and FINEP, Project ref. 2904/20.

Authors’ Contributions

AS contributed to the conception of this study and also performed
the experiments. PM, DR, EC, JC, and EF are this manuscript’s
main contributors and writers. All authors read and approved the
final manuscript.

Competing interests

The authors declare that they have no competing interests.

Silva et. al., 2024

References

Afrin, M., Mahmud, M. R., and Razzaque, M. A. (2015).
Real time detection of speed breakers and warning
system for on-road drivers. In proceedings of the
IEEE International WIE Conference on Electrical and
Computer Engineering (WIECON-ECE 15). IEEE. DOI:
10.1109/WIECON-ECE.2015.7443976.

Al-Omaisi, H., Sundararajan, E. A., Alsaqour, R., Ab-
dullah, N. F., and Abdelhaq, M. (2021). A survey
of data dissemination schemes in vehicular named data
networking. Elsevier Vehicular Communications. DOI:
10.1016/j.vehcom.2021.100353.

Cerny, T., Abdelfattah, A. S., Bushong, V., Al Maruf, A., and
Taibi, D. (2022). Microservice architecture reconstruction
and visualization techniques: A review. In proceedings
of the IEEE International Conference on Service-Oriented
System Engineering (SOSE 22), pages 39—48. IEEE. DOI:
10.1109/SOSES5356.2022.00011.

Cheng, B., Fuerst, J., Solmaz, G., and Sanada, T. (2019).
Fog function: Serverless fog computing for data inten-
sive iot services. In proceedings of the IEEE International
Conference on Services Computing (SCC 19). IEEE. DOI:
10.1109/SCC.2019.00018.

Cili¢, 1., Zarko, I. P., and Kusek, M. (2021). Towards ser-
vice orchestration for the cloud-to-thing continuum. In
proceedings of the 6th International Conference on Smart
and Sustainable Technologies (SpliTech 21), pages 01-07.
IEEE. DOI: 10.23919/SpliTech52315.2021.9566410.

Dogani, J., Namvar, R., and Khunjush, F. (2023). Auto-
scaling techniques in container-based cloud and edge/fog
computing: Taxonomy and survey. Computer Communi-
cations. DOI: 10.1016/j.comcom.2023.06.010.

Goniwada, S. R. (2022). Serverless architecture. In Springer
Cloud Native Architecture and Design. Springer. DOI:
10.1007/978-1-4842-7226-87.

Gusev, M. (2021). Serverless and deviceless dew computing:
Founding an infrastructureless computing. In proceed-
ings of the IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC 21). IEEE. DOI:
10.1109/COMPSAC51774.2021.00273.

Kaur, N. and Mittal, A. (2021). Fog computing serverless ar-
chitecture for real time unpredictable traffic. In /OP Con-
ference Series: Materials Science and Engineering. I0OP
Publishing. DOI: 10.1088/1757-899X/1022/1/012026.

Kjorveziroski, V. and Filiposka, S. (2023). Webassembly
orchestration in the context of serverless computing. Jour-
nal of Network and Systems Management, 31(3):62. DOI:
10.1007/s10922-023-09753-0.

Krol, M. and Psaras, 1. (2017). Nfaas: named function as a
service. In ACM Conference on Information-Centric Net-
working. DOI: 10.1145/3125719.312572.

Laghari, A. A., Jumani, A. K., and Laghari, R. A. (2021).
Review and state of art of fog computing. Springer
Archives of Computational Methods in Engineering. DOI:
10.1007/s11831-020-09517-y.

Landmark, L., Larsen, E., and Kure, O. (2018).
Traffic control in a heterogeneous mobile tacti-
cal network with autonomous platforms. Tech-

https://ieeexplore.ieee.org/document/7443976
https://doi.org/10.1016/j.vehcom.2021.100353
https://ieeexplore.ieee.org/document/9912633
https://ieeexplore.ieee.org/document/8814084
https://ieeexplore.ieee.org/document/9566410
https://doi.org/10.1016/j.comcom.2023.06.010
https://doi.org/10.1007/978-1-4842-7226-8_7
https://ieeexplore.ieee.org/document/9529887
https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012026/meta
https://doi.org/10.1007/s10922-023-09753-0
https://doi.org/10.1145/3125719.312572
https://doi.org/10.1007/s11831-020-09517-y

A distributed computing model based on delegation of serverless microservices in a cloud-to-thing environment Silva et. al., 2024

nical report, Norwegian Defence Research Estab-
lishment, Kjeller. Available athttps://ffi-
publikasjoner.archive.knowledgearc.net/
handle/20.500.12242/2485.

Li, Z., Guo, L., Cheng, J., Chen, Q., He, B., and Guo, M.
(2022). The serverless computing survey: A technical
primer for design architecture. ACM Computing Surveys
(CSUR), 54(10s):1-34. DOI: 10.1145/3508360.

Mahmud, R. and Toosi, A. N. (2021). Con-pi: A
distributed container-based edge and fog computing
framework. [EEE Internet of Things Journal. DOI:
10.1109/JI0T.2021.3103053.

Mekbungwan, P., Pau, G., and Kanchanasut, K. (2022).
In-network computation for iot data processing with ac-
tivendn in wireless sensor networks. In proceedings of the
5th Conference on Cloud and Internet of Things (CloT 22).
IEEE. DOI: 10.1109/CI0oT53061.2022.9766613.

Patros, P., Spillner, J., Papadopoulos, A. V., Varghese, B.,
Rana, O., and Dustdar, S. (2021). Toward sustainable
serverless computing. [EEE Internet Computing. DOI:
10.1109/MIC.2021.3093105.

Rosario, D., Schimuneck, M., Camargo, J., Nobre, J., Both,
C., Rochol, J., and Gerla, M. (2018). Service migration
from cloud to multi-tier fog nodes for multimedia dis-
semination with qoe support. Sensors, 18(2):329. DOI:
10.3390/s18020329.

Sarkar, S., Wankar, R., Srirama, S. N., and Suryadevara,
N. K. (2019). Serverless management of sensing systems
for fog computing framework. [EEE Sensors Journal.
DOI: 10.1109/JSEN.2019.2939182.

Verginadis, Y., Apostolou, D., Taherizadeh, S., Ledakis,
I., Mentzas, G., Tsagkaropoulos, A., Papageorgiou,
N., and Paraskevopoulos, F. (2021). Prestocloud: a
novel framework for data-intensive multi-cloud, fog,
and edge function-as-a-service applications. Infor-
mation Resources Management Journal (IRMJ). DOI:
10.4018/IRMJ.2021010104.

https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/2485
https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/2485
https://ffi-publikasjoner.archive.knowledgearc.net/handle/20.500.12242/2485
https://doi.org/10.1145/3508360
https://ieeexplore.ieee.org/document/9508413
https://ieeexplore.ieee.org/document/9766613
https://ieeexplore.ieee.org/document/9646540
https://doi.org/10.3390/s18020329
https://ieeexplore.ieee.org/document/8822951
https://www.igi-global.com/article/prestocloud/270886

	Introduction
	Main Existing Approaches to Cloud-to-Thing Computing
	Design Principles
	System Design
	Chain of computational functions
	Deployment
	Service Manager
	Reallocation of services

	Evaluation
	Scenario A
	Scenario B

	Discussion
	Redefinition of service behavior in real-time
	Independence of computational functions

	Closing Remarks

