
Journal of Internet Services and Applications, 2024, 15:1, doi: 10.5753/jisa.2024.3799
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Combining Regular Expressions and Machine Learning for SQL
Injection Detection in Urban Computing
Michael S. Souza [Universidade Estadual do Ceará (UECE) | michael.souza@aluno.uece.br]
Silvio E. S. B. Ribeiro [Universidade Estadual do Ceará (UECE) | silvio.eduardo@aluno.uece.br]
Vanessa C. Lima [Universidade Estadual do Ceará (UECE) | vane.carvalho@aluno.uece.br]
Francisco J. Cardoso [Universidade Estadual do Ceará (UECE) | fco.cardoso@aluno.uece.br]
Rafael L. Gomes [Universidade Estadual do Ceará (UECE) | rafa.lopes@uece.br]

 Center of Science and Technology, State University of Ceará, Av. Silas Munguba 1700, Fortaleza, CE, 60714-903,
Brazil.

Received: 31 October 2023 • Accepted: 01 May 2024 • Published: 02 July 2024

Abstract Given the vast amount of data generated in urban environments the rapid advancements in information
technology urban environments and the continual advancements in information technology, several online urban
services have emerged in recent years. These services employ relational databases to store the collected data, thereby
making them vulnerable to potential threats, including SQL Injection (SQLi) attacks. Hence, there is a demand for
security solutions that improve detection efficiency and satisfy the response time and scalability requirements of this
detection process. Based on this existing demand, this article proposes an SQLi detection solution that combines
Regular Expressions (RegEx) and Machine Learning (ML), called Two Layer approach of SQLi Detection (2LD-
SQLi). The RegEx acts as a first layer of filtering for protection against SQLi inputs, improving the response time
of 2LD-SQLi through RegEx filtering. From this filtering, it is analyzed by anMLmodel to detect SQLi, increasing
the accuracy. Experiments, using a real dataset, suggest that 2LD-SQLi is suitable for detecting SQLi while meeting
the efficiency and scalability issues.

Keywords: Security, Injection, Machine Learning, Regex.

1 Introduction

Recently, the expansion of cities and urban areas has led
to numerous practical and managerial difficulties. Urban
Computing has come into play to offer innovative solutions
and help tackle these issues prevalent in large cities and
metropolitan areas [Silveira et al., 2023]. This approach
works by rolling out services that utilize information from an
enormous array of diverse data gathered in big cities, coming
from various sources [Rodrigues et al., 2019; Silveira et al.,
2023]. The data is sourced through various remote sens-
ing methods, management strategies, and analytical models
[Musznicki et al., 2022; Silveira et al., 2023].
With the extensive adoption of computing services, there

arises a need for security, as devices and users become tar-
gets for various threats and harmful systems [Portela et al.,
2024; da Silva et al., 2020]. These threats seek to exploit po-
tential weak spots in the communication and data access pro-
cesses. One notable vulnerability is insecure information ac-
cess by harmful users and programs, which try to overcome
urban computing services via SQL Injection attacks (SQLi)
[Das et al., 2019]. These attacks take advantage of security
gaps in inputs (such as text fields and queries), tricking the
system into processing the requests and exposing often sen-
sitive data from authenticated clients and devices [Parashar
et al., 2021; Moreira et al., 2021]. Nowadays, according to
OWASP, SQLi is the top security threat to online services
and applications on the Internet [Tang et al., 2020].
At present, there is a variety of security solutions both in

literature and in the industrial sector aimed at detecting SQLi
in online services and/or the databases they utilize. However,
these solutions often prioritize efficiency (accuracy) in iden-
tifying SQLi attacks, overlooking the effect of these secu-
rity measures on the performance of urban computing ser-
vices. For instance, resource-heavy Artificial Intelligence
techniques, mainly Machine Learning (ML), have been used
for SQLi detection [Xie et al., 2019; Li et al., 2019; Parashar
et al., 2021; Tang et al., 2020; Portela et al., 2023], but they
have a response time considered lengthy (takingmilliseconds
for a single analysis). This delay directly influences service
performance, as many services have significant constraints
and must address scalability aspects due to the vast amount
of data and communication involved [Musznicki et al., 2022;
Gomes et al., 2020; Geldenhuys et al., 2021; Lv et al., 2020].
Hence, there is a need for security solutions that, besides
being efficient in detecting SQLi and potential threats, also
meet the criteria of processing and response time. Thus, a
suitable approach is to analyze not all the inputs of the ser-
vices withML techniques, but only the inputs considered pos-
sible threats.

Within this context, this article introduces a solution com-
posed of (Regular Expressions - RegEx) and Machine Learn-
ing, called Two Layer approach of SQLi Detection (2LD-
SQLi). The RegEx serves as an initial filtering step to defend
against SQLi threats, and to meet response time and scalabil-
ity requirements. Next, the inputs considered threats by the
RegEx are deeply analyzed by an ML model to detect SQLi
cases. In general, the proposal aims to determine if a specific

https://doi.org/10.5753/jisa.2024.3799
https://orcid.org/0009-0008-8251-6065/
mailto:michael.souza@aluno.uece.br
https://orcid.org/0000-0002-8876-5926/
mailto:silvio.eduardo@aluno.uece.br
https://orcid.org/0009-0006-4757-3764
mailto:vane.carvalho@aluno.uece.br
https://orcid.org/0009-0009-2687-6450/
mailto:fco.cardoso@aluno.uece.br
https://orcid.org/0000-0001-7922-0695/
mailto:rafa.lopes@uece.br

Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing Souza et al. 2024

query possesses a structure that suggests an SQLi attempt,
meaning it aims to filter these potential threats to prevent the
unnecessary execution of ML detection (which has a high
response time and consumes a lot of computing resources).
Additionally, the 2LD-SQLi adjusts dynamically the order of
the RegEx applied in the filtering process, aiming to speed
up it. Thus, the proposed solution focuses on the balance
between the efficiency of detecting SQLi and the response
time of the solution to bring scalability to the cybersecurity
process as a whole.
2LD-SQLi applies several strategies: (I) API to serve as an

SQLi detection service in the Edge environment to support
cybersecurity strategies of urban computing; (II) Split of the
solution in both Edge and Cloud environments, focusing on
the fast and scalable execution of the detection in the Edge
(closer to the urban computing services), while the training of
ML techniques and management of RegEx set, that are com-
plex and high computing tasks, are performed in the Cloud
meaning (high amount of computational resources and high
availability to access these resources); and, (III) Adaptabil-
ity of the detection process through the update of the set of
RegEx (the structure of the RegEx and the order of testing),
as well as the ML technique used together. In general, this
article has the following contributions: (i) Development of
a scalable solution for SQLi detection based on RegEx and
ML; (ii) Design of architecture considering Edge and Cloud
environment with the possibility to be integrated with other
existing cybersecurity solutions through APIs; (iii) Proposi-
tion of an algorithm to dynamically adjust the ordering of
RegEx analysis; and, (iv) Deep evaluation with experiments
considering real SQLi dataset available in the literature and
other evaluation metrics.
The outcomes of the experiments, utilizing a real dataset,

indicate that the proposed solution possesses suitable SQLi
threat detection efficiencywhile offering a response time that
satisfies the demands of urban computing services. Various
scenarios were assessed, testing the amount of RegEx in the
database and the requests of SQLi detection process. Ad-
ditionally, the results are contrasted with existing machine
learningmethods, with the aim of drawing a comparisonwith
other solutions.
In our previous work [Souza et al., 2023], we proposed a

set of RegEx to be used as an analyzer of input data to iden-
tify possible SQLi attacks. However, this initial work did
not focus on the detection of SQLi with high accuracy us-
ing modern techniques, such as ML. In this way, the current
proposal has the following innovation issues in front of the
previous work: (A) Integration of the RegEx approach with
ML techniques to perform SQLi detection; and, (B) Evolu-
tion of RegExs in the set, focusing on new patterns of SQLi
identified.
The proposed solution was developed within the frame-

work of the Research and Development project between
UECE and LACNIC1, which seeks to develop industrial so-
lutions for safeguarding sensitive data on the Internet, and
detecting SQLi is one of the aspects considered in the protec-
tion process, as it compromises the privacy of urban comput-

1https://programafrida.net/en/archivos/project/data-protection-system-
based-on-anonymization-techniques-and-in-accordance-with-privacy-laws

ing service users.
The remainder of this paper is organized as: Section 2

presents existing solutions related to SQLi in general sys-
tems and in the context of urban computing, while Section
3 describes the proposed SQLi detection solution. Section 4
discusses the results of the experiments conducted and Sec-
tion 5 concludes the article.

2 Related Work
This section describes the main works related to SQLi detec-
tion in the context of urban environments and general sys-
tems, that were published recently, considering performance
and quality issues. Table 1 presents several existing pro-
posals (column Reference), where the Context column repre-
sents the scenario/context where the proposal is used, while
the Focus column highlights the strategy of the correspond-
ing proposal.
Parashar et al. [2021] proposed a method to detect SQL

injection (SQLi) in Information Technology Applications.
They achieve this goal through the use of text summariza-
tion, which allows for data processing regardless of input
size. By creating a supervised machine learning model from
the summarization, they are able to automate SQLi classifi-
cation. However, the author’s approach does not focus on
scalability issues, which may lead to longer response times
and reduce the applicability of the solution in urban comput-
ing scenarios.
Xie et al. [2019] developed a method for detecting SQL in-

jection attacks using Elastic-Pooling Convolutional Neural
Networks (EP-CNNs). This method creates a bidirectional
matrix that captures all the data without truncation and can
effectively detect SQL injection attacks by identifying irreg-
ular correspondences in the data. Tang et al. [2020] describe
an SQL injection detection method based on neural networks
that aim to achieve high accuracy rates, around 99%. The
authors conducted statistical research on default data and
SQL injection data derived from URL access logs of inter-
net providers. Based on the statistical results, the authors
identified eight types of resources and trained a Multi-Layer
Perceptron (MLP) model.
Li et al. [2019] propose a deep forest model for detect-

ing complex SQL injection (SQLi) attacks. The model is
based on the AdaBoost algorithm and concatenates the raw
vector of characteristics and the average of the previous out-
puts as input to each layer. The error rate is used to update
the weights in each layer, with resources assigned varying
weights based on their influence on the results during differ-
ent training processes. The proposed models are efficient in
SQLi detection but come with high computational costs, re-
sulting in processing times that are longer than ideal for Ur-
ban Computing. In a similar vein, Fadolalkarim et al. [2020]
present AD-PROM, an anomaly detection system designed
to protect relational databases against malicious agents. AD-
PROM traces system calls executed by programs running
on the computational system hosting the target database.
Based on this tracing, AD-PROM analyses the control and
data flows of the programs and constructs a Hidden Markov
Model (HMM) that detects anomalies indicative of SQL in-

Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing Souza et al. 2024

Table 1. Related Work
Reference Focus Benefit Limitation
Parashar
et al.
[2021]

Detect SQLi in IT
Application

It applies text processing with ML It disconsiders response time
that affects scalability

Xie et al.
[2019]

Usage of CNN for
SQLi detection

High accuracy in SQLi detection The detection time is high

Tang
et al.
[2020]

Utilization of ANN
for SQLi detection

High accuracy in SQLi detection The solution is limited to URL
analysis

Li et al.
[2019]

Deep forestmodel for
detecting SQLi

High accuracy in SQLi detection The solution demands a high
computational cost

Fadolalkarim
et al.
[2020]

SQLi Detection in lo-
cal databases

High accuracy in SQLi detection The solution is limited to local
databases

Crespo-
Martínez
et al.
[2023]

Detection of SQLi
based on LR

The choice of ML is based on an extensive eval-
uation of ML models

The solution focus only on pro-
tocol information of inflow data

Our
Proposal

SQLi detection based
on Regex and ML

Edge and Cloud approach with Dynamic update
of RegEx order analysis to Increase Scalability

The set of RegEx is not evolved
automatically.

jection occurrences on the database host.
Crespo-Martínez et al. [2023] demonstrate that it is pos-

sible to detect SQL injection attacks inflow data from pro-
tocol information through two datasets based on data from
several SQLi attacks. After that, the authors evaluated sev-
eral machine learning techniques to detect SQLi situations,
where Logistic Regression presented the best results for the
network flow data collected.
From these existing solutions, it is possible to note that

no existing solution has the goal to develop a solution to de-
tect SQLi considering scalability and response time issues,
which is the focus of the proposed 2LD-SQLi (flexible and
adaptable RegEx set integrated with ML model).

3 Two Layer approach of SQLi Detec-
tion (2LD-SQLi)

This section details the proposed 2LD-SQLi, where Sec-
tion 3.1 describes the 2LD-SQLi designed architecture (dis-
cussing the defined modules and their communication flow)
and Section 3.2 presents the background about SQLi, the set
of RegEx defined and the dynamic order strategy applied. Fi-
nally, Section 3.3 show theML techniques applied in the pro-
posal.

3.1 Architecture of 2LD-SQLi
The 2LD-SQLi solution is composed of several modules:
API, Filtering, Detection, Tranning, RegEx DB, and Update.
Moreover, we consider the following types of communica-
tion: internal communication that occurs between the mod-
ules inside the same environment and Internet communica-
tion that is performed remotely through the API (using a se-
cure channel). An overview of the 2LD-SQLi and deploy-
ment context is illustrated in Figure 1.

Figure 1. Overview of 2LD-SQLi

The modules are implemented as APIs, which allows ac-
cess to 2LD-SQLi functionality of SQLi detection by Urban
Computing services in an interoperable approach, as well as
enables the communication between the edge and cloud en-
vironments through a secure channel. In the Edge environ-
ment, the Filtering module uses a set of RegEx to perform
initial filtering of potential SQLi threats in the input data,
while the Detectionmodule applies an ML model previously
trained in the Cloud environment. The output of the Detec-
tion module can be integrated with other services, such as
a dashboard in a web system, notification, or other security
solutions (such as IDS, Firewall, etc). On the other hand,
the Update module stores and manages the complete set of
RegEx in the RegEx DB over a cloud environment. Addi-
tionally, the Update module performs the update process of
the ML model used in the Detection module at the edge en-
vironment, when it is triggered after the training process per-
formed by the Trainning module. Additionally, the Update
module controls the order of the RegEx used in the Filtering
module, focusing on the deployment of the most suitable or-
der in a determined situation. The flow of steps performed

Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing Souza et al. 2024

by 2LD-SQLi is summarized in Figure 2.

Figure 2. Steps of 2LD-SQLi

According to this organization, SQLi detection happens
in the Edge environment, i.e., it occurs closer to the Urban
Computing Services. The RegEx set used by 2LD-SQLi is
updated through the API with the cloud environment (RegEx
DB). Next, we describe in Sections 3.2 and 3.3, the Regex set
applied in the Filtering module and the ML models used in
the Detection module, respectively.
Finally, it is important to note that, despite 2LD-SQLi fo-

cus on SQLi detection, the designed architecture allows the
proposed solution to be integrated with other security solu-
tions, such as Intrusion Detection Systems (IDSs), Firewalls,
and other security solutions. This integration enables the
expansion of the applicability of 2LD-SQLi in real scenar-
ios, where several existing threats (for example, DDoS, Side-
Channel, etc). In this way, 2LD-SQLi can have its inputs
monitored and applied to DDoS detection tool, which will
be able to expand the security features.

3.2 RegEx in 2LD-SQLi
SQL Injection Malicious systems capitalize on weaknesses
in input data, employing various tactics to deceive the sys-
tem into revealing information from authorized and authen-
ticated users. It is important to understand that SQLi has
the potential to misuse username and password fields for car-
rying out unauthorized command-line operations. Notably,
IoT devices can function as potential conduits for SQL in-
jection (SQLi) attacks, a concern that has become more pro-
nounced with the expansion of dedicated computing services.
Each variant of SQLi introduces a distinct security breach
profile, emphasizing the necessity of comprehending how
SQL statements can give rise to these vulnerabilities. This
endeavor seeks to conduct a prompt and effective analysis of
SQLi susceptibilities by employing RegEx patterns meticu-
lously designed to address the threat profiles that computing
services could encounter.
There are several types of SQLi (tautologies, Logically In-

correct Queries, Union Queries, Inference-Based and Alter-

nate Encoding)[?Das et al., 2019], where we developed sev-
eral RegEx to detect patterns and characteristics of each type
of SQLi. The RegEx defined are:

1. Meta-characters: Search for specific SQL meta-
characters to identify possible SQL injection attempts,
including hexadecimal characters like single quotes,
double dash, and others, that often mark the start of a
comment.
Regex: (;%00)|(\%27)|(--[^\r\n]*)|(\')
• (;%00): Semicolon character followed by null byte
character.

• (\%27): String %27, which is the URL encoded form
of the single quote character (').

• (--[\^\r\n]*): Starts with two hyphens ’−−’ fol-
lowed by any characters other than line breaks.

• (\'): Quote character (').
2. Alternative meta-character: Possible SQLi by looking

for equal signs, single quotes, double dashes, semicolons,
and the null character.
Regex: ((\%3D)|(=))[^\n]*((\%27)|(\')|(\-\-)|
(\%3B)|(;))
• ((%3D)|(=)): Equal sign character or the URL en-
coded version of it (%3D), that are used in SQL
queries to denote equality in comparisons.

• [\^\n]*: Any number of characters other than a new-
line character.

• ((%27)|(')): URL encoded form, or not, of single
quote character.

• (--): Double hyphen string used to comment SQL
queries.

• ((\%3B)|(;)): Semicolon character, or its URL en-
coded version, that separate multiple SQL statements
in a single query.

3. ”OR” within other strings: Search for the word ’or’ in
URL encoded format.
Regex: ((\%27)|(\'))((\%6F)|o|(\%4F))((\%72)
|r|(\%52))
• ((\%27)|(\')): Simple or percent-encoded single
quote.

• ((\%6F)|o|(\%4F)): A percent-encoded ’o’, a sin-
gle ’o’, or a percent-encoded uppercase ’O’.

• ((\%72)|r|(\%52)): A percent-encoded ’r’, a sin-
gle ’r’, or a percent-encoded uppercase ’R’.

4. Logical operators: Searches for the words ’and’ or ’or’
followed by spaces.
Regex: (\W)(and|or)\s*
• (\W): Special character (it is not a digit, letter, or
underscore).

• (and|or): ’and’ or ’or’.
• \s*: White spaces.

5. ’UNION’ statement: Search for the word ’union’ and in
URL encoded format.
Regex: ((\%27)|(\'))UNION
• ((\%27)|(\'): Usual encode or percentage-
encoded of a single quote.

• UNION: Word ’UNION’.

Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing Souza et al. 2024

6. SQL Queries: Searches for SQL keywords.
Regex: ([\s\(\)])*(create|select|delete|update
|drop|alter|insert)([\s\(\)])*
• ([\s\(\)])*: Any occurrence of white space char-
acters or parentheses.

• (create|select|delete|update
|drop|alter|insert):
One of the SQL keywords ’create’, ’select’, ’delete’,
’update’, ’drop’, ’alter’, or ’insert’.

7. ’exec’ and ’execute’: Search for keywords ’exec’ or ’ex-
ecute’.
Regex: ([\s\(\)])*(execute|exec)([\s\(\)])*
• ([\s\(\)])*: Any occurrence of any white space
character or parentheses.

• (exec|execute): ’exec’ or ’execute’ keywords.
8. ANDoperator: Searches for AND in several formats, like

plus symbol, logical operators, and encoded format.
Regex: (\%20and|\+and|&&|\&\&)
• (\%20and): URL-encoded space character.
• (+and): URL-encoded space character as query pa-
rameter.

• (&&) and (\&\&): ’and’ logical operator of program-
ming languages.

These RegExs are designed to implement multiple pattern
captures to identify a wide range of SQLi attacks. By em-
ploying several regular expressions to scrutinize the input
data, the security of an application is significantly enhanced.
This multi-pattern approach aids in both preventing and de-
tecting potential SQLi attacks, as it encompasses diverse en-
coding methods, syntax variations, and combinations of text
that attackers may use to evade security measures. Different
RegEx patterns may focus on detecting SQL keywords, spe-
cial characters, encoding techniques, or SQL syntax anoma-
lies commonly associated with SQLi attacks. This compre-
hensive strategy ensures a more robust defense mechanism
against evolving attack techniques and sophisticated intru-
sion attempts. Moreover, the varied nature of these regular
expressions helps in overcoming limitations that may exist
in individual patterns.
Additionally, the 2LD-SQLi adjusts dynamically the or-

der of the RegEx tested in the data input, reordering it ac-
cording to the matches that occurred, i.e., 2LD-SQLi brings
to the front the RegEx that are hitting more SQLi threats in
the filtering process (in our experiments we configured the
reordering process after each 100 analysis). Dynamically ad-
justing the order of RegEx brings several benefits to the filter-
ing process: Different scenarios may require different regex
patterns to be applied first; The incoming data may change
over time, so dynamically adjusting the regex test order can
help adapt to new patterns and data structures without need-
ing a complete reconfiguration; and, Quickly identify possi-
ble SQLi data, speeding up the filtering process and reducing
the load on subsequent, more resource-intensive regex tests.

3.3 Machine Learning Model
TheMLmodel training process involves taking in text inputs
and then implementing a specific ML technique. Each ML

technique employs a distinct approach to interpret the data.
Because the proposed mechanism operates independently

from the existing ML technique, the following techniques
are under consideration in this article: Logistic Regression
(LR), is used for binary classification tasks, such as spam
detection or medical diagnosis, estimating the likelihood of
a binary outcome, which depends on one or more predic-
tor variables, is the subject of investigation. Random For-
est (RF) is a collective ensemble of decision trees. This ap-
proach finds application in both classification and regression
tasks, as it amalgamates multiple decision trees to enhance
precision and mitigate overfitting; Decision Tree (DT), is
a tree-like model wherein every internal node symbolizes a
feature, each branch signifies a decision rule, and each leaf
node represents a particular outcome.; Convolutional Neu-
ral Network (CNN), which uses convolutional layers to auto-
matically learn features from data, making them powerful for
tasks like image classification and object detection; and, Sup-
port Vector Machine (SVM), which is designed to seek out
an optimal hyperplane for effectively segregating data into
distinct classes, where they are effective in high-dimensional
spaces and for applications like image classification.
These ML techniques were selected based on their unique

characteristics when compared to the alternatives. Different
models encompass distinct algorithms, underlying assump-
tions, and complexities, leading to diverse behaviors and per-
formances across datasets. Evaluating multiple models al-
lows you to compare and contrast their performance based on
various metrics such as accuracy, precision, recall, F1-score,
or other relevant evaluation criteria. This comprehensive
comparison not only sheds light on the strengths and weak-
nesses of each model but also aids in identifying the most
suitable model that aligns with the specific requirements and
intricacies of your problem domain. This comparison helps
identify the model that has the most suitable performance for
the context of SQLi detection.

4 Experiments
The repository 2 provides access to the method we’ve pro-
posed. This method has been rigorously tested, as detailed in
this section, to determine its capability in pinpointing SQLi
threats. An authentic environment, enriched with a dataset
containing SQLi specifics, was created for these tests. This
environment spans various computational configurations, in-
cluding both cloud-hosted virtual machines and traditional
hardware systems. The deployment of 2LD-SQLi in real-
world scenarios is the main focus of these tests. Insights into
the performance and implications of the method are offered
by this arrangement. While section 4.1 provides a compre-
hensive overview of the experimental design, the derived re-
sults are explored in section 4.2.

4.1 Experiment Setup
The experiments utilized test environments that included
both cloud computing resources and physical machines. It

2https://github.com/538Michael/

Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing Souza et al. 2024

is crucial to test a solution in various cloud settings to con-
firm its resilience, scalability, and reliability [Costa et al.,
2021]. We employed Huawei Cloud3 as our cloud environ-
ment, which offers a range of Elastic Cloud Server (ECS)4
virtual machines. Notably, the ECS in Huawei Cloud was
set up with 16 GB of memory and 4 Virtual CPUs (vCPUs).
Under these conditions, we considered the following cases:
General Computing Plus (GCP), basic level of vCPU per-
formance; Memory Optimized (MO), high performance of
memory access; High-PerformanceComputing (HPC), focus
on parallel computing and infrastructure services of high per-
formance; Kunpeng (KPG), performance baseline of vCPU
with Kupeng 920 processor; and, Physical Machine (PM),
usual machine with CPU Intel Core i5-12400 processor, with
an SSD disk and DDR4 2666MHz memory.
The experiments were based on an SQLi dataset5 applied

in several works in the literature [Rahul et al., 2021; Devalla
et al., 2022; Hosam et al., 2021; Roy et al., 2022]. This
dataset has 19340 entries, 7962 of which are benign entries,
while 11378 of which are SQLi. Thus, it is possible to have
a complete evaluation of the proposal.
A variety of machine learning techniques 6 were used,

including Logistic Regression (LR), Random Forest (RF),
Support Vector Machine (SVM), Decision Tree (DT), and
Convolutional Neural Network (CNN), to benchmark 2LD-
SQLi’s detection ability. The time efficiency of the solu-
tion in conducting RegEx detection and updates was also as-
sessed. For the 100 experiments, we relied on a 95% confi-
dence interval. As such, we considered the followingmetrics
for evaluating performance:

• Accuracy (ACC): Rate of correct classifications accord-
ing to Equation 1, i.e. True Positive (TP) and True Neg-
ative (TN) cases in relation to all other cases (TP, TN,
False Positive - FP and False Negative - FN).

Accuracy = TP + TN

TP + FN + FP + TN
(1)

• Recall: Efficiency in correctly detecting the analyzed
input, that is, the rate of TP in relation to the total num-
ber of positive cases (TP + FN). Therefore, Recall is
defined in Equation 2.

Recall = TP
TP + FN

(2)

• Precision: Determines the ability to guess which of the
positive values are really positive, following the defini-
tion expressed in Equation 3.

Precision = TP
TP + FP

(3)

• F1-Score: The harmonic mean of precision and recall,
i.e., the higher the precision and recall, the higher the
F1-score. It is defined as in Equation 4.

F1 = TP
TP + 1

2 (FP + FN)
(4)

3huaweicloud.com
4support.huaweicloud.com/intl/en-us/productdesc-

ecs/ecs_01_0073.html
5kaggle.com/datasets/syedsaqlainhussain/sql-injection-dataset
6kaggle.com/code/chinonsocynthia/sql-inject-using-linear-models-

and-cnn

• Parsing Time (milliseconds): the time required to parse
an entry to determine whether it is an SQLi threat or not.

4.2 Results
Next, we discuss the experiments performed, where Figure
3 presents the processing time required to analyze input data,
Figure 4 shows the detection of the stand-alone ML tech-
niques and the RegEx step of 2LD-SQLi, and Figure 5 illus-
trates the performance of the whole execution of 2LD-SQLi
when using several ML techniques. Finally, Tables 2 present
the accuracy, F1-Score and recall evaluation metrics to com-
pare the efficiency of 2LD-SQLi in front of existingML tech-
niques applied stand-alone.

0 5 10 15 20 25
Regular Expression

1

2

3

4

5

6

7

8

El
ap

se
d

Ti
m

e
(µ

s)

Entry parsing time
GCP
MO
HPC
KPG
PM

Figure 3. Time of Each RegEx to Analyze the Input Data

As shown in Figure 3, the time required for input parsing is
consistent across different computational environments, en-
compassing both cloud virtual machines and edge physical
machines. However, two key points are observed: (i) The
physical machine (PM) displays a wider range of analysis
times due to numerous processes and functionalities running
in parallel with the 2LD-SQLi analysis process, a scenario
not applicable to cloud virtual machines (GCP , MO, HPC,
and KPG) that are dedicated to 2LD-SQLi. (ii) As out-
lined in Section 3.2, RegEx 1 and 5 typically take longer
to process because of their more complex structures. Thus,
2LD-SQLi is concluded to have an appropriate analysis time,
meeting scalability requirements by analyzing 1000 requests
in around 10 milliseconds, a time significantly shorter than
that of internet data communication[Gowtham and Pramod,
2022; Rizvi et al., 2018].
The filtering time of 2LD-SQLi and the detection time of

ML techniques are illustrated in Figure 4. The elapsed time

Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing Souza et al. 2024

10 2 10 1 100 101 102

Elapsed Time (ms) [Log Scale]

LR

RF

SVM

DT

CNN

2LD-SQLi

Ap
pr

oa
ch

 0.007654

 0.185810

 27.100470

 0.007803

 0.040833

 0.005845

Detection Elapsed Time

Figure 4. Filtering Time of 2LD-SQLi and Detection Time of ML Tech-
niques

of filtering in 2LD-SQLi is about 23% faster than the fastest
ML techniques (LR and DTmodels). This fact represents the
capacity of the 2LD-SQLi to speed up the detection process
since only the cases that RegEx does not capture are directed
to the ML models in the Detection process of 2LD-SQLi.

10 2 10 1 100 101 102

Elapsed Time (ms) [Log Scale]

LR

RF

SVM

DT

CNN

Ap
pr

oa
ch

 0.014292

 0.157242

 26.837929

 0.012389

 0.170257

Regex+ML Detection Elapsed Time

Figure 5. Detection Time of 2LD-SQLi of Both Filtering and Detection

In the experiment about processing performance, we ana-
lyzed the elapsed time of the entire process of 2LD-SQLi to
detect SQLi, i.e., the elapsed time to test all the RegEx set in
the Filtering and, when none of the RegEx result in a match,
the execution of the ML model to perform the final decision.
In this way, the results of Figure 5 represent the cases of both
steps (RegEx and ML) when the RegEx set is not capable of
identifying an SQLi (true positive) or the data input is a true
negative case of SQLi. It is possible to note that in these sit-
uations, the most suitable approach is to apply the DT or LR
models since they have a lower processing time. Addition-
ally, an interesting point is the detection time of CNN model
for a true negative case is smaller than the average detection
time when all cases are included (as shown in Figure 4).
Additionally, Figure 6 presents the elapsed time of the de-

tection process when the number of RegEx is incremented.
Thus, it is possible to analyze the impact of higher process-
ing (more RegEx applied) in the detection process. From

this result, it is possible to note that 2LD-SQLi can keep the
elapsed time with a linear behavior, i.e., the detection time
proportionally follows the increase in processing load. This
behavior represents the scalable features from the designed
architecture integrating RegEx andML in cloud and edge en-
vironments.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Elapsed Time (ms)

1 RegEx

5 RegEx

10 RegEx

20 RegEx

50 RegEx

100 RegEx

Re
gu

la
r E

xp
re

ss
io

n
Se

t

Scalability Analysis
GCP
MO
HPC
KPG
PM

Figure 6. Scalability Analysis of 2LD-SQLi

Table 2. Detection Performance
Approach F1_Score Precision Recall ACC

LR 0.94 1.00 0.89 0.93
RF 0.94 0.99 0.89 0.93
SVM 0.81 1.00 0.68 0.82
DT 0.94 0.99 0.90 0.94
CNN 0.95 0.99 0.92 0.95
2LD-SQLi
(RegEx Only)

0.98 0.99 0.97 0.98

Data shown in Table 2 illustrates the success of the evalu-
ated solutions in identifying whether an input constitutes an
SQL Injection (SQLi) or not. In the case of 2LD-SQLi, these
outcomes emphasize its skill in recognizing potential threats
and the value of adopting more complex solutions to save
both time and computational resources.

Table 3. Detection Performance of 2LD-SQLi (RegEx+ML)
Approach F1_Score Precision Recall Accuracy

RegEx+LR 0.99 1.00 0.98 0.99
RegEx+RF 0.99 1.00 0.99 0.99
RegEx+SVM 0.98 1.00 0.97 0.98
RegEx+DT 0.99 1.00 0.99 0.99
RegEx+CNN 0.99 1.00 0.99 0.99

Finally, in Table 3, we analyze the benefits of the integra-
tion of RegEx approach and the ML models. According to

Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing Souza et al. 2024

Figure 5, regarding processing, the most suitable approach
is to use DT or LR models in the Detection module of 2LD-
SQLi. Similarly, when the data presented in Table 3 is ana-
lyzed, it is possible to conclude that the most suitable option
is to use the DTmodel in 2LD-SQLi, which reaches the high-
est values in all evaluated metrics.

4.3 Final discussion
Based on the results of the experiments performed, it is pos-
sible to note that the efficiency of 2LD-SQLi, regarding both
response time and detection efficiency, overcomes the ex-
isting approach to applying stand-alone ML to detect SQLi.
Therefore, deploying 2LD-SQLi as a cybersecurity tool for
the first line of defense in Edge environments can be cru-
cial to support urban computing services since it has a low
response time and high accuracy in the detection process.
In real-world applications, especially Urban Computing

services that handle massive amounts of data, scalability be-
comes paramount. The scalable SQL injection detection per-
formed by 2LD-SQLi can efficiently process the inputs, en-
suring that no potential threats go unnoticed even in high-
traffic situations. Additionally, the high accuracy of 2LD-
SQLi ensures that security teams can trust the alerts gen-
erated by it, leading to efficient utilization of resources for
investigating and mitigating real threats. This is crucial for
compliance standards but also instills trust among users and
stakeholders that their data is protected against malicious ex-
ploitation.
Another important issue is the arising of new Cyber

threats, including SQLi, that are constantly evolving, where
the adjustable set of RegEx for filtering with high accuracy
can be evolved naturally to new attack vectors, patterns, and
evasion techniques, ensuring continued protection against
emerging threats without compromising performance or re-
liability.
An existing limitation of 2LD-SQLi is the evolution of

RegEx set based on the report of a situation where a SQLi
is detected by ML but it was not filtered by the RegEx set.
Currently, the analysis of the report needs to be performed
manually by the security team to generate a newRegEx to en-
compass this case. Thus, a possible evolution of 2LD-SQLi
is the automation of RegEx generation based on the report
using, for example, Generative Artificial Intelligence (GAN)
[Ye et al., 2020; Chen et al., 2020].

5 Conclusion and Future Work
Urban Computing services have become a reality in recent
years due to the expansion of communication and informa-
tion technologies throughout cities and metropolitan centers.
These services generate a massive volume of data stored
in SQL DBs. This scenario increased the possibility of
threats, mainly SQLi. To address this reality, this article in-
troduces 2LD-SQLi, an SQLi threat detection solution based
on RegEx that aims to act as an initial filtering service for
protection against SQLi threats to meet response time and
scalability requirements. Subsequently, inputs considered as
threats are analyzed by a machine learning model.

As future work, we intend to develop a new RegEx to be
added to the set of the filtering process. Additionally, we will
perform data mining in the SQLi dataset, applying clustering
algorithms to understand better the profile of the inputs, as
well as the capacity of the solution to detect each group. As
the final evolution, we intend to perform an automatic update
and evolution of RegEx used, applying new techniques such
as GAN.

Declarations

Acknowledgements
The authors would like to thank the National Council for
Scientific and Technological Development (CNPq) of Brazil
(No 303877/2021-9) and the Latin America and Caribbean
Network Information Center (LACNIC) through the FRIDA
Grant for the financial support.

Authors’ Contributions
Author Michael Silva contributed to the conception of this study,
analysis, and writing. He is the main contributor and writer of this
manuscript. Author Silvio Ribeiro and Author Rafael Gomes par-
ticipated in the validation of the study, review and final editing. Fi-
nally, Author Vanessa Carvalho and Francisco José read and ap-
proved the final manuscript.

References
Chen, Q., Wang, X., Ye, X., Durrett, G., and Dillig, I. (2020).
Multi-modal synthesis of regular expressions. In Proceed-
ings of the 41st ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2020,
page 487–502, New York, NY, USA. Association for
Computing Machinery. DOI: 10.1145/3385412.3385988.

Costa, W. L., Portela, A. L., and Gomes, R. L. (2021).
Features-aware ddos detection in heterogeneous
smart environments based on fog and cloud com-
puting. International Journal of Communication
Networks and Information Security, 13(3):491–
498. Available at:https://www.proquest.com/
openview/47831cccd3eca021e332e78d816f9227/
1?pq-origsite=gscholar&cbl=52057.

Crespo-Martínez, I. S., Campazas-Vega, A., Guerrero-
Higueras, Á. M., Riego-DelCastillo, V., Álvarez-Aparicio,
C., and Fernández-Llamas, C. (2023). Sql injection attack
detection in network flow data. Computers & Security,
127:103093. DOI: 10.1016/j.cose.2023.103093.

da Silva, G., Oliveira, D., Gomes, R. L., Bittencourt,
L. F., and Madeira, E. R. M. (2020). Reliable net-
work slices based on elastic network resource demand.
In NOMS 2020 - 2020 IEEE/IFIP Network Opera-
tions and Management Symposium, pages 1–9. DOI:
10.1109/NOMS47738.2020.9110316.

Das, D., Sharma, U., and Bhattacharyya, D. K. (2019). De-
feating sql injection attack in authentication security: an

https://doi.org/10.1145/3385412.3385988
https://www.proquest.com/openview/47831cccd3eca021e332e78d816f9227/1?pq-origsite=gscholar&cbl=52057
https://www.proquest.com/openview/47831cccd3eca021e332e78d816f9227/1?pq-origsite=gscholar&cbl=52057
https://www.proquest.com/openview/47831cccd3eca021e332e78d816f9227/1?pq-origsite=gscholar&cbl=52057
https://doi.org/10.1016/j.cose.2023.103093
https://ieeexplore.ieee.org/document/9110316

Combining Regular Expressions and Machine Learning for SQL Injection Detection in Urban Computing Souza et al. 2024

experimental study. International Journal of Information
Security, 18(1):1–22. DOI: 10.1007/s10207-017-0393-x.

Devalla, V., Srinivasa Raghavan, S., Maste, S., Kotian, J. D.,
and Annapurna, D. D. (2022). murli: A tool for detec-
tion of malicious urls and injection attacks. Procedia Com-
puter Science, 215:662–676. 4th International Conference
on Innovative Data Communication Technology and Ap-
plication. DOI: 10.1016/j.procs.2022.12.068.

Fadolalkarim, D., Bertino, E., and Sallam, A. (2020). An
anomaly detection system for the protection of relational
database systems against data leakage by application
programs. In 2020 IEEE 36th International Confer-
ence on Data Engineering (ICDE), pages 265–276. DOI:
10.1109/ICDE48307.2020.00030.

Geldenhuys, M. K., Will, J., Pfister, B. J. J., Haug, M.,
Scharmann, A., and Thamsen, L. (2021). Dependable iot
data stream processing for monitoring and control of ur-
ban infrastructures. In 2021 IEEE International Confer-
ence on Cloud Engineering (IC2E), pages 244–250. DOI:
10.1109/IC2E52221.2021.00041.

Gomes, R. L., Bittencourt, L. F., and Madeira, E. R. M.
(2020). Reliability-aware network slicing in elastic
demand scenarios. IEEE Communications Magazine,
58(10):29–34. DOI: 10.1109/MCOM.001.2000753.

Gowtham, M. and Pramod, H. B. (2022). Semantic
query-featured ensemble learning model for sql-
injection attack detection in iot-ecosystems. IEEE
Transactions on Reliability, 71(2):1057–1074. DOI:
10.1109/TR.2021.3124331.

Hosam, E., Hosny, H., Ashraf, W., and Kaseb, A. S. (2021).
Sql injection detection using machine learning techniques.
In 2021 8th International Conference on Soft Comput-
ing Machine Intelligence (ISCMI), pages 15–20. DOI:
10.1109/ISCMI53840.2021.9654820.

Li, Q., Li, W., Wang, J., and Cheng, M. (2019). A sql
injection detection method based on adaptive deep for-
est. IEEE Access, 7:145385–145394. DOI: 10.1109/AC-
CESS.2019.2944951.

Lv, Z., Hu, B., and Lv, H. (2020). Infrastructure monitoring
and operation for smart cities based on iot system. IEEE
Transactions on Industrial Informatics, 16(3):1957–1962.
DOI: 10.1109/TII.2019.2913535.

Moreira, D. A. B., Marques, H. P., Costa, W. L., Celestino,
J., Gomes, R. L., and Nogueira, M. (2021). Anomaly de-
tection in smart environments using ai over fog and cloud
computing. In 2021 IEEE 18th Annual Consumer Com-
munications Networking Conference (CCNC), pages 1–2.
DOI: 10.1109/CCNC49032.2021.9369449.

Musznicki, B., Piechowiak, M., and Zwierzykowski, P.
(2022). Modeling real-life urban sensor networks based
on open data. Sensors, 22(23). DOI: 10.3390/s22239264.

Parashar, D., Sanagavarapu, L. M., and Reddy, Y. R. (2021).
Sql injection vulnerability identification from text. In 14th
Innovations in Software Engineering Conference (For-
merly Known as India Software Engineering Conference),
ISEC 2021, New York, NY, USA. Association for Com-
puting Machinery. DOI: .

Portela, A. L., Menezes, R. A., Costa, W. L., Silveira, M. M.,
Bittecnourt, L. F., and Gomes, R. L. (2023). Detection of

iot devices and network anomalies based on anonymized
network traffic. In NOMS 2023-2023 IEEE/IFIP Network
Operations andManagement Symposium, pages 1–6. DOI:
10.1109/NOMS56928.2023.10154276.

Portela, A. L. C., Ribeiro, S. E. S. B., Menezes, R. A.,
de Araujo, T., and Gomes, R. L. (2024). T-for: An adapt-
able forecasting model for throughput performance. IEEE
Transactions on Network and Service Management, pages
1–1. DOI: 10.1109/TNSM.2024.3349701.

Rahul, S., Vajrala, C., and Thangaraju, B. (2021). A novel
method of honeypot inclusive waf to protect from sql injec-
tion and xss. In 2021 International Conference on Disrup-
tive Technologies for Multi-Disciplinary Research and Ap-
plications (CENTCON), volume 1, pages 135–140. DOI:
10.1109/CENTCON52345.2021.9688059.

Rizvi, S., Kurtz, A., Pfeffer, J., and Rizvi, M. (2018). Secur-
ing the internet of things (iot): A security taxonomy for iot.
In 2018 17th IEEE International Conference On Trust, Se-
curity And Privacy In Computing And Communications/
12th IEEE International Conference On Big Data Science
And Engineering (TrustCom/BigDataSE), pages 163–168.
DOI: 10.1109/TrustCom/BigDataSE.2018.00034.

Rodrigues, D. O., Santos, F. A., Filho, G. P. R., Akabane,
A. T., Cabral, R., Immich, R., Junior, W. L., Cunha, F. D.,
Guidoni, D. L., Silva, T. H., Rosário, D., Cerqueira, E.,
Loureiro, A. A. F., and Villas, L. A. (2019). Computação
urbana da teoria à prática: Fundamentos, aplicações e de-
safios.

Roy, P., Kumar, R., and Rani, P. (2022). Sql injec-
tion attack detection by machine learning classifier. In
2022 International Conference on Applied Artificial Intel-
ligence and Computing (ICAAIC), pages 394–400. DOI:
10.1109/ICAAIC53929.2022.9792964.

Silveira, M. M., Portela, A. L., Menezes, R. A., Souza,
M. S., Silva, D. S., Mesquita, M. C., and Gomes,
R. L. (2023). Data protection based on search-
able encryption and anonymization techniques. In
NOMS 2023-2023 IEEE/IFIP Network Operations
and Management Symposium, pages 1–5. DOI:
10.1109/NOMS56928.2023.10154280.

Souza, M., Ribeiro, S., and Gomes, R. (2023). Detecção
de ameaças de injeção de sql em serviços de computação
urbana. In Anais do VII Workshop de Computação Ur-
bana, pages 145–158, PortoAlegre, RS, Brasil. SBC.DOI:
10.5753/courb.2023.801.

Tang, P., Qiu, W., Huang, Z., Lian, H., and Liu, G. (2020).
Detection of sql injection based on artificial neural net-
work. Knowledge-Based Systems, 190:105528. DOI:
10.1016/j.knosys.2020.105528.

Xie, X., Ren, C., Fu, Y., Xu, J., and Guo, J. (2019). Sql
injection detection for web applications based on elastic-
pooling cnn. IEEE Access, 7:151475–151481. DOI:
10.1109/ACCESS.2019.2947527.

Ye, X., Chen, Q., Wang, X., Dillig, I., and Durrett, G. (2020).
Sketch-Driven Regular Expression Generation from Nat-
ural Language and Examples. Transactions of the Asso-
ciation for Computational Linguistics, 8:679–694. DOI:
10.1162/tacla00339.

https://doi.org/10.1007/s10207-017-0393-x
https://doi.org/10.1016/j.procs.2022.12.068
https://ieeexplore.ieee.org/document/9101350
https://ieeexplore.ieee.org/document/9610526
https://ieeexplore.ieee.org/document/9247519
https://ieeexplore.ieee.org/document/9625903
https://ieeexplore.ieee.org/document/9654820
https://ieeexplore.ieee.org/document/8854182
https://ieeexplore.ieee.org/document/8854182
https://ieeexplore.ieee.org/document/8700237
https://ieeexplore.ieee.org/document/9369449
https://doi.org/10.3390/s22239264
https://doi.org/10.1145/3452383.3452405
https://ieeexplore.ieee.org/document/10154276
https://ieeexplore.ieee.org/document/10380791
https://ieeexplore.ieee.org/document/9688059
https://ieeexplore.ieee.org/document/8455902
https://ieeexplore.ieee.org/document/9792964
https://ieeexplore.ieee.org/document/10154280
https://doi.org/10.5753/courb.2023.801
https://doi.org/10.1016/j.knosys.2020.105528
https://ieeexplore.ieee.org/document/8877739
https://doi.org/10.1162/tacl_a_00339

	Introduction
	Related Work
	Two Layer approach of SQLi Detection (2LD-SQLi)
	Architecture of 2LD-SQLi
	RegEx in 2LD-SQLi
	Machine Learning Model

	Experiments
	Experiment Setup
	Results
	Final discussion

	Conclusion and Future Work

