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Abstract The OpenPGP encryption standard builds on a transitive trust distribution model for identity assertion,
using a non-authenticated, distributed keyserver network for key distribution and discovery. An attack termed
“certificate poisoning”, surfaced in 2019 and consisting in adding excessive trust signatures from inexistent actors
to the victim key so that it is no longer usable, has endangered the continued operation of said keyserver network.
In this article, we explore a protocol modification in the key acceptance and synchronization protocol termed First-
party attested third-party certification that, without requiring the redeployment of updated client software, prevents
the ill effects of certificate poisoning without breaking compatibility with the OpenPGP installed base. We also
discuss some potential challenges and limitations of this approach, providing recommendations for its adoption.
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1 Introduction

E-mail encryption is introduced in 1991, with the PGP pro-
gram [Zimmermann, 1999]. Since then, and although there
are other solutions, the OpenPGP standard that derived from
it [Callas et al., 2007] remains one of the leading e-mail en-
cryption technologies.
For an encryption mechanism to be useful to more than the
handful of users that can personally know each other and ex-
change respective public keys via a trusted channel (i.e. by
meeting in person), a transitive trust model is needed. This is,
a network of public keys is created so that, in order for user
A to securely communicate with user B, A can find a trust
path between trusted third parties. Two transitive trust mod-
els can be found: the centralized model (followed by TLS,
found in most browser-based communications and server-to-
server protocols) and the distributed model (aimed at client-
to-client communications, among which OpenPGP’sWeb of
Trust is one of the clearest examples). Both transitive trust
models are further explained in Subsection 2.1.
An attack on the OpenPGP ecosystem, termed certificate poi-
soning, surfaced in 2019; this attack (thoroughly explained
in Subsection 2.3) causes the boundless growth of a vic-
tim’s public key certificate, rendering it useless. This attack
becomes impossible to revert due to the nature of the key-
servers’ synchronization protocol, and has put the keyserver
network for OpenPGP’s Web of Trust in existential danger.
This article proposes a protocol for carrying out and distribut-
ing key certifications that solves the certificate poisoning at-
tack without giving up, as other strategies presented in Sec-
tion 3 do, on keeping the whole system free of centralization,
with minimal modifications to the keyserver network soft-
ware, and using already available and deployed facilities in
client-side OpenPGP programs.
An experimental verification process is presented in Section

5, with whichwe show how the proposed protocol effectively
stops certificate poisoning attacks. The experiment was car-
ried out using unmodified client software, and with very mi-
nor modifications to the server-side software.

2 Background

2.1 Transitive trust models

While the main goal of encrypted communications mecha-
nism is to protect a given channel or document from eaves-
dropping or modification by unauthorized parties, this can
only be achieved if such mechanism also provides authenti-
cation: in a public key-based cryptosystem, when the myth-
ical Alice wants to communicate with Bob, she has to first
get hold of his public key, kB . But given any party (includ-
ing evil Mallory) can forge certificates in Bob’s name, and
assuming Internet-scale communications, where it is not fea-
sible for Alice to walk to Bob’s office to get his key, she has
to find a way to locate kB and authenticate it. Given Alice
cannot trust Bob’s key is truly kB , she trusts a given third
party’s declaration stating that Bob effectively is in posses-
sion of kB . This is termed a Transitive Trust Model (TTM).
The TLS (Transport Layer Security) protocol, which en-
crypts most communications over the Internet, solves this
issue by implementing a centralized TTM, illustrated in Fig-
ure 1. For this model, users trust a centrally provided set
of Trust Anchors (TAs) [Rescorla, 2018, p. 45]. This set is
usually and controlled by the operating system or browser
vendor. Each TA delegates their certification ability to Cer-
tification Authorities (CAs).
Conveying the server’s public key kS to the user interested

in establishing a TLS connection is solved by the protocol it-
self, as being TLS a connection-oriented protocol the server’s
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Figure 1. Centralized model. User verifies a valid path from a centrally
defined Trust Anchor, through a Certification Authority, to the destination
they want to reach.
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Figure 2. Distributed model. User b builds trust paths towards target k
following the existing edges of a mesh-like graph.

certificate chainCS is relayed as part of the session establish-
ment. This certificate chain includes the server’s public key,
and includes the chain of signatureswhere trust in their iden-
tity flows down from the TA, via the CA, to the particular
server.
There is a different TTM, however, based upon a distributed
model, named theWeb of Trust (WoT), illustrated in Figure 2.
The set of user-to-user node paths is represented as a mesh,
and trust is rooted in the individual actor (node) that wants
to trace a trust path to a different one.
In the example depicted, if user Bob (b) wants to communi-

cate with Karen (k), he has to build a trust path so that b→ k
is possible. Bob can find two possible paths by acyclically
traversing the graph:

b→ a→ d→ k

b→ g → e→ d→ k

The first path is one hop shorter, although givenWoT certi-
fications can carry data beyond themere identity certification
(such as trust expiration dates and weights), different models
are proposed that reason about trust levels provided by dif-
ferent paths could yield different metrics for either of them
[Jøsang, 1999].

2.2 The keyserver network
In order to search a trust path from b to k under a global-
scale network, however, there is still one important element
missing: a given user does not have the full list of keys that

comprise theWoT. This is where a key discovery mechanism,
the keyserver network comes into play.
Contrary to TLS, OpenPGP is not a protocol where session
initiation happens over a live connection. RFC 4880 defines
the structure of the OpenPGP message [Callas et al., 2007];
the protocol requires the initiator to know the cryptographic
identity of the recipient before transmitting the message.
Individual users can choose how to publish their keys, so that
third parties that want to communicate with them securely
can do so. A public, Web-queriable keyserver has been de-
ployed since 1997 [Yamane et al., 2003], with its API be-
ing standardized as the OpenPGP HTTP Keyserver Protocol
(HKP) [Shaw, 2003]. Independent keyservers complying to
HKP are offered by different operators, initially leading to
fragmentation and confusion, and highlighting the need for
a protocol to synchronize between them.
Synchronization between keyservers is achieved via a set-
synchronization protocol. This synchronization is nearly op-
timal in terms of communication complexity, and tractable
in terms of computational complexity, based on a gossip or
epidemic model [Minsky, 2002], which allows for the differ-
ent keyservers to form a network. This network allows users
to upload public keys, as well as their certifications, to any of
the participating servers, trusting they are soon synchronized
over all of them.
As the OpenPGP ecosystem follows a culture with strong
interests for decentralization and censorship resistance, an-
swering to a threat model including national governments’
interference, the gossip-based protocol allows for informa-
tion to spread reliably, but does not provide any way for in-
formation to be removed; once key material has entered the
keyserver network, and given that there are enough nodes
synchronizing any missing material from each other, it is un-
feasible to remove information from it.
Given that (a) data submission to keyservers is unauthenti-
cated (any user can create a set of OpenPGP keys and up-
load them to the network), and that (b) once information has
been relayed across several nodes it cannot be realistically
removed, and that (c) the OpenPGP key format allows for ar-
bitrary data to be input as part of a key, the keyserver network
can be seen as an append-only, public-access, distributed
database. This conflicts with privacy laws such as the Euro-
pean Union’s General Data Protection Regulation (GDPR),
and it is the cause for several keyserver operators to stop of-
fering their servers [Pramberger, 2010]. Several attacks are
documented as means to force operators into switching to dif-
ferent practices, where control over the distributed material
can be effectively exercised [Yakamo, 2018].

2.3 OpenPGP certificate poisoning
Without downplaying the factors highlighted by Yakamo
[2018], the authors stand by the importance of a fully de-
centralized network. This work is centered on preventing
the ill effects of a specific attack surfaced shortly after-
wards, termed certificate poisoning, and adressed as CVE-
2019-13050 in the Common Vulnerability Exposure (CVE)
database.
The OpenPGP key format specifies data can be appended to
an existing key as extra packets [Callas et al., 2007]. Let
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us consider that user Alice controls the public key kA, and
wants to start encrypted communication with previously un-
known (so not yet validated by her) user Bob, who controls
the public key kB . Alice requests a keyserver correspond-
ing to bob@example.org, obtaining the certificate chainCkB

.
OpenPGP keys are specified to be self-certified, indicating in-
formation such as their validity periods. Thus, the minimal
CkB

contains kB , ckB→kB
.

To ensure the key she received truly belongs toBob and is not
an attempt by evil Mallory to perform a Man-in-the-Middle
attack (MitM) [Conti et al., 2016], Alice learns that their mu-
tual friends Charly and Diana certify Bob’s key. This is, Al-
ice received from the keyservers a certificate chain that in-
cludes:

CkB
= kb, ckB→kB

, ckD→kB
, ckD→kB

However, in her attempts to disrupt communication, Mal-
lory creates thousands of throwaway keys. Those keys might
not even have a valid identity string, and these are in no way
traceable back to Mallory. It must be noted that this can be
achieved in few minutes using modern-day hardware. She
now controls:

kM1 , kM2 , kM3 , . . . , kM9 999 , kM10 000

Mallory proceeds to certify kB with all of her generated
keys and uploads the result to a keyserver, so that a request
for kB now yields a much larger result:

CkB
=


kB , ckB→kB

, ckC →kB
, ckD→kB

,

ckM1
→ kB , ckM2

→ kB , ckM3 →kB
,

. . .

ckM9 999
→ kB , ckM10 000 →kB

In normal use, OpenPGP public keys are usually a few
kilobytes long. Most frequent users connect to a couple
dozen other users [Wolf and Quiroga, 2018], increasing
their size roughly by 500 bytes per signature (depending on
the cryptographic algorithm each of the keys uses); Figure 3
shows the correlation between the number of signatures for
each of the 909 keys in the Debian project’s curated keyring
[Wolf and Gallegos, 2017] to its length in kilobytes. This
figure shows not only the clear linear correlation between
the number of signatures in a key and its length; keys range
between 1 194 bytes (2 signatures) and 376 041 bytes (683
signatures), but the regular combined size of the key and
certificates of an important subset of the global keyring.

After the attack, Bob’s key would be bloated byMallory’s
attack by over 5MB; were she to devote more resources
to it, the resulting key would grow linearly. Bob’s key is,
thus, said to be poisoned by Mallory. When Alice fetches
Bob’s key from the keyservers, it becomes unusable. Alice’s
OpenPGP client faces orders of magnitude more information
than it’s supposed to handle; observed failures from this at-
tack range from program freezes to corruption ofAlice’s local
keystore.
Alice is thus thwarted from securely communicating with
Bob. However, the real attack is on Bob: His identity, that
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Figure 3. Relation between the number of signatures and the
size of certificate chains in the Debian project’s curated keyring.
Data from https://salsa.debian.org/debian-keyring/keyring/
-/tree/master/debian-keyring-gpg at commit 2b34757d

should convey the trust of his peers, is no longer usable;Bob
has to migrate to a new identity, k′

B . But this new k′
B is not

linked to the WoT, as it does not have any certifications; Al-
ice has no reason to trust k′

B over any other key claiming to
belong to Bob, and they cannot engage in secure communi-
cations. Furthermore, even if Bob meets again with Charly
and Diana and builds a certificate chain again, Mallory can
trivially repeat her attack.
While few certificate poisoning attacks are documented on
keys actually used in production [Kahn Gillmor, 2019b], the
threat on the OpenPGP community is inherent to the key-
server network model.

3 Related work
Naturally, since certificate poisoning attacks are public (and
particularly since the discussion following [Kahn Gillmor,
2019a]), other researchers and practitioners have put efforts
in countering and mitigating the described attack, as well as
other weaknesses in the keyserver network.
A comparison betwen the strategies mentioned in this section
can be found succintly in Table 1; this information is summa-
rized in Subsection 3.5.

3.1 DANE and WKD
As explained in Subsection 2.2, the keyserver network serves
two fundamental roles: key distribution (finding the public
keys necessary for communication) andWoT distribution (re-
laying said key’s certificate chains and allowing users to tra-
verse the resulting WoT).
DNS-Based Authentication of Named Entities (DANE)
[Wouters, 2016] and the Web Key Directory (WKD) [Koch,
2021] are very different protocols, based respectively on
DNS and HTTP, that transfer part of the trust traditionally
linked to the WoT with domain control: If Alice’s mail ad-
dress is alice@example.org and shewants her key to bemade
widely available, she can publish it as a RRtype record of the
example.org DNS zone (for DANE) or as a specially named

https://salsa.debian.org/debian-keyring/keyring/-/tree/master/debian-keyring-gpg
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Table 1. Comparison between other implementations that counter the poisoned certificates attack.
Domain adm. OpenPGP user WoT Key UID address Decentralized
independent tools compatible support distribution verification operation

WKD and DANE #    G# #
TOFU: Autocrypt   G# G# #  

Verif: PGP Glob.Dir.      #
Verif: Mailvelope   #   #

Verif: Hagrid      #
OTR (various IM) G# # # G#  #

Current (SKS)     #  
1PA3PC     G#  

Web page under the https://openpgpkey.example.org/
domain (for WKD).
In both schemes, Alice remains in control of the contents of
the resulting certificate chain, and is expected to select and
publish what often amounts to a small subset of the signa-
tures on her key; DANESubsection 2.1.2 explicitly mentions
that “the user can also elect to add a few third-party certifica-
tions, which they believe would be helpful for validation in
the traditional ‘web of trust’ ”, due to the size of the resulting
RRtype record, and gives several examples on reducing the
transferable public key size.
These schemes advocate for key distribution models other
than general keyservers, and require control over specific
content held at given servers. Although several organizations
identified as strong users of the OpenPGP keyservers, such
as free software development projects, are known to support
both DANE and WKD for their domains, it remains funda-
mentally impossible for users of arbitrary e-mail services to
use these schemes for their personal addresses (as gmail.com,
hotmail.com, or hundreds of other massive e-mail providers
don’t offer DANE or WKD facilities).
The aforementioned protocols also are heavily centralized:
it is trivial for the owner or operator of a domain to control
which entries are hosted in their systems, so it is very easy
to centrally prevent a key from being distributed at all. Thus,
while a key owner does regain control over the precise con-
tents of the version of their key presented to other users if
switching from the keyserver network to a DANE or WKD,
the decentralization offered by keyservers is lost. Also, with
a vast majority of e-mail users using large-scale infrastruc-
ture providers (often not amenable to both of these protocols),
the ability to distribute their keys is clearly hampered.

3.2 Trust On First Use
The keyserver distribution model is not the only way to
convey keys and to express trust relationships. A different
model, achievable using the same client tools as OpenPGP’s
WoT, is TOFU (short for Trust On First Use).
TOFU questions the WoT’s validity, as it recognizes as “gen-
erally unreasonable to set someone whom you have never
met as a trusted introducer” [Walfield and Koch, 2016]. The
authors reason that the WoT’s validity cannot be meaning-
fully extended beyond two hops (that is, accepting as authen-
tic the identity of friends of friends).
The TOFU security module, also known in literature asWeak
Authentication (WA) or Leap of Faith (LoF), is a security

model where a user, upon a first connection to a yet unau-
thenticated endpoint, instead of finding a trusted third party
to confirm the new peer’s identity, proceeds to trust the pre-
sented identity to be valid the first time it is encountered,
and locally stores it. For any future interactions, though, the
communication channel is authenticated with the preexisting,
stored identity [Pham and Aura, 2011]. The model is, from
the onset, known to be weaker than both the centralized and
distributed TTMs, but it is widely used due to it not requir-
ing any additional infrastructure (registration effort, cost and
scalability). Quoting from Pham and Aura [2011]:

The security of LoF relies on an important assump-
tion that the attacker is unlikely to be present dur-
ing the first communication (...) In the classical
computer security model, LoF is unquestionably
insecure. In practice, it has been applied in sev-
eral context. The most prominent one is SSH.
(...) Also, when a user downloads and installs a
web browser or an operating system, a list of root
certificates (...) is configured on that user’s ma-
chine. Most users do not bother to verify offline
the correctness of these certificates, and thus the
LoF mechanism is applied.

Even given all its limitations, TOFU adoption has grown
over the years. SSH, mentioned in the above quote, is a very
specific case where a systems administrator generates keys in
several systems and trusts them because their ability to imme-
diately verify the functionality. Bluetooth establishes cryp-
tographic secure channels between discrete devices with no
properMitM protection because it is a distance-limited proto-
col, and usually runs in devices with interfaces too limited to
perform deeper checking. The multimedia-oriented Session
Initiation Protocol (SIP) needs to blend in with preexisting
communications networks where any authentication other
than TOFU would be extremely impractical, as well as dis-
rupting to the expected communication experience [Arkko
and Nikander, 2004]. However, since the mid 2010s, TOFU
has also grown into a very important niche, becoming the
dominant trust distribution model: instant messaging appli-
cations, such as WhatsApp, Telegram or Signal, provide an
opportunistic end-to-end secure messaging mode based on
TOFU [Herzberg and Leibowitz, 2016].
Instant messaging is a very particular case: Given its wide
adoption, with implementations reaching over a billion users,
and the usability hurdles of encryption [Whitten and Tygar,
1999] and the low awareness of its importance [Renaud et al.,

https://openpgpkey.example.org/
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2014], notifications regarding mismatching keys have to be
kept as non-intrusive as possible, but provide a means for
out-of-band verification by tech savvy users [Johansen et al.,
2017, 23–48]. TOFU has proven to be a good compromise,
even though the overall identity assurance of the system is
lower than with the other mentioned trust distribution mod-
els.
The Autocrypt project, pursuing furthering usability in e-
mail encryption in order for more users to be able to adopt
it, while building over PGP (which uses the WoT), acknowl-
edges the advantages of TOFU and provides a hybrid trust
mechanism. Quoting Krekel et al. [2018],

That’s why we trust on first use and distribute pub-
lic keys in the email header. It is hidden, but de-
centralized, and leaves the users in control of their
keys, without them necessarily knowing it. And
if they want to do an out-of-band verification with
their associates, there will always be user-friendly
options, e.g. with a QR code comparison.
Technically, Autocrypt is not much more than a set
of some reasonable configuration decisions. But
together, the decisions made by Autocrypt can
streamline the complex PGP system to be usable
for encrypted communication between everyone.
What encrypted communication needs is simple,
measured steps of improvement. That’s the only
way to bring people together while maintaining the
original intent of the architecture.

Thus, TOFU provides a convenient scheme for key dis-
tribution, a topic that is presented next, and for minimal in-
volvement cases are as a simple trust conveying mechanism,
although for stronger security guarantees it still must be com-
bined with a proper trust distribution model. And this is
where a comparison with the solution this work proposes can
be found: while TOFU is a solution to the certificate poison-
ing problem, it is not deemed to cover the needs for many of
the use cases covered by WoT users.

3.3 Verifying keyservers
Several other high profile weaknesses and vulnerabilities are
known since before the appearance of certificate poisoning
attacks presented in Subsection 2.3 that prompted this work.
While certificate poisoning is seen as many, as Subsection
3.4 shows, as the nail in the coffin for the decentralized gos-
sip-based synchronized keyserver network, said prior attacks
clearly accelerate the certainty within the OpenPGP commu-
nity that the keyserver network based on gossip synchroniza-
tion needs a strong overhaul.
The idea behind verifying keyservers is to add requisites be-
fore the acceptance of given key data into the keyring set.
The work presented here presents a halfway verifying key-
server: New keys can be added with no requisites whatso-
ever, but signature packet additions are verified. Our mod-
ified protocol continues to run, however, over a gossip net-
work.
Verifying keyservers are not a novel idea. Already by 2004,
the PGP Coproration releases the PGP Global Directory
[PGP Global Directory, 2004], a proprietary product now

owned by Symantec. It verifies the uploader of key mate-
rial controls the email addresses used as its UserID attributes,
and allows for key modification and removal — but operates
in a purely centralized way. It failed to gain traction among
the OpenPGP users, probably due to the social traits earlier
discussed regarding centralized and company-provided solu-
tions. TheMailvelope keyserver, presented in 2012 [Sharma
et al., 2021], is another implementation that attempts to re-
place the aging and then-dominant SKS keyserver software
implementation with a much simpler and more modern code
base, written using a widely understood technological base
(Javascript, instead of OCaml) and meant to be used as a
browser extension, nevertheless doing away with theWoT al-
together, mainly due to the justification that it does not scale
in terms of usability, and pointing to placing more trust in
the service provider that hosts a keyserver, switching to an
operation mode closer to TOFU. Mailvelope suffered from
the onset of a difficult user interface, with which users strug-
gled to perform tasks supposed to be basic [Mauriés et al.,
2017].
In June 2019, the Hagrid keyserver project, as well as the
keys.openpgp.org service, are announced [Walfield, 2019].
Hagrid, written in Rust and based on the Sequoia OpenPGP
implementation library, addreses shortcomings not only in
SKS, but also in the gossip protocol, and even in the de-
sign goals of a design goal of the keyserver network [Hansen,
2019]. In 2020, the first VerifyThis Collaborative Long Term
Challenge deductive program verification challenge is car-
ried out over Hagrid, assessing its truth to specification and
code quality [Huisman et al., 2020]. Walfield reasons that
the keyserver network append-only data set is no longer fea-
sible in today’s Internet, for reasons very much aligned to
what we have so far described as well as other attacks:

Another problem with SKS is that it is effectively
a garbage pile. This is by design: the key servers
manage a de facto append-only log, and anyone
can upload a key in anybody’s name. This would
be fine if people used the key servers as intended.
That is, as a repository for finding key updates
(...) Instead, people assume that the key servers
are a directory, like a telephone book, and that the
published keys have received some minimal vet-
ting. Unfortunately, the key server interface in-
vites this interpretation: historically it makes look-
ing up keys by email address easy, and up until
a few years ago, this actually worked surprisingly
well. But since vandalism on the key server infras-
tructure (...) has become common, the key servers
have become increasingly polluted. This under-
standably confusesmany users, and even advanced
users and trainers blame the key server operators
for not doing something to improve the situation.

Hagrid verifies email addresses before publishing user
IDs, and by linking each key to its user ID, allows for users
to control what information is stored. However, the project
does not forsee a fully decentralized (federated, as referred to
in their writeup) operation mode to be compatible with their
aims. Some of the data they carry (particularly, key updat-

keys.openpgp.org
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ing) might be made to operate over a gossip-like network in
the future [Walfield, 2019]:

The SKS key server network is a federated net-
work. But, a verifying key server requires a cen-
tral authority to manage the authenticated direc-
tory. This would appear to preclude federation. In
fact, it appears to precludemirroring, because User
IDs should not be wholesale exported due to pri-
vacy and GDPR concerns.
Happily, these concerns only apply to the email di-
rectory: the rest of the data can be synchronized.
Since it is good practice to regularly check for key
updates, we expect that most of the load will be di-
rected to this part of the service anyway. Thus, a
Hagrid-based key server network can function in a
similar way to the SKS key server network, and it
can use a similar trust model.
(...)
Currently, Hagrid does not provide a synchroniza-
tion mechanism. If the OpenPGP community
adopts Hagrid, then we plan to add support for
this. One issue is that the protocol used by SKS,
although peer reviewed, is not well documented.

Hagrid is not the only keyserver implementing verifica-
tion. Fewmonths after its announcement, the onak keyserver
added a verification phase, accepting only reachable keys—
keys with trust paths to and from the set of already known
keys.

3.4 Beyond OpenPGP
Tools also have natuaral lifetimes, and considering that
OpenPGP as a technology might be reaching its natural end-
of-life should also be considered. This concern is cited as
early as in Borisov et al. [2004], in which the authors present
the Off-The-Record secure messaging protocol, based on
the pursuit a different set of security properties from that of
OpenPGP. Most particularly, it includes deniability (OTR
messages are authenticated to come from the intended third
party, but an interceptor cannot prove their provenance)
and perfect forward secrecy (previous conversations are not
considered compromised even in the event of the loss or
leakage of private key material). OTR user authentication is
based upon TOFU (described in Subsection 3.2).

This is achieved by very short-lived encryption keys
and message authentication codes (MACs), automatically
derived and discarded at each communication cycle between
communication parties. OTR includes an ingenious step
where communication parties publish their previous private
keys in order to ensure past messages (that should be de-
stroyed after receipt) explicitly lose their non-repudiability,
as would happen with in-person communications where
nobody can prove their counterpart said something: Once
a message is acknowledged to be received, the session
keys used to send it are rotated, and the MAC keys used to
encrypt and sign previous messages are sent in the clear,
ensuring all messages could have been forged.

In instant messaging, both the widely used Signal and
the closely related Whatsapp end-to-end encryption proto-
cols are based on OTR [Marlinspike, 2016], meaning the
presented ideas are used by over a billion active users. It
is undeniable, then, that OTR has been instrumental to bring
usable encryption to its massification — and quite probably,
that a large portion of users in the world are better served by
other encryption and authentication means than OpenPGP.
We hold, however, that there is still important value in pre-
serving and promoting the decentralized, strong authentica-
tion properties of the WoT as provided by OpenPGP.

3.5 Related works summarization
This subsection presents a quick round-up of the above
presented alternative strategies, and follows the summa-
rization presented in Table 1; the two last rows of the table
present the current working of the keyserver network, and
the proposal put forward by this work (detailed next, in
Section 4) is illustrated in the last row of the table.

The first column presents whether a tool is independent
from the domain administration. This is important so
that users with a UID located within a domain name can
distribute and authenticate their keys using a given strategy;
clearly, WKD and DANE require the domain administrators
to grant users control of either a given (“well-known”) web
page or DNS record. Users of large-scale mail providers
(i.e. gmail.com, hotmail.com or the like) are not able to
distribute their public keys or certificates in this way. The
OTR protocol cannot by itself be clearly subject to this
criteria, as it depends on the messaging service that builds
upon it; while OTR can be used over fully decentralized
protocols such as XMPP or IRC, its most common use is
over centralized instant messaging networks, such as Signal
or Whatsapp, but said platforms don’t provide for a way to
interact with users in third-party platforms.

The second column addresses whether the alternatives
can currently interface with the OpenPGP tooling already de-
ployed to users. All of the tools defined within the OpenPGP
ecosystem have taken care to build upon. Naturally, the
OTR protocol defines a completely different ecosystem, and
its program are not compatible with OpenPGP’s.

Next, the table addresses whether said implementation
considers WoT support and its usage provides for using it.
WKD and DANE do provide the necessary information for
a user to build a WoT, but given the fact that many users
are hampered from using said schemes as they might use a
provider not supporting it, the support can only be consid-
ered partial. We consider that TOFU-based implementations
to be partial as well, as they are based in a completely
different trust model, do not fully support the WoT: public
keys (also known as certificate chains) are distributed as
part of the initial mail, and no way to locate participants
of a WoT is provided. Mailvelope is built around the
OpenPGP standard, and uses several OpenPGP tools, but
its developers have chosen not to present any information
related to transitive trust in order to keep the tool simpler
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for their target users. Finally, the OTR protocol does not
present a transitive trust model.

The following column details whether the strategy in
question supports key distribution, this is, whether it con-
veys the needed keys to the communicating parties. All tools
provide a means for conveying the keys for both endpoints
of a conversation, so all tools have at least a half-mark,
however, OTR does not implement a Web of trust, and
TOFU schemes distribute only the key for the immediate
counterpart: building a WoT trust path is impossible without
resorting to a keyserver.

The fifth column, UID address verification, compares
whether each of the solutions implements some sort of UID
address verification. WKD and DANE provide address veri-
fication for the UID that falls under each of the domains that
has a relevant service defined, but cannot verify identities
for any outside keys. TOFU schemes do not provide a UID
verification. As discussed earlier, this is one of the factors
that allowed for the emergence of the certificate poisoning
attack: throwaway identities can easily be created and used
to create meaningless signatures. And this is precisely the
point enforced by our 1PA3PC proposal; as mentioned
in Section 3.3, the 1PA3PC protocol presents a halfway
verifying keyserver, where new keys can be added without
verification, but signature packet additions to them need to
be certified.

The final column shows whether said scheme can support
fully decentralized operation. Given most of the presented
solutions work by claiming back control over the current ver-
sion of the distributed keys, it is no surprise that none of the
alternatives that present a single key distribution point fail
to provide decentralized operation; among the presented al-
ternatives, only TOFU (and both the current and proposed
keyserver network protocols) provide true decentralized op-
eration.

4 First-party attested third-party key
certification (1PA3PC) protocol

As mentioned in Section 2.3, the described attack is based
upon the fact that it is trivial for an attacker to append extra
packets to an existing OpenPGP key: the current protocol for
Bob to sign Alice’s key is as simple as Figure 4 llustrates; it
is expected that Bob obtained Alice’s key fingerprint directly
from her, but it is not enforced in any way. There is no vali-
dation from the keyserver that Alice agrees in any way with
Bob’s addition to her certificate chain.
It is worth reminding that a certificate chain is a set of
RFC4880-compliant packets [Callas et al., 2007], starting
with the holder’s public key, to which arbitrary packets can
be appended; each key certification, in which this work is fo-
cused, is one such packet.
This work proposes adopting a first-party attested third-party
certification (1PA3PC) protocol for the keyserver network,
as suggested in Kahn Gillmor [2019a] for an abuse-resistant
keystore; this protocol is illustrated in Figure 5. The improve-

Alice

Alice

Bob

Bob

Keyserver

Keyserver

(out of band)

Validation should
always be done, but
nothing enforces it.

Updates

Figure 4. Current protocol for adding Bob’s signature to Alice’s certificate
chain in the keyserver network.

Algorithm 1: Bob intends to sign Alice’s certificate
chain
Input: Bob has verified Alice as the owner of kA

out-of-band, has kA’s fingerprint fA.
Output: Alice’s certificate chain CkA

including
Bob’s signature, ckB→kA

.
Result: Alice receives ckB→kA

to act upon.
1 begin
2 C ← search(keyserver, Alice);
3 if found(C) and fingerprint(C) == fA then
4 C ← sign(C, kB);
5 send(Alice, C);
6 end
7 end

ment this protocol presents centers upon the fact that no ac-
tor (Bob) should be able to append certification packets to a
certificate chain unless said packets are attested by the cer-
tificate chain’s owner (Alice).

4.1 Protocol walk-through
As figure 5 shows, our proposed protocol involves the same
three actors: Two public key owners: Alice, who owns (con-
trols both the public and the private components) for kA, and
Bob, who owns kB and an automated keyserver.
After meeting in person and exchanging identity information
so that Bob trusts Alice is the true owner of kA, she gives him
the key’s fingerprint. Bob wants to publicly certify Alice’s
key, so he follows Algorithm 1:
Bob requests the keyserver for the certificate chain corre-
sponding to Alice’s identity C and, after verifying the finger-
print matches and can be asserted to be CkA

, creates a signa-
ture packet sign(C, kB) and appends it to his local copy of
C. Bob then sends C including his signature to Alice.
Upon receiving C from Bob, Alice proceeds with Algo-

rithm 2: Alice traverses the list of packets in C. When she
finds a packet c that contains Bob’s certification of her key
(kB → kA), given she remembers having recently met and
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Alice

Alice

Bob

Bob

Keyserver

Keyserver

(out of band)

If Alice does not recognize
as legitimate, she

does not attest it, and is not
distributed by the server.

Verifies

on

Updates

Figure 5. Proposed protocol for addingBob’s signature toAlice’s certificate
chain in the keyserver network, requiring 1PA3PC.

exchanged key fingerprints with Bob, acknowledges it is a le-
gitimate certification. Of course, if Alice does not recognize
c to be a legitimate packet, she discards it.

Algorithm 2: Alice’s actions to acknowledge Bob’s
signature by attesting it.
Input: Certificate chain C received from Bob.
Output: Certificate chain CkA

.
Result: Alice sends the keyserver ckB→kA

and the
matching attestation Att(kA, CkA

).
1 begin
2 foreach packet c in C do
3 if c = kB → kA and A.acknowledge(c) then
4 CkA

← c ;
5 CkA

← Att(kA, CkA
);

6 send(keyserver, CkA
);

7 else
8 discard(ckA

);
9 end

10 end
11 end

She then appends c to her certificate chain CkA
, creates

an attestation Att(kA, CkA
) acknowledging the addition

of this signature to her certificate chain, and appends this
attestation to her certificate chain as well. Having done
that, Alice uploads her updated certificate chain CkA

to the
keyserver.

This triggers the keyserver to start Algorithm 3: The key-
server receives a set of RFC4880-compliant packets, P . P
happens to include data augmenting Alice’s certificate chain,
CkA

. Do note that the keyserver does not validate who is the
originator for: it might have been submitted by an individ-
ual user such as Alice, or it could have been imported after
synchronizing with a different keyserver; Algorithm 3 is ex-

ecuted nonetheless.

Algorithm 3: The keyserver receives Alice’s certifi-
cate chain, which might carry new packets in it
Input: Keyserver has received cryptographic

material including any packets to be
appended to CkA

Result: Keyserver’s database is updated, appending
to Alice’s certificate chain CkA

the new
signature ckB→kA

and its attestation by Alice,
Att(kA, CkA

).
1 begin
2 AttP ← attestations_index(P)
3 foreach packet c in P do
4 if c(∗ → kA) then
5 if AttP includes Att(kA, c) then
6 kA ← c;
7 kA ← Att(kA, c);
8 add_to_database(kA);
9 else
10 discard(c);
11 end
12 end
13 end
14 end

For the purposes of this work, we focus on the case where
the received data includes packets to be appended to CkA

.
The keyserver builds an index of attestations AttP present
in P and starts processing all packets in P . If a given packet
c is a certification on kA, it searches whether AttP includes
a matching attestation Att(kA, c). If a matching attestation
is found, the keyserver adds both c and Att(kA, c) to its
database, otherwise, it discards c.

At this point, it should become clear to the reader that the
proposed 1PA3PC protocol effectively counters the flaws in
the current scheme that make the certificate poisoning possi-
ble (refer back to Figure 4): by making any packet addition
to certificate chain CkA

depend on having been approved by
its owner Alice by the means of an attestation Att(kA, c), a
legitimate userB (Bob) is able to certifyCkA

, but given each
certification needsAlice to attest it, a malicious actorMallory
is no longer able to attack CkA

with certificate poisoning; at
most, she can create an army of fake identities to saturate Al-
ice’s mailbox with unwanted attestation requests — but such
an attack constitutes only a temporary annoyance (Alice will
be able to purge hermailbox of said spam), and does not carry
any longer lasting implications.

4.2 Interaction with the deployed OpenPGP
ecosystem

It is worth noting the protocol our work presents is aligned
with the uses recommended in Daniel Kahn Gillmor’s docu-
ment, currently presented as an early IETF draft [Kahn Gill-
mor, 2023], roughly following the Reasonable Workflows
outlined in its section 4.1, Third-party Certification and At-
testation Workflow. Given its status as an early-stage draft,
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our implementation does not yet follow the other workflows
therein suggested.
Attestations are akin to certifications on individual OpenPGP
packets, or sets thereof, signed by the user controlling the pri-
vate key material corresponding to a certificate chain.
Our proposed protocol requires all signature packets affect-
ing a given certificate chain CkA

to be attested by kA; the
keyserver performs a verification on each of them, dropping
all those that fail the validation.
Our protocol modifies only the logic at the keyserver, not
requiring any modifications in the installed base client-side
OpenPGP software for key querying; while key attestation is
not part of the published OpenPGP message format [Callas
et al., 2007], standarization efforts are under way and in their
final stages of approval by the IETF [Koch et al., 2022], and
the Sequoia client software already supports it [Azul et al.,
2021].
As a beneficial side effect of adopting this protocol, and as
can be seen in Figure 5, the owner of a key is no longer cut
off from any action performed over it: if Bob is willing to
certify Alice, this information is made public only after (and
whether) Alice attests it. This allows Alice to control the
amount of social interactions her key displays. It also thwarts
careless users who certify the wrong key without thoroughly
verifying its full fingerprint. It should be noted that mail-
ing signed keys to the signee for them to control publication
has been a best practice recommendation by keysigning aide
tools for decades [Palfrader et al., 2020], but cannot be man-
dated if the keyservers do not require it as part of their proto-
col.
Although 1PA3PC is suggested as a strategy for implement-
ing an abuse-resistant OpenPGP keystore [Kahn Gillmor,
2019a], no other implementations are published following it.
It should be clear to understand why 1PA3PC makes certifi-
cate poisoning impossible: Following again the interaction
presented as example in Subsection 2.3, even if Bob is not
careful and attests some of Mallory’s spurious certificates,
he does not accept the tens of thousands; at most, Bob suf-
fers a Denial of Service (DoS) attack on his mailbox, but
any possible damage is transient, and does not impact any
issues for the future use of Bob’s certificate chain. Bob does
not attest tens of thousands of attestation requests, and as a
consequence, the keyservers never distribute most of CkM1
through CkM10 000

. CkB
thus remains sane and usable.

5 Experimental verification
This section presents the experimental model built and
used to support the above presented claims, namely, that
a 1PA3PC protocol can be applied, with minimal modifi-
cations to keyserver software and with no modifications
needed for user-side tools, that completely prevents the ill
effects of certificate poisoning. We support our claims via
the following experiment:

We set up a network of five keyservers based on the Hock-
eypuck software [Marshall, 2015]. 500 OpenPGP keys are
generated using the Sequoia client [Azul et al., 2021], and
a laid out WoT on it, with a signature between each of two
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Figure 6. Number of keys present in the keyserver network over the lifetime
of the attack simulation.
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Figure 7. Size of the 20 largest certificate chains, as seen by one of the
keyservers in the network, during the lifetime of the attack simulation, using
the traditional protocol.

keys at random beingmadewith p = 0.01. We do not believe
specific WoT properties are relevant for the experiment, so it
was not attempted to replicate the internal structure of the real
OpenPGP WoT; the reason for creating the signatures is to
introduce the expected variance in the number of packets that
constitute each of the keys, thus driving their size to realistic
values. The 500 keys are uploaded randomly to each of the
five keyservers. Figure 6 shows the upload and synchroniza-
tion progress to the five keyservers until they converge on
the same keyset. As Figures 6, 7 and 8 show, key generation
and upload happens since the beginning of the experiment
and approximately until the end of its first minute (t = 60).
The keyservers connect with each other for synchroniza-

tion several times per minute, and this can be seen with
the spread of keys through them, starting approximately at
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Figure 8. Size of the 20 largest certificate chains, as seen by one of the
keyservers in the network, during the lifetime of the attack simulation, using
our 1PA3PC-enforcing protocol.
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t = 15 and until the number of keys per server stabilizes at
500, in Figure 6, at t = 215. Signature packets continue to
be appended to the keys, but their number remains stable
with 500 keys from this point on: all of the additional
information received consists on signature packets added to
existing keys.
After the “valid” signatures are generated, and as the “legit-
imate” WoT gets populated, signatures are still spreading
through the keyserver network, an attack is simulated:
Starting around t = 200, 1 000 further keys are created (but
not uploaded to the keyserver network). Five victim keys
are selected and signed with the 1 000 attacker keys, with
the signatures uploaded randomly to each of the keyservers.
The attack is quite efficient time-wise: It takes only close to
100 seconds to perform. As a result, as Figure 7 shows, by
t = 300, the five attacked keys are bloated to almost 300KB,
while the rest of the keys remain under to 5KB in size. The
keyserver synchronization protocol is left running so the
information spreads to the whole network, and by t = 450,
information flow over the keyserver network stabilizes.

In contrast, using our proposed 1PA3PC protocol, the
same experiment is carried out. It becomes clear that the
attack does not succeed, as Figure 8 shows: The 20 largest
keys in the keyring remain all within the same range and,
while they continue to successfully receive certifications, an
ill-intentionedMallory is no longe enable to disrupt Bob and
his position in the WoT.
Summing up the reported times, the experiment consists of
the following approximate intervals (in seconds):

0 – 60 Key generation
15 – 215 Keys spread to all servers
60 – 200 Signature generation
200 – 300 Attack
60 – 450 Signature synchronization
450 – Network is stable

As for the results, while the attack led to five keys being
disproportionately larger than the rest of the keys present in
the keyserver network in Figure 7, showing evidence of a
successful attack, Figure 8 shows all keys within the same
range, as expected from the random signature distribution
explained earlier in this section. It is worth keeping in mind
that the attack simulated in this experiment consisted of 1 000
throwaway, hostile keys only; observed certificate poisoning
attacks have been close to a hundred times bigger.

6 Discussion
The above section shows how the attack presented in Sub-
section 2.3 is effectively countered. Adopting our 1PA3PC
protocol makes it impossible to generate an attack with the
characteristics described, as any modifications on CkB

(any
packets appended to kB) have to be attested by kB . If such
attestations appear, it would be a clear indication that, if any-
thing, the corresponding private key has been leaked to the
attacker, and kB should be revocated; safely protected keys
being bloated beyond a level of usability are now completely
prevented.

6.1 Threats to validity and applicability
Given this work proposes a protocol change for the keyserver
network, a scope for its adoption must be set.
This proposed protocol should ideally be adopted by the

totality of nodes in a keyserver network, not a subset of
them. Given the validation is carried out when accepting
new packets, the whole network, as it currently stands, with
its over 6 million keys, can be taken as a basis. All keys and
certifications currently part of the WoT network can be kept
operative. However, a keyserver using our 1PA3PC protocol
should no longer peer with servers not using it: given the
logic of operation in the gossip protocol, delivery of new
packets including non-attested signatures would continue to
be attempted by old-version keyservers, only to be analyzed
and dropped by 1PA3PC ones, leading to an ever-growing
delta that can end up disrupting synchronization.

The new logic, validating every new packet “kicks in” at
the moment any key’s packets are considered for inclusion in
any of the keyserver network nodes; this is, each of the key-
servers will validate every new certification packet to have
been attested by its corresponding key. Of course, if this
new protocol is to be deployed over the preexisting keyserver
network, the keys and their certificates before the protocol
change would remain valid.

6.2 Death by kindness
The OpenPGP ecosystem has long been criticized because,
probably due to the complex interactions it allows for, its
usability is seen as dismal by many of its users [Whitten and
Tygar, 1999][Sheng et al., 2006][Woo, 2006].

In personal communication with Neal H. Walfield, from
the Sequoia project, he points out that, while the present pro-
tocol modification proposal does address certificate poison-
ing, it can lead to death by kindness: OpenPGP users are rel-
atively very few among computer users that actually pursue
tools to protect the privacy of their communications. From
them, the subset that takes part in the WoT TTM is even
smaller. Walfield succinctly points out that adding require-
ments of any kind such as transitioning from the protocol il-
lustrated by Figure 4 to one carrying more communicational
complexity, such as our proposal in Figure 5, risks further
shrinking the user base beyond a usable threshold.

7 Conclusions and future work
Through this paper, we show how it is possible to create a pro-
tocol that makes the certificate poisoning attack unfeasible,
requiring a very small change to the currently leading key-
server software’s logic and without requiring client-side soft-
ware changes beyond what the OpenPGP standard already
specifies.
Our solution preserves the distributed properties of the preex-
isting gossip-based keyserver synchronization network. This
protocol introduces a much better level of control on the dis-
tribution of key certification material than what has been his-
torically available for the distributed transitive trust model
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known as the OpenPGP Web of Trust (presented in Subsec-
tion 2.1), particularly solving the problem presented in Sub-
section 2.3 ascertificate poisoning.
Section 5 shows the experimental set up that the proposed
protocol effectively protects a keyserver network from the
specific threat our work is set to counter. Section 6 explains
some scenarios, however, of why adopting this protocol is
not just a matter of reconfiguring keyservers — what kind of
justified non-technical resistances can be found for this pro-
tocol to be widely adopted. Section 3 covered a review of
other ways cryptographic keys’ trust, discovery and distribu-
tion can be tackled.
Being this a security-oriented protocol proposal, we acknowl-
edge the importance of presenting a formal verification of the
protocol’s soundness. Part of the necessary work we intend
to do following this article is modelling and verifying the
interaction to ensure, beyond the limits an experimental ver-
ification process allow, all intended security properties are
effectively met and upheld.
We acknowledge there are still important problems to be
solved if we are to expect the keyserver network to recover
from the fall it suffered, such as the right of erasure required
by the European GDPR and comparable privacy-preserving
laws throughout the world. Even though they have con-
tributed to the reported shrinking base of the keyserver net-
work, they are outside the scope of this work. Finding a way
to allow for secure deletion of personally-identifying infor-
mationwhile preserving decentralization could constitute the
focus of future work. However, given our approach bases the
ability to control any modification to the certification pack-
ets that make up a given key on them being cryptographically
attested, it is not expected this line of work can solve the is-
sue of a court order or simple user request not backed by a
cryptographic proof of ownership; if a given user loses ac-
cess or control of their private key material, neither ours nor
any other protocol-level modifications will present a viable
solution.
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