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Abstract This study aims to propose an approach for spatiotemporal integration of bus transit, which enables users
to change bus lines by paying a single fare. This could increase bus transit efficiency and, consequently, help to
make this mode of transit more attractive. Usually, this strategy is allowed for a few hours in a non-restricted
area; thus, certain walking distance areas behave like “virtual terminals.” For that, two data-driven algorithms are
proposed in this work. First, a new algorithm for detecting itineraries based on bus GPS data and the bus stop
location. The proposed algorithm’s results show that 90% of the database detected valid itineraries by excluding
invalid markings and adding times at missing bus stops through temporal interpolation. Second, this study proposes
a bus stop clustering algorithm to define suitable areas for these virtual terminals where it would be possible to make
bus transfers outside the physical terminals. Using real-world origin-destination trips, the bus network, including
clusters, can reduce traveled distances by up to 50%, making twice as many connections on average.
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1 Introduction

The collective public transit service has been little expanded
and modernized over the last few decades, compared to pri-
vate individual transit, which currently consumes the largest
available urban road space. Motta et al. [2013] show histori-
cal conflicts and contradictions at the origin of the problems
affecting collective public transit systems throughout Brazil.

Aiming to revert this, attract new users, and improve the
quality of the service, several companies that manage collec-
tive public transit and researchers in this area are using vehi-
cle GPS data more frequently by providing an efficient and
accurate way to track the position of vehicles at a given time
[Bona et al., 2016; Curzel et al., 2019; Santin et al., 2020;
Gubert et al., 2023]. In this way, public transit can be inves-
tigated from different perspectives, examining the system’s
dynamic behavior, measuring the efficiency of services, iden-
tifying movement patterns, integration capacity, peak hours,
etc.

In analyzing the operation of a public transit network, it is
generally necessary to identify the instants of time in which
the bus passes at the stops, whether or not the bus stops. In
general, this identification is done by a map-matching algo-
rithm crossing the geolocation information of the bus with
the location of the bus stop. A suitable method for this task
was employed in the work of Martins et al. [2022]. The
method presents a solution for detecting bus stops, even on
two-way roads, correcting GPS inaccuracies, and identifying
the exact time of passage at a bus stop.

However, the practical application of working with real

GPS data can pose significant challenges due to intermittent
communication failures, leading to data gaps that may ad-
versely impact analysis outcomes if not appropriately man-
aged. Another problem is the need to cross-reference sched-
uled timetables with GPS information, as outdated timetables
generate inconsistencies, such as the cases reported by Mar-
tins et al. [2022]. Thus, researchers are often forced to look
for periods in which there is consistency in logs and tables.
Nevertheless, this limitation confines the analysis to specific
time intervals and conditions during which the data is opti-
mal.

The itinerary detection problem, as defined in this article,
goes further, as it consists of matching the GPS logs of the
movement of a bus with its respective itinerary and schedule,
which is defined in the bus operation planning. This problem
is affected by communication failures in sending GPS data,
making it impossible to detect the bus itinerary correctly. An
approach for detecting itineraries was employed in the work
of Peixoto et al. [2020] using the schedule table for a bus
line. In this case, both the starting point departure time and
the scheduled arrival time at the endpoint must be known. In
addition, logs of bus movements are needed. Although this
algorithm identifies most itineraries, several logs from bus
monitoring are discarded, as they do not appear associated
with any itinerary. Unlike the previous work, the algorithm
proposed in this article does not use the scheduled bus line
schedule.

In our previous work [Borges et al., 2023], an algorithm
was introduced capable of detecting the itinerary of a bus in
operation using data from its geolocation without the need to


https://orcid.org/0000-0001-8779-6213
mailto:julio.2018@alunos.utfpr.edu.br
https://orcid.org/0000-0001-9798-578X
mailto:altieris.marcelino@gmail.com
https://orcid.org/0000-0001-6994-8076
mailto:thiagoh@utfpr.edu.br
https://orcid.org/0000-0002-0182-7128
mailto:anelise@utfpr.edu.br
https://orcid.org/0000-0001-6483-4694
mailto:luders@utfpr.edu.br

Towards spatiotemporal integration of bus transit with a data-driven approach

use information from the scheduled timetables of each bus
line. Furthermore, the proposed algorithm adds missing data
due to communication failures by interpolating known time
values.

In this context, this article aims to develop a spatiotem-
poral integration of bus transit using data-driven strategies.
There is no single definition for public transit service inte-
gration as it depends on the context and the transit modes ex-
amined. This work focuses on the integration of the public
bus transit, which can be understood as a strategy to increase
the network connectivity, offering users greater route possi-
bilities without the need to create new bus stops [Wang et al.,
2021].

The main contributions of this paper are as follows:

* Bus itinerary detection algorithm for building itineraries
with spatiotemporal information based on GPS bus
monitoring;

* Analysis of the impact of the interpolation of GPS data
on the different types of lines of the transit system;

* Full database assessment using real GPS bus data and
temporal evaluation of bus service;

* Bus stop clustering algorithm for grouping nearby stops
where connections can be made between bus lines with
a single fare;

+ Evaluation of the bus stop clustering algorithm and the
bus service synchronization;

+ Evaluation of the spatiotemporal integration impact on
bus trips in terms of distance traveled and number
of transfers between bus lines using real-world origin-
destination trips.

The article’s structure is as follows: In Section 2, an
overview of related works is presented. Section 3 provides
a detailed explanation of the proposed algorithms. The out-
comes of these algorithms are discussed in Section 4, fol-
lowed by the conclusion in Section 5.

2 Related Works

2.1 Public transit Mobility Understanding

Detailed information about public transit systems, includ-
ing bus stops, stations, terminals, routes, and timetables, are
widely deployed in standard data formats, such as the Gen-
eral Transit Feed Specification (GTFS). In recent decades,
new technologies have improved tools for monitoring and
verifying schedules and other performance metrics, such as
Automatic Vehicle Location (AVL) and other automated data
collection to traffic [Wilson et al., 2009]. In particular, GPS
equipment allows a wide range of applications with the poten-
tial to improve service and efficiency. The studies of Sridevi
et al. [2017], Hakeem et al. [2022], and Desai et al. [2022]
exemplify recent applications in which onboard equipment
collects GPS trajectories of buses and centralizes them in a
server. These data can be used in various transit system man-
agement applications.

A literature review on the bus trajectory data application
can be seen in War et al. [2022]. Aspects such as data sources
and methods of Big Data and IoT in mass public transit are
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described in Welch and Widita [2019]. Further discussion
of using bus GPS trajectory data is provided in Singla and
Bhatia [2015].

Concerning the Integrated transit Network (ITN), several
studies such as Bona et al. [2016]; Curzel et al. [2019]; Santin
et al. [2020]; Rosa et al. [2020]; Gubert et al. [2023], used
open public transit data, such as vehicle GPS trajectory data,
timetables, and itineraries, in the creation of models that al-
lowed the expansion of the understanding of the character-
istics and behaviors of the transit network, to promote the
improvement of the efficiency of the service. Other stud-
ies on urban mobility, transit networks, and computational
models that use similar data are performed by Rodrigues
et al. [2017]; Wehmuth et al. [2018]; Maduako et al. [2019];
Sadeghian et al. [2021]; Li and Rong [2022]. These mod-
els provide many efficiency measures for transit services,
helping to identify opportunities for important improvements
such as cost reduction.

2.2 Public Transit Data Quality

Another important issue is the data quality. Cleaning the raw
data must reduce inconsistencies for the models to work prop-
erly. For example, Martins et al. [2022] pointed out several
issues present in real GPS data, and therefore, they devel-
oped a model of map matching. This model can be used
for: 1) vehicle stop detection between nearby bus stops on
a two-way street, in which one point serves both directions
(“going” and “returning”) from the bus line; ii) GPS inaccura-
cies; and iii) the vehicle’s exact time of passage at a bus stop.
The problem of detecting bus stops was also addressed in the
work of Peixoto ef al. [2020], where the vehicle’s itinerary
was also employed using data from timetables. Other authors
also faced the challenge of detecting compatibility between
the trajectory of buses and their respective itineraries, such
as Yin et al. [2014]; Queiroz et al. [2019]; Chawuthai ef al.
[2023]. In these works, the main objective of detection is
to identify whether or not a bus GPS trajectory is in accor-
dance with the planned itinerary to signal any inconsistency.
In the work of Gallotti and Barthelemy [2015], inconsisten-
cies in vehicle stop times were corrected using a temporal
interpolation method, but no measure of interpolation error
was presented.

The algorithm proposed in the present article fills some
gaps, identifying and correcting inconsistencies in GPS tra-
jectories according to the itinerary. Furthermore, a method to
measure the interpolation error is presented. Therefore, the
proposed approach treats the itinerary detection problem and
the temporal interpolation by reducing the inconsistencies in
the raw data and providing a reliable database for new appli-
cations.

2.3 Public Transit Integration

Coordinating several transit routes, schedules, and vehicles
while looking to attend to passenger preferences is a com-
plex challenge [Arriagada et al., 2022]. Although bus ser-
vices have previously defined timetables, current trips of-
ten breach schedules due to uncertainties such as congestion,
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traffic lights, poor weather conditions, boarding and alight-
ing times, and maintenance interruptions [Li e al., 2021; Ku-
mar and Khani, 2023]. Public transit users often avoid long
waits, extensive walking distances, or route changes. How-
ever, transfers are seen as a strategy to deal with overcrowd-
ing in vehicles and bus stations [Pan ef al., 2023]. In addition,
transfers are necessary to integrate routes without building
new stops [Wang et al., 2021] while reducing the total opera-
tional cost [Liu et al., 2023]. The distance required to walk to
a bus stop and the time spent are important aspects for build-
ing more accessible public transit systems [Zochowska et al.,
2022]. In this direction, Noichan and Dewancker [2018] em-
ployed spatial analysis to assess route connectivity, examin-
ing the distances between transit points as a crucial factor. A
better synchronization between timetables and vehicle sched-
ules may reduce the wait time [Prathyusha et al., 2021; Ku-
mar and Khani, 2023].

In general, works that present approaches for integrating
transit networks focus on route optimization problems. They
propose to combine different routes in a transit network to
complete a trip. These approaches usually employ optimiza-
tion methods such as mathematical programming, heuristics,
or simulation. In this case, transfer points are previously
known or identified by static data such as vehicles’ scheduled
departure and arrival times provided in the timetables. How-
ever, known transfer points or timetable approaches may not
be the best option for bus networks because of the uncer-
tainties in travel times that are introduced by several of the
previously mentioned factors. Therefore, many works em-
ploy AVL data from online bus travel monitoring systems
because it offers a more accurate way of evaluating transit
networks [Li ef al., 2021; Kumar and Khani, 2023].

A summary of related works for public transit integra-
tion is presented in Table 1. It presents relevant approaches
for bus or multimodal networks using timetables or AVL
data and considering temporal, spatial, or spatiotemporal
dimensions of the integration. The results are generated
and reported using data-driven, optimization, or simulation
methodologies. “Virtual Terminal” refers to the ability to
identify bus line integration regions as described below.

Our approach of identifying transfer points between bus
lines relates to AVL-based (online GPS information of vehi-
cles) and data-driven approaches. However, it is different
from previous works because it identifies suitable transfer
points using both spatial (bus stop location) and temporal (on-
line frequency of buses) information. Regions of interest are
identified using a measure of maximum walking distance and
“synchronization” between bus lines at a particular bus stop.
They can be used as “virtual terminals” for bus line integra-
tion. Moreover, it is general enough to be adapted to other
GTFS and AVL data systems and can identify opportunities
to integrate bus lines based on historical data.

3 Spatiotemporal Integration of Bus
Transit
A spatiotemporal integration of bus transit is a strategy that

allows users to change bus lines by paying a single fare.
Usually, this strategy is allowed for a few hours in a non-

Borges et al. 2024

restricted area (terminals are restricted areas, for instance).
Certain walking distance areas function similarly to “vir-
tual terminals”. Two goals must be considered: i) detection
of bus itineraries and ii) bus stop clustering to define suit-
able areas for these “virtual terminals.” Both objectives are
achieved by the two data-driven algorithms proposed in this
section.

The central issue is to develop an itinerary detection al-
gorithm independent of the bus schedule table. Initially, it
is necessary to differentiate the concepts of “static network”
and “dynamic network.” These concepts were also used in
the work of Peixoto et al. [2020]. A static network represents
the topology of the transit network, that is, the sequencing of
bus stops on a specific line covering all itineraries offered by
the service, as considered in Bona et al. [2016].

Since the static network describes the topology of the bus
line and its respective itineraries without including timeta-
bles, the dynamic network is formed as a given vehicle
reaches the points provided for in its service itinerary. The
proposed itinerary detection algorithm is composed of 3
steps:

+ step 1: mark the time a bus passes at bus stops (map
matching algorithm).

* step 2: sequence bus stops according to these time
marks (temporal sequencing).

« step 3: associate a temporal sequence of bus stops to
a known itinerary, interpolating and removing marks if
necessary (the proposed algorithm).

A map-matching algorithm is used at step 1. The algo-
rithm used in this work is based on Martins et al. [2022] al-
gorithm. It calculates the Haversine distance from each ve-
hicle position (log) as used in Panigrahi [2014]; Lawhead
[2015] to all bus line stops and assigns the log to the closest
stop. This way, it is possible to mark the time of passage of
a vehicle to each bus line stop. Step 2 sorts time marks in
ascending order to obtain a temporal sequencing of points.
Step 3 is accomplished by the algorithm proposed below.

The itinerary detection algorithm aims to associate a log
of events captured by the movement of a specific bus to
the sequence of points of their respective bus line registered
in the table LinePoints. Thus, it is possible to associate
the instant time of passage of the bus at all points on the
line. This is illustrated in Figure 1, where a log of events
lOg = ((117 tl), (lg, tg), (13, tg), (14, t4), (l5, t5)) will be as-
sociated with a itinerary iti = (p1,p2,ps, pa, Ps), Where ¢;
is the moment when the bus passes at coordinate [; and p; is
a point on the bus itinerary.

For example, according to Figure 1, there is no record of a
bus passing at point p3, and there is a record of a bus passing
at a position 4 that does not correspond to any registered
point on the line.

The map matching algorithm associates the locations [;
to the respective bus stops by evaluating a measure of spa-
tial proximity between [; and a point on the itinerary. In the
case of Figure 1, the result of map matching is the mapping
map = ((ph ll)’ (an 12)’ (p4’ l3), (=, l4)7 (p57 15))5 and no
point is associated with location /4 and there is no record of
the passage through point ps.
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Table 1. Related works for public transit integration.

Borges et al. 2024

Authors Network Timetable-Based  AVL-Based Virtual Terminal Dimension Approach
Our work Bus No Yes Yes Spatiotemporal ~ Data-Driven
Wang et al. [2021] Bus No Yes No Spatiotemporal ~ Optimization
Kumar and Khani [2023] Multimodal Yes Yes No Temporal Optimization
Liet al. [2021] Multimodal Yes Yes No Spatiotemporal ~ Simulation

Zochowska et al. [2022] Bus Yes Yes No Spatiotemporal ~ Data-Driven
Prathyusha et al. [2021] Single bus route Yes No No Temporal Optimization
Steiner and Irnich [2020] Multimodal Yes No No Spatiotemporal ~ Optimization
Noichan and Dewancker [2018]  Multimodal Yes No No Spatial Data-Driven
Liu et al. [2023] Bus Yes No No Temporal Optimization

ps' )((Isits) For each bus stop p; (line 3), a set map is built with cor-

x responding locations /; found in the log (line 7). The cor-

" (I,t)  responding ¢ime is updated (line 9) to ensure an increasing

time sequence in the map. If a bus stop is not found, a pair

(None, None) is included in the map for further processing

N (line 13).

(|3,t3)' ‘e After the map is built, a new set det is generated by as-

e P signing each bus stop to its corresponding log time (line 19).

X \ - - If a bus stop is not previously identified with a correspond-

(I,:t) ing log (line 13), then a time estimate ¢; should be computed

T

Figure 1. Example of an itinerary iti = (p1,p2,p3,Pp4,ps) in full line
and alog = ((l1,t1), (l2, t2), (I3, ¢3), (la,t4), (I5, t5)) in dashed line.

Then, the proposed algorithm detects the
itinerary  with  temporal information det =
((plv tl)? (p27 t2)7 (p?n f3)a (p4a t3)7 (p57 t5))7 associating
the moment of passage to each point of the bus line. In this
case, the time instant £3 = to + (ts — t2)/2 is estimated by
averaging the times 2 and t3 of points adjacent to ps.

The above result for itinerary detection det = {(p;,t;)}
with temporal information can be generalized to (1) for iti
of dimension n and log of dimension m.

(pi» ég)
(pi> i)

: (pislj) € map;i=1ton;j =1tom
otherwise

(i ti) = { O]
where #; = #;_1 4+ (thpw — te)/w for k < i < (k + w)
and f;, = t;, considering the w — 1 bus stops that were
not mapped by map matching between points (p, tx) and
(Pktw, tk+w) € map. The above procedure is summarized
in Algorithm 1, whose main variables are described in Ta-
ble 2.

Table 2. List of variables for Algorithm 1.

Sets

iti Bus stops {p; } ordered according to the bus line route
log Time-ordered GPS bus logs {(l;,¢;)} for a single trip
map GPS log assigned to a bus stop {(ps,1;,t5)}

det Time-assigned bus stops {(p;, t;)} for a single trip
Indexes

i Bus stop in a bus line route, 1 <7 <n

J Log number ina GPS loglist, 1 < j < m

k Start of a sequence of (w — 1) bus stops without time log
Variables

(w—1) Number of bus stops without time log

At Interval time elapsed between logs of stops py, and pg 44
i; Time estimate for stop p; using temporal interpolation

Given ¢t¢ as a set of bus stops ordered according to the
bus route and log as a time-ordered set of GPS bus logs for
a single trip, Algorithm 1 searches for bus stops in the log.

(line 22) according to (1) and included in det (line 23). Time
estimates are computed for (w — 1) missing stops with a time
interval At elapsed from stops py. t0 p(j4w)-

Algorithm 1 Itinerary detection

Input: iti = {p;},1 < i < njlog = {(l;,t;)},1 < j < m// ordered by
points and time, respectively
Output: det = {(pi,t:)},1<i<n
I: map < {}
2: time < —1
3: for each p; € iti do
4 found + False
5 for each (1;,t;) € log do
6: if (p; = ;) and (t; > time) then
7: map « map U {(pi,l;,t;)}
8 found < True
9

: time < t;
10: end if
11: end for
12: if (found = False) then
13: map < map U {(p;, None, None)}
14: end if
15: end for
16: det + {}

17: for each (p;,l;,t;) € map do
18: if (I; # None) then

19: det < det U {(pi, ti)}

20: else

21: computes w, At = (tp4w — tx) and £, = t // missing points
between pj, and py 4., acquaintances

22: £7 :fi_1+At/w

23: det < det U {(p;,1;)}

24 end if

25: end for

The proposed algorithm has as requirements the static net-
work and the dynamic network. That is, it is necessary to
provide as input both the structure (or topology) of the tran-
sit network, according to the file PontosLinha, as well as
the logs of GPS of buses from file Vehicles. The advan-
tage over the method proposed by Peixoto et al. [2020] is
that there is no need for a table of scheduled bus lines (files
TabelaLinhas and TabelaVeiculos).

Given a set of markings with known times (p;, ¢;) and es-
timated times (p;, t}), temporal interpolation introduces an
estimation error given by err; = |t; — #;|. This work takes
known values from the original data set to obtain the estima-
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tion error evaluation results.

The second algorithm deals with bus stop clustering that
behaves like virtual terminals (not constrained to a particular
area), where users can change between bus lines with a single
fare. They are defined when nearby bus stops are clustered
within a 600 meter radius, which is considered a walking dis-
tance suitable for changing bus lines [Peixoto ef al., 2020].

Table 3. List of variables for Algorithm 2

Sets

candidates  Bus stops {c¢;} candidate to cluster centroids sorted in
ascending order by the average number of buses

bus_stops All stops {b; } of the bus network

cluster Bus stops of a cluster

clusters Set of clusters

Indexes

7 Bus stop in a list of centroid candidates, 1 < i < n

J Bus stop in a list of all bus stops, 1 < j < m

Centroids and clusters are computed according to Algo-
rithm 2, whose main variables are described in Table 3. It
starts with a descending-order list of candidate centroids or-
dered by the average number of buses. For each centroid in
the head of the list (line 3), all neighbor bus stops within a
given distance from the centroid are included in the cluster
(line 7). The new cluster is then added to the set of clusters
(line 10), and all bus stops of the cluster are removed from
the candidates list. It means that clustered bus stops are no
longer candidates for another cluster. The algorithm ends
when the list of candidates is empty (line 12).

Algorithm 2 Bus stop clustering

Input: candidates = {c;}, 1 < i < m;// ordered list of n centroid candidates
bus_stops = {b;},1 < j < m// list of bus stops
Output: clusters = {{cluster};}, 1 < i < 1//setofl clusters
1: clusters < {}

2: while candidates # {} do
3: centroid < head(candidates) // first element of the ordered list
4: cluster < {centroid}
S: for each b; € bus_stops do
6: if haversine(centroid, b;) < 600 then // Haversine distance
7: cluster < cluster U {b;}
8: end if
9: end for
10: clusters < clusters U {{cluster}}
11: candidates < candidates — (candidates N cluster) // remove
the clustered bus stops from the candidates list
12: end while

4 Results and Discussions

The evaluation of our proposal is accomplished using the real
bus GPS data. Data description, itinerary detection, and eval-
uation of interpolation errors are presented in Sections 4.1 to
4.3. Results for spatiotemporal integration of bus transit are
presented in Sections 4.4 to 4.6.

4.1 Public Transit Data

The C3SL repository! is recognized as the main source of
data for academic applications on public transit in Curitiba.
It has been used in several studies.

"http://dadosabertos.c3sl.ufpr.br/curitibaurbs/
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Geolocated data from bus monitoring are needed to deal
with the map matching problem and static information from
the transit network and the bus schedule. The Open Data Por-
tal of Curitiba City Hall provides a daily updated database
containing data on public transit in Curitiba available via
WebService with relevant information such as GTSF Files,
Lines, Points, Itineraries, Position of Vehicles, and Tables
of Schedules. Data is transferred through files in JSON for-
mat through an API. The API data dictionary can be found
in technical documentation [URBS, 2022b].

According to the operational data published in URBS
[2022a], ITN has a fleet of 1,226 vehicles (disregarding the
reserve buses) that serve 250 lines, 22 terminals, and 329
tube stations and make, on average, 1,365,615 trips per day
useful. These vehicles periodically send their location ac-
cording to URBS [2022b], which is stored in a daily log to be
consulted via the API. Because the native service does not of-
fer requests by date, C3SL provides JSON files containing a
daily and complete history of ITN operations updated on day
1. An extensive exploratory analysis of these data is given in
Vila et al. [2016].

The following data files of C3SL are used in the experi-
ments:

« Linhas: contains code, name, service category, color,
and other attributes of all ITN bus lines.

* PontosLinhas: stores name, code, type, latitude, and
longitude of all ITN bus stops, and describes the correct
sequence of stops according to bus line itineraries.

* Vehicles: contains the coordinate history of vehicles
in operation. The GPS position of a vehicle with date
and time is sampled every 20 seconds on average.

* TabelalLinhas: stores bus line timetables at stops;
most stops do not have timetable information.

* TabelaVeiculos: stores schedule times of bus
itinerary segments.

4.2 Case Study - Bus Line 829

The bus line 829 “Universidade Positivo” (“Alimentador”)
was chosen for a case study. It is circular, i.e., the same start
and end stops, with single-direction trips. In addition, it has
few stops that make visualization and interpretation of the
data easier. Table 4 shows the scheduled itinerary of bus
line 829, containing bus stop names and sequences.

Table 4. Scheduled itinerary of bus line 829 with bus stops.

Bus stop Seq.
Terminal Campo Comprido

R. Angelo Nebosne, 75

R. Prof. Pedro Viriato Parigot de Souza, 4716
R. Prof. Pedro Viriato Parigot de Souza, 5136
R. Casemiro Augusto Rodacki, 233

R. Carlos Miiller, 331

R. Carlos Miiller, 871

R. Eduardo Sprada, 5273

R. Dep. Heitor Alencar Furtado, 5181

R. Dep. Heitor Alencar Furtado, 4900
Terminal Campo Comprido

HEOOO\]O\UI-B‘&N»—!

The bus route starts at stop 1 in “Terminal Campo Com-
prido”, reaches intermediate stops 2 to 10, and returns to the
starting stop 1, as shown in Figure 2.
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Figure 2. Programmed itinerary of line 829 that starts at point 1, passes
through intermediate points 2 to 10, and returns to the starting point.

The scenario was built using real logs from 07/11/2022
of bus BA020. A round trip occurs between 06:04 to 06:32,
during which there is no loss of GPS data. Therefore, this
scenario is a suitable case to verify the application of the pro-
posed algorithm and evaluate interpolation errors, simulating
communication failures. Some logs are then deleted within
specific time intervals. In this case, the map-matching algo-
rithm does not detect the vehicle passing at some points, and
the proposed algorithm can recover the information using in-
terpolation. Points 3, 5, and 8 of bus line 829 were chosen
to be removed from the original data set. The case study pa-
rameters are shown in Table 5.

Table 5. Case study parameters for line 829.

Line 829 - Universidade Positivo
Bus BA020
Date 7/11/2022

06:04 to 06:32

06:15 to 06:16 at point 3
06:17 to 06:19 at point 5
06:26 to 06:28 at point 8

Return time

Failure Interval

Table 6 presents the result of steps 1, 2 and part of step 3.
The procedure marks the exact time when bus BA020 passes
at stops (map matching), creates a temporal sequencing (step
2), locates the itinerary, and assigns a sequence number to
each log (part of step 3).

Table 6. Results of applying steps 1, 2, and part of step 3 to the case

study.

Bus stop Time Sequence
Terminal Campo Comprido 06:04:51 1
R. Dep. Heitor Alencar Furtado, 4900 06:14:08 10
R. Angelo Nebosne, 75 06:14:36 2
R. Prof. Pedro Viriato Parigot de Souza, 5136  06:16:43 4
R. Carlos Miiller, 331 06:19:30 6
R. Carlos Miiller, 871 06:21:06 7
R. Dep. Heitor Alencar Furtado, 5181 06:28:30 9
R. Dep. Heitor Alencar Furtado, 4900 06:29:06 10
Terminal Campo Comprido 06:31:41 1

However, Table 6 contains some inconsistencies. For ex-
ample, the stop “R. Dep. Heitor Alencar Furtado, 4900”
marked at 06:14:08 is incorrect because it is at the end of
bus itinerary. A close examination reveals that the bus route
between points 1 and 2 passes very close to point 10, as illus-
trated in Figure 3. In this case, the map-matching algorithm
generates a markup error. This algorithm is thus insufficient
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Region of
uncertainty

& 2

Figure 3. Region of uncertainty in which the map matching algorithm gen-
erates a marking error.

to handle logs properly. The marking error is identified by
combining the result of map-matching with the proposed Al-
gorithm 1.

The proposed algorithm identifies gaps in the sequence af-
ter completing step 3. Due to the communication failure sim-
ulation, it identifies points 3, 5, and 8 are lacking as shown in
Table 7. The incorrect marking was deleted, and points 3, 5,
and 8 were added to the itinerary due to temporal interpola-
tion. This itinerary corresponds to the complete sequence of
bus stops registered for line 829 with temporal information.

Table 7. Final result of applying Algorithm 1 to the case study.

Bus stop Time Sequence
Terminal Campo Comprido 06:04:51 1
R. Angelo Nebosne, 75 06:14:36 2
R. Prof. Pedro Viriato Parigot de Souza, 4716  06:15:39 3
R. Prof. Pedro Viriato Parigot de Souza, 5136  06:16:43 4
R. Casemiro Augusto Rodacki, 233 06:18:07 5
R. Carlos Miiller, 331 06:19:30 6
R. Carlos Miiller, 871 06:21:06 7
R. Eduardo Sprada, 5273 06:24:48 8
R. Dep. Heitor Alencar Furtado, 5181 06:28:30 9
R. Dep. Heitor Alencar Furtado, 4900 06:29:06 10
Terminal Campo Comprido 06:31:41 1

In evaluating the interpolation error, data from the move-

ment of buses on line 829 during a whole day from 06:04 to
23:19 were used. Known points were randomly taken from
the original data set, simulating communication failures. The
estimation error err; = |t; — fi| was calculated from the
known real values (p;, t;) of the points removed and the es-
timated values (p;, £;).
Error measures are computed as a function of the number of
consecutive bus stops missing. In this experiment, error mea-
sures are calculated in seconds for 1 to 7 consecutive miss-
ing points, or w € {2,3,...,8}. For each case, 100 samples
without replacement were used to generate the result in Fig-
ure 4. It is observed that the interpolation error increases
with the number of missing points. For most cases, the er-
ror ranges from less than 1 min to approximately 2 min (125
seconds).

This result suggests that the uncertainty introduced by in-
terpolation is acceptable. A delay or advance of 2 minutes
can be considered tolerable in an urban bus transit system.
However, a closer look is needed to understand better which
lines are most affected by the interpolation error at which
times of day.

4.3 Database Assessment

The proposed algorithm was applied to logs on 07/11/2022
to evaluate the ability to detect itineraries using the entire
database. The result is compared with the algorithm of
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Figure 4. Interpolation error in seconds on line 829 for different values of
w (a missing midpoint corresponds to w = 2).

Peixoto et al. [2020], which uses bus schedule tables. Ta-
ble 8 shows the total number of assignments each algorithm
makes to a valid itinerary by type of bus line.

It is observed that the proposed algorithm provides a
global increase from 68.83% to 99.33% in itinerary trace-
ability gain. The new algorithm presents a result 44.31%
better than Peixoto et al. [2020]. Except for lines of
MADRUGUEIRO that should be further investigated, all
lines of other types benefit. This result increases valid data
in the database, preventing data from being discarded due to
not being associated with any itinerary.

Table 8. Comparison between the number of tags assigned to a
valid itinerary according to Peixoto et al. [2020] and the proposed
algorithm by type of bus line. The percentage values are relative to
the number of matches made by the map-matching algorithm.

. [Peixoto e al., 2020] Proposed

Line type Tags % Tags %

ALIMENTADOR 160,750 70.62% 225,434 99.03%
CONVENCIONAL 52,338 62.02% 84,310 99.90%
EXPRESSO 21,986 62.41% 35,206 99.94%
JARDINEIRA 234 46.89% 499 100.00%
LIGEIRAO 2,988 63.86% 4,677 99.96%
LINHA DIRETA 8,421 70.37% 11,879 99.26%
MADRUGUEIRO 5,659 98.26% 5,455 94.72%
TRONCAL 26,136 75.84% 34,447 99.96%
TOTAL 278,512 68.83% 401,907  99.33%

Table 9. Distribution of the tags of Table 8 that had two error types:
i) out of order and ii) missing bus stops for the proposed algorithm.

. Tags with errors

Line type i i Toml %

ALIMENTADOR 15,764 21,176 36,940 16.39%
CONVENCIONAL | 2432 7,068 9,500 11.27%
EXPRESSO 487 2,139 2,626 7.46%
JARDINEIRA 0 12 12 2.40%
LIGEIRAO 83 193 276 5.90%
LINHA DIRETA 126 162 288 2.42%
MADRUGUEIRO 1,470 283 1,753 32.14%
TRONCAL 478 1,896 2,374 6.89%
TOTAL 20,840 32,929 53,769 13.38%

Although the tags of Table 8 are assigned to valid
itineraries at the end of the proposed algorithm, some of them
had errors in the sequence of stops or missing bus stops. Ta-
ble 9 shows the distribution of tags that had two error types:
i) out of order and ii) missing bus stops for the proposed al-
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gorithm. The percentage of 13.38% of tags is practically all
corrected after the adjustment of sequence and missing points
performed at the end of the proposed algorithm.

The interpolation error by line type is evaluated simi-
larly to Section 4.2 but using all bus lines in the database
that take only complete paths with real values. Figure S
shows the interpolation error in seconds by line type. Bus
lines ALIMENTADOR, CONVENCIONAL, EXPRESSO,
MADRUGUEIRO, and TRONCAL have an error between 0
and 1 min approximately. On the other hand, JARDINEIRA,
LIGEIRAO, and LINHA DIRETA are more susceptible to
interpolation errors. The big errors for JARDINEIRA and
LINHA DIRETA might be due to the long distances between
bus stops of these lines, whose time interpolation can be sig-
nificantly affected by road traffic conditions.

ALIMENTADOR
CONVENCIONAL
EXPRESSO
JARDINEIRA

LIGEIRAO

LINHA DIRETA

{[H

-
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— @
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TRONCAL

100 200 300 400 500

0
err (seconds)

Figure 5. Line type interpolation error.

4.4 Temporal Assessment of Bus Service

A bus service is provided according to the timetables of bus
lines. Therefore, users can estimate the time interval between
consecutive buses of a given bus line. However, from a
user’s perspective, at a single bus stop, several buses from
different bus lines interact to provide the bus service to that
stop. In this case, how often do buses serve a particular bus
stop (eventually by different bus lines)? This section pro-
vides a temporal assessment of bus services by identifying
well-served urban areas with many buses and bus lines. It
considers the database from 07/11/2022 to 07/15/2022. The
GPS bus trajectories are tracked according to the method de-
scribed in Section 3.

The bus service is evaluated in a time window of 10 min-
utes, representing an expected waiting time for most users.
The number of buses that pass a stop is counted considering
consecutive time windows of 10 minutes. This way, buses
within a time window of 10 minutes are counted, a shift of
1 minute is then given to the window, allowing buses to be
counted within the next 10 minutes, and so on. For each bus
stop, a time series represents the number of buses observed
in a 10-minute time interval in each minute of the day.

Figure 6 shows the average number of buses observed at a
bus stop within a time window of 10 min shifted from 5:00 to
23:00 and aggregated into three categories of bus stops (ter-
minal, street stop, and tube station). All bus stops inside a
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terminal are considered a single stop for capturing the num-
ber of buses available at a given time.

—— Bus terminal —— Tube station

Street bus stop

)
12 SN

Average Number of Buses

5 6 7 8 9 1011121314151617 18 19 20 21 22 23
Time of Day (h)

Figure 6. Average number of buses observed at a stop of terminals, street
stops, and tube stations in a 10-minute moving window from 5:00 to 23:00.

Figure 6 shows a peak from 6:00 to 8:00, with a maximum
of around 7:00, and from 16:00 to 19:00, with a maximum
of around 17:00. This behavior is relevant for terminals and
tube stations with minor effects on street stops. Moreover,
terminals present up to 4 times more buses than tube stations
at peak hours, as expected, because they are hubs integrat-
ing different bus lines. Terminals and tube stations play an
important role in Curitiba’s transit system because they offer
users the possibility of transferring with a single fare.

The time series of Figure 6 are then aggregated in a day,
obtaining the average number of buses at a stop for termi-
nals, street stops, and tube stations as shown in the boxplots
of Figure 7. Terminals have the highest average number of
buses, as expected. Street stops and tube stations have fewer
buses but stand out as outliers, ranging from 2 to 13 buses on
average. This means that street bus stops can also act as hubs
if some integration between bus lines could be provided.

}—.—{mm»nu. oo

Bus terminal

Street bus stop

Bus Stop Type

Tl

Tube station

0 5 10 15 20 25 30
Average Number of Buses

Figure 7. Boxplots showing the average number of buses observed at a stop
of terminals, street stops, and tube stations in a 10-minute moving window.

The outliers of Figure 7 represent an opportunity to im-
prove the bus service because they have bus stops with a
high frequency of buses. If the stops are close enough to
each other, a hub can be built to allow connections between
the respective bus lines. For instance, if temporal integration
(with payment of a single fare) is allowed in certain regions
of interest, new links between bus lines can be made in the
network, eventually shortening distances and trip times. The
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regions of interest contain stops with a high concentration of
buses, as shown in Figure 8.
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Figure 8. Heat map of regions with a high (iensity of stops and frequency
of buses obtained from outliers of street stops and tube stations.

It is a heat map obtained from outliers of street stops and
tube stations (terminals are far from each other and usu-
ally do not have the potential for integration). The map
highlights red regions with a high density of stops and fre-
quency of buses. The most dense regions partially follow
the North/South transit corridor. It means that buses running
in this corridor have great potential to improve bus line con-
nections in areas other than terminals. Based on this result,
we aim to build bus stop clusters to behave like virtual termi-
nals.

4.5 Virtual Terminal Evaluation

The results of Algorithm 2 are shown in Figure 9. It shows
centroids of 104 clusters computed with 27 bus stops, each
serving 15 bus lines on average and covering 2,472 bus stops.

Figure 10 shows the average number of buses observed at
a cluster in a 10-minute moving window from 5:00 to 23:00.
Peak hours occur in the morning between 06:00 and 8:00 and
between 16:00 and 19:00 in the afternoon. More than 100
buses, on average, are observed between 6:00 and 7:00.

There is a correlation between the average number of
buses and the number of bus lines in a cluster according to
Figure 11. It shows a Pearson’s correlation coefficient of
0.78 with p-value < 0.001. In other words, not only do many
buses attend a cluster, but also many bus lines.

However, it is necessary to show that some “synchroniza-
tion” exists between buses passing at cluster stops during the
day. Itis accomplished by evaluating the correlation between
the bus time series of two stops of the same cluster.



Towards spatiotemporal integration of bus transit with a data-driven approach

2o b

¥ ) W
Lamenha Pequena Campo Pequeno M

rdim Boar Gua
Vista, i g

Y Acul
Awba. Ly

i Jarc

N Bairro Alto
\ SAeroporto. 1 4
e Bacacheri )

Sdo Braz Emiliano|Pe

Jrleans

Boneca do
Iguacu

0sé dos
Pinhais.
Aristocrata Cruz
~Bom Jesus

efinaria
esidente
Settifio
Vargas

Umbara o
Ganchinho

Figure 9. Centroids of 104 clu_stérs.

100 P

. I
9 R t
280 4t TR P
m 3: N

. .

§ 0;‘;;""”‘;§‘ .
Y 60 ¢ .
Kol N *!"‘3‘ ‘.0‘
€ M ¢ AR + NI
S I ¢ v 0 !
2403 t"":‘ IR .
& U 3.‘:
I
¢
< 20

5 6 7 8 9 101112 1314 1516 17 18 19 20 21 22 23
Time of Day (h)

Figure 10. Boxplots showing the average number of buses observed at a
cluster in a 10-minute moving window from 5:00 to 23:00.

Pearson’s correlation between the time series of two bus
stops is computed for all pairs of stops in a cluster. For in-
stance, the correlation matrix between bus stops of the clus-
ter with centroid 170121 is shown in Figure 12. A ma-
trix is shown for each period of the day: i) morning from
6:00 to 9:00; ii) midday from 11:00 to 14:00. According to
Figure 12a, there are pairs of bus stops whose correlation
achieves 0.75, which means that buses can meet each other
more often in the morning. A similar behavior is observed
in the evening from 17:00 to 20:00, as shown in Figure 12c.
However, this behavior is not observed midday, according
to Figure 12b. Some pairs of bus stops with a strong cor-
relation in the morning now show a weak correlation in the
midday.
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Figure 11. Scatter plot of the average number of buses observed in a 10-
minute moving window and the number of bus lines of all 104 clusters.

The correlation between the time series of two bus stops is
averaged on all bus stop pairs of a cluster and then averaged
on all 104 clusters for morning, midday, and evening periods.
The results are shown in Figure 13.
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Figure 13. Correlation between time series of two bus stops averaged on all
stop pairs of a cluster and all 104 clusters for morning, midday, and evening
periods.

It can be seen that the average correlation is more relevant
in the morning and evening. It means that buses passing in a
cluster are better “synchronized” in the morning or evening
on average, i.e., they can meet each other approximately si-
multaneously considering a time window of 10 min. It is
then expected that users at bus stops of the same cluster can
change between bus lines within 10 min on average.

When the time window increases, the correlation between
the time series tends to increase; in other words, if the pas-
senger is willing to wait longer, they will be more likely
to make a bus line transition within the cluster. How-
ever, this is not valid for all periods of the day. Fig-
ure 14 shows the results obtained using time windows of
{10, 15, 20, 25, 30, 35, 40, 45} minutes.
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Figure 12. Correlation matrix between bus stops in the cluster with centroid 170121 and all its neighbors for morning, midday, and evening.
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Figure 14. Observed correlation between time series for

{10, 15, 20, 25, 30, 35, 40, 45 }-minute moving window.

The result suggests an improvement in “synchronization”
during the morning and evening, but this does not happen at
midday. The explanation is that during this period, as it is not
apeak demand, transit companies remove several buses from
the streets, negatively impacting the correlation between the
time series.

4.6 Impact of Spatiotemporal Integration on
Bus Transit

Given an origin and a destination in the bus transit network,
the impact of spatiotemporal integration is measured by the
distance traveled and the number of transfers made in a trip
with and without clusters of bus stops. Each cluster can be
seen as a virtual terminal where transfers are made between
bus lines with a single fare. The question is how these addi-
tional possible connections between bus lines benefit a trip.
Networks with and without clusters of bus stops are shown
in Figure 15.

The results presented in this section are based on an
origin-destination (OD) survey by IPPUC in Curitiba [IP-
PUC, 2017]. Given an OD pair, the closest bus stops from
the origin and destination are identified using a search dis-
tance of 600 m. Then, a short-path algorithm computes a
feasible bus trip in the network and obtains its distance trav-

eled and the number of transfers between bus lines. When a
transfer is made in a cluster, an additional walking distance
computed between the bus stops is considered. Because sev-
eral trips can be found for a single OD pair, Yen’s algorithm
[Yen, 1971] computes K-shortest paths with K = 30. In
other words, the number of shortest paths is limited to the
top 30 alternatives. The results for distance traveled, and the
number of transfers are shown in Fig. 16, with and without
clusters.

According to Figure 16a, the average distance of 22.4 km
traveled in the original network (without clusters) is longer
than the average distance of 12.3 km using clusters. The
opposite is observed concerning the number of transfers as
shown in Figure 16b. The average value is two transfers
without clusters, while the average number of transfers is
four with clusters. Therefore, the results suggest that trip
distances with bus clusters decrease by almost half at the ex-
pense of twice the number of transfers on average.
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Figure 16. Box plots with average values (+) of traveled distances and num-
ber of transfers for trips made with and without clusters of bus stops .

5 Conclusion

This work proposed data-driven approaches for detecting bus
itineraries from GPS data and integrating bus transit in space
and time. This spatiotemporal integration allows passengers
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(a) Bus stops without clusters

(b) Bus stops with clusters

Figure 15. Curitiba bus transit network with and without clusters of bus stops.

to switch bus lines with a single fare by defining “virtual ter-
minals” in specific walking distance areas where transfers
can occur during a limited timeframe.

The first algorithm for itinerary detection outcomes valid
itineraries in most cases — improving other proposals in the
state-of-the-art. The results show an increase from 68.83%
t0 99.33% in itinerary traceability gain when compared with
amethod that uses bus timetables. This result increases valid
data in the database, preventing them from being discarded
due to not being associated with any itinerary.

The second algorithm for bus stop clustering groups bus
stops in walking distance areas for establishing “virtual ter-
minals” where bus transfers can occur outside traditional
physical terminals. An analysis using real-world origin-
destination trips in Curitiba revealed that our approach could
potentially reduce travel distances significantly. The average
distance of 22.4 km traveled in the transit network without
clusters is reduced to 12.3 km with clusters. However, it in-
creases the number of transfers by two on average.

The results are limited regarding time estimated at bus
stops because road traffic conditions should not affect them
significantly when bus stops are located at short distances
from each other. Another important limitation is using the

correlation between bus time series to measure transfer times.
A strong correlation means that buses are more likely to meet
each other at bus stops of the same cluster.

Our contribution can enhance the efficiency of bus transit
and even attract more people to public transit. Several future
works could be done in this direction. For instance, it may
be interesting to consider arrival times for evaluating and se-
lecting routes with better synchronization and also allowing
travel time to be computed.
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