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Abstract The increasing number of connected users and devices to Cloud, Fog, and Edge environments encour-
aged the creation of many applications and services in the most varied areas and domains. Such services are highly
distributed on top of heterogeneous infrastructures that require real-time monitoring. The monitoring process may
be considered a complex task since it requires experienced users and robust cloud-based solutions to support the
most varied needs in such scenarios. The main problem relies on the centralization of the monitoring approaches
for cloud-centric solutions that represent a central point of failure in end-to-end communication, compromising the
application’s security and performance in case of high latency or downtime. In this context, blockchain networks en-
able exciting features such as decentralization, immutability, and traceability with higher security levels. This work
is towards a blockchain-based and decentralized resource monitoring solution for distributed environments. The
proposed solution integrates blockchain technology to continuously monitor, store, and safely broadcast Operating
System performance counters in a highly decentralized fashion. The results demonstrated that a blockchain-based
monitoring tool based on Smart Contract is feasible and that it may serve as an entry point for varied solutions for

monitoring, security, scheduling, and so on.

Keywords: Blockchain, Decentralized Monitoring, Distributed Systems, Distributed Monitoring, Smart Contracts, Hy-
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Abbreviations

The following abbreviations are used in this manuscript:

According to an IDC report, up to 2025, there will be 41.6
billion Internet of Things (IoT) devices with the potential to
generate 79.4 ZB of data [Framingham, 2019; Farina et al.,
2023]. In this context, the Internet has allowed the integra-

ToT Internet of PoS Proofof Stake tjon of many heterogencous devices in the most varied dis-
Things . .
PoW Proof of Work tributed environments such as clouds, Fog, Edge, clusters,
CRUD Create. Read and Data Center (DC) [Samaniego and Deters, 2017].
Update and QoS Quality of Despite that, maintaining infrastructure availability, data
Service . . .
Delete sharing, and resource management requires constant moni-
SC Smart Contract toring of system and application metrics that represent the
DC Data Center . current infrastructure’s utilization. The most known monitor-
DL Distributed SCADA Supervisory ing approach takes place on centralizing the monitoring pro-
Ledger Control And cesses in single cloud servers [Chih-Chen Wang et al., 2006;
Eata it Hauser and Wesner, 2018; Yahaya et al., 2021; Zhang et al.,
MPPT Maximum cquisttion 2021], representing a bulk of technical, technological, and
Power Point TPS Transaction per security challenges.
Tracking Second In some cases, when companies and individuals outsource
oS Operating VM Virtual data tp the Internet, they no longer have proper management
S . over it. As a result, untrusted cloud servers could try to ob-
ystem Machine

1 Introduction

Thanks to their convenience and economy, cloud-based mon-
itoring solutions have become a significant technology trend.

serve and control data flows [Zou ef al., 2023]. Thus, a sin-
gle point of failure could represent an important issue for the
decision-making process for a wide range of services such as
job scheduling tasks, load balancing needs, geo-distribution
of data, real-time data processing, scalability services, low
latency communication, end-to-end solutions, security of in-
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formation, among others [De Souza et al., 2020; Dos Anjos
et al., 2021a; Sharma et al., 2018; Dos Anjos et al., 2021b;
Matteussi et al., 2022; Anjos et al., 2023].

On the contrary, blockchain technology is an alternative
that promotes decentralization as its main benefit, improv-
ing trust between entities. It eliminates the third party re-
sponsible for managing the interests and storing the infor-
mation in a decentralized way [Golosova and Romanovs,
2018]. Due to this versatility and information security pro-
posal, blockchain has been applied in different areas, such
as supply chain, medicine, and government [Moschou et al.,
2020; Liang et al., 2021; Gupta et al., 2023].

Thus, blockchain technology has emerged as an excellent
alternative for monitoring computer resources in a secure
and decentralized way. This work investigates the feasibil-
ity of using blockchain-based technology for decentralized
resource monitoring in distributed environments. The pro-
posed solution integrates blockchain technology to provide
aware monitoring, storage, and safely broadcast operating
system performance metrics of heterogeneous environments
in a highly decentralized fashion, avoiding querying all mon-
itored devices to retrieve resource monitor data. Thus, using
blockchain, the information of the resource monitor is dis-
tributed simultaneously to all devices on the network, avoid-
ing time-based windowed operations for prior information
diffusion.

Along these lines, the proposed solution will reproduce a
real-world scenario by using a blockchain network with dif-
ferent numbers of nodes on top of the Hyperledger Fabric
framework in which workloads will be submitted to verify
the behavior of the network regarding performance, stability,
and scalability. Lastly, the Hyperledger Caliper performance
assessment tool will help gather all needed performance in-
formation. The main contributions are summarized as fol-
lows:

* A novel and decentralized blockchain-based architec-
ture for resource monitoring in distributed systems
that ensures privacy and data protection against cyber-
attacks in cutting-edge environments.

* A smart contract-based monitoring solution that pro-
vides real-time notifications, ongoing surveillance, and
detection and response to infrastructure observability
needs.

+ A real-world study case demonstrating the feasibility of
using blockchain technology for real-time monitoring
of computing resources.

This work is structured as follows: Section 2 presents the
background; Section 3 shows the related work; Section 4 rep-
resents the proposal of this work; Section 5 points out all ob-
tained results of this work. Finally, Section 6 concludes the
paper by providing directions for future work.

2 Background

This section discusses traditional and modern monitoring so-
lutions for distributed systems and how to adopt blockchain-
based technology for decentralized monitoring in distributed
systems.
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2.1 Monitoring: from monoliths to modern
observability with blockchain

Abderrahim et al. defines monitoring services as a critical
element of any management system, such as systems that try
to automate various processes in the infrastructure but that
need to supervise independent components [Anagnostopou-
los and Kolomvatsos, 2019]. According to Ward and Barker
[2014], a traditional monitoring approach involves collect-
ing relevant states, analyzing those states, and then applying
the decision-making process resulting from the data analysis.
Still, the widely adopted monitoring tools take advantage of
simple programs like the UNIX df, uptime, or top tools used
to analyze system-level metrics and execute procedures ac-
cording to the result obtained.

Hauser et al. describe the process of monitoring as the
process of alerting and resource utilization profiling of infras-
tructure with additional application-specific metrics. These
metrics help to detect resource shortcomings or overspend-
ing of resources such as automatic vertical or horizontal scal-
ing, alerting in case of malfunctions of the deployed applica-
tions, and visualization of monitoring data for manual analy-
ses [Hauser and Wesner, 2018].

The monitoring service is critical for any management
system and modern applications in highly distributed sys-
tems such as clouds, Fog, Edge, clusters, and DC environ-
ments. Thus, as the management systems try to automate
various processes in the infrastructure, an autonomous mod-
ule should supervise the independent components to pro-
vide high Quality of Service (QoS) to support end users and
applications efficiently [Anagnostopoulos and Kolomvatsos,
2019].

However, meeting the desired QoS levels depends not only
on the provided services. It also relies on users’ and applica-
tions’ requirements that could be updated over time. Thus,
performance variability and availability become a significant
concern when a user or application runs on top of a dis-
tributed environment on-premise host or consumes a critical
service.

In such a context, it is also noticeable that the environment
and systems continue to grow in size and complexity, and
there is a greater need for tools that automate monitoring pro-
cesses with little or no human interaction [Hauser and Wes-
ner, 2018]. It means monitoring computing resource tools
are moving away from traditional monitoring, built for mono-
liths, to modern observability [Melnik and Safronenkova,
2023] which targets modern applications where the organi-
zation gains complete visibility from infrastructure and ap-
plications.

The blockchain Distributed Ledger (DL) technology
emerged as a new paradigm that allows hosts to synchro-
nize copies of data received from geographically distributed
sources [Melnik and Safronenkova, 2023; Aste et al., 2017].
Also, according to Aste et al. [2017], the DL technologies
from which the term originates come from decades ago, ini-
tially presented by Haber and Stornetta [1991], as meaning
for digitally dated documents to protect against tampering,
such as Bhutta et al. [2021].

DL allows a complex distributed environment to work
with the nearest devices in the ledger network that contains
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a copy of data access, reducing not only the time and energy
costs associated with data access but also the latency in the
network transactions and other related network bottlenecks
such as the tendency of centralizing the information retrieved
in monitoring systems [Melnik and Safronenkova, 2023].

2.2 Smart Contracts Applied to Resource
Monitoring

Blockchain originates from the way transaction data are
stored. In this case, in blocks. Thus, the previous block’s
hash is inserted into the next block’s header, where they are
linked together, forming a chain [GUPTA, 2017].

Generating a new block is integrally related to the previ-
ously generated block through the summary of the data and
transactions. It consists of the application of Aash functions,
which uses cryptographic algorithms for its generation. The
generation of blocks starts from an initial block, called the
genesis block, where the first information of the chain is
recorded.

The types of blockchains can be classified as i) pub-
lic [Bhutta et al., 2021], ii) private [Bhutta et al., 2021],
or iii) consortium [Cash and Bassiouni, 2018]. In Public
blockchains, the participants do not need authorization to
participate in the network, representing a truly decentralized
process. Thus, participants can participate in the consensus
process, read and send transactions, and share the record.

On the other hand, Private blockchains are organization-
oriented, where participants need authorization to join the
network [Cash and Bassiouni, 2018]. In such a case, decen-
tralization is maintained by applying well-defined rules that
directly influence the network participants who may be al-
lowed to read or write data on the blockchain.

Finally, Consortium ones, similar to private networks but
supporting multiple organizations [Ismail et al., 2019], have
a consensus process relatively slower than Private but faster
than Public blockchains.

Behind the hype, the blockchain verifies all transactions
by applying a mechanism known as consensus. Consensus
evaluates all nodes of a distributed blockchain network into
an agreement on a single data set. The consensus problem is
a central point in distributed systems, which aim to quickly
verify data consistency through the voting of some elected
participants [Gu et al., 2021].

Currently, according to Deng et al. [2022], the consensus
algorithm can be classified into three categories: based on
attribute value proof of peers, voting mechanism, and Paxos
class, following described.

The algorithm based on proof of value, also known as
Proof of Work (PoW), is the central part of Bitcoin’s algo-
rithm, where its formula is a combination of dates, versions,
block size, and other information, and a random nonce, with
a value of (d) relating to the difficulty of mining. In this way,
as the mining difficulty increases, the target value (d) and
hash to be found will become increasingly difficult to find.

According to Deng et al. [2022], as an alternative to the ex-
cessive consumption of PoW resources, the Proof of Stake
(PoS) algorithm was proposed along the lines of voting-
based algorithms. Each participating node has two attributes
in this algorithm: currency holding and currency age. In this
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way, new transactions are calculated from the weight based
on the age of the coin in each of the nodes, and these same
nodes conduct the weight-based election process.

The second classification of consensus algorithms is based
on a voting mechanism. The best-known algorithm Within
this format is PBFT, where a fault-tolerant Byzantine system
is used with digital signatures to guarantee reliability [Deng
et al., 2022]. Due to the low efficiency resulting from the
constant need to exchange data between nodes with high net-
work requirements, this approach is designed for chains part
of a consortium.

Finally, according to Deng et al. [2022], the last classifi-
cation of consensus algorithms is the Paxos Class, where we
can highlight the i) Paxos and ii) Raft algorithms. Paxos i)
was one of the first distributed consensus algorithms devel-
oped and paved the way for many modern and less complex
algorithms like Raft. Its main function is to organize the pro-
cesses that must be chosen to be executed in a distributed
environment. Raft represents a distributed consensus algo-
rithm based on Paxos. It is easy to understand and used in
blockchain networks like Hyperledger Fabric. In Raft, the
consensus is reached in the network through the election of
a leader, so it is not a Byzantine Fault Tolerant (BFT) algo-
rithm because the other nodes in the network trust the node
that is elected through an election where the total number of
votes for the new leader must be N/2 + 1, where N repre-
sents the total number of nodes in the network [Deng et al.,
2022].

Additionally, it is also possible to use Solo consensus (the
focus of this proposal), where a single node is responsible
for arbitrarily approving transactions. Usually, this type of
consensus is useful for validating configurations straightfor-
wardly proof of concept [Hyperledger, 2023].

Thanks to integrating consensus algorithms with Smart
Contract (SC)s. It is possible to automate the execution and
validation of processes. It has become possible to apply such
technologies to the monitoring of computer resources, help-
ing to gain reliability in the processing and storage of linked
data due to the distributed nature of the processes.

3 Related Work

This section investigates how blockchain has been used to
monitor distributed environments such as cloud, fog, and
edge environments. In addition, we focus on studying the
main characteristics used in such solutions and how they are
applied in complex monitoring scenarios.

The work Yang et al. [2019] studies the electricity con-
sumption management. The problem behind this study is the
amount of energy provided for each consumer versus its us-
age. The variation may represent an energy consumption gap
that varies from 20% to 30%. This gap represents a signifi-
cant loss for energy service providers regarding power gen-
eration potential and distribution.

The authors proposed a blockchain-based system to col-
lect power consumption data using residential smart de-
vices. The devices used blockchain technology to store and
share data safely and securely between users and energy ser-
vice providers in real-time. As a result, the energy service
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Smart Grid and

Table 1. Related Work Comparison

Energy Level (High/Low).

Dos Passos, Matteussi, Dos Anjos,

Geyer 2024

Yang et al. [2019] Blockchain Consortium Electrical Consumptium Hyperledger Fabric Not Defined ~ Gossip Protocol Temperature Level Yes
Alcarria et al. [2018] Smar? Grid and . Electrical and'Water Ethereum PoA Ghost Protocol When Changes Yes
Blockchain Consortium Consumption Ocurr
Smart Grid and Configuration Script Hyperledger Composer . No Automatic
Helebrandt et al. [2018] Blockchain Consortium of Network Devices and Hyperledger Fabric Not Defined - Gossip Protocol Iteraction Yes
Smart Grid, . .
Kost'dl et al. [2019] Blockchain Consortium and Devices C_onﬁgurauon Hyperledger Compos@r Not Defined  Gossip Protocol ‘When Changes Yes
History and Hyperledger Fabric Ocurr
Smart Contracts
Blockchain Consortium . . . .
Xu et al. [2017] Composed by TTansalctlons With Not Defined PoW or PoS Not Defined With Sme.l ssion Requests No
Migration Requests or Allocation Resources.
Data Center
Il Csaim Resource Hyperledger Composer
Proposal Composed by Data Centers N i ettt b Solo Gossip Protocol Automatic Yes

Monitoring Virtual Machines

providers increased efficiency by delivering on-demand en-
ergy and providing dynamic consumption reports for their
customers.

The proposal of Alcarria et al. [2018] studied the different
power and water consumption levels between local residen-
tial communities. The authors observed a variation in the
rates and supply demand for each household. These oscilla-
tions incur losses of resources and represent a lack of opti-
mization and management of resources among neighbors. It
is because a low consumption quota of a client will not be
directly used by another client, which could be considered a
benefit for the community.

The authors proposed a blockchain system that individ-
ually measures and manages resources for each residence
in real-time. The proposed system worked based on users’
statistics collected by smart devices, corresponding to their
consumption patterns. Thus, the residents may negotiate
with the energy service providers and manage resource cred-
its. It means the surplus energy can be sold to another user
who exceeded his quota.

Usually, specific network device configurations are saved
in a database and uploaded to the device after any change.
This approach requires a monitoring strategy, which can be
active or passive. In the active format, metrics are collected,
and this causes additional network traffic or increased de-
mand for computing resources. The passive format has no
additional traffic but requires monitoring any metrics not up-
dated on the device.

Thus, the authors Helebrandt et al. [2018] suggested the
use of blockchain to perform the monitoring in an automated
fashion, where the administrators submit changes in the con-
figuration files to specific devices, and the devices them-
selves verify the existence of any changes in periods of 2
minutes. If a device detects a change, it retrieves its configu-
ration script from the blockchain and updates itself automat-
ically.

The work proposed by Kost’al et al. [2019] studied the
high growth of IoT devices and sensors. The unexpected
growth increased the need for network security during data
transmission, efficient management, and support. However,
security and management must work alongside each other to
support issues like unauthorized access or unexpected issues
that spawn after inserting too many devices into a new sys-
tem.

The proposed system used blockchain to provide storage

for the device configurations. This process used SCs to man-
age Create, Read, Update and Delete (CRUD) operations in
the database. Thus, by using blockchain in such a way, the
solution allowed a quick recovery for the environment in case
of system incidents.

The work Xu et al. [2017] focuses on the migration of re-
quests from traditional data centers to data centers with re-
newable energy, aiming to minimize environmental impact.
According to the authors, it represents a trend adopted by
large corporations such as Google, Amazon, and Microsoft
that aim to use renewable energy sources to host their data
centers and reduce energy costs. Thus, taking as a reference
the high energy consumption of the data centers of these
companies. The authors proposed a framework based on
blockchain technology that works as the coordinator, which
uses reinforcement learning as an entry point system to mi-
grate these requests to green data centers.

3.1 Discussion

Table 1 presents the main characteristics of each related work
such as architecture, the monitoring model used, blockchain
type, consensus algorithm and fault tolerance applied as well
as how the SC are used, the existence of a prototype and,
finally, a comparison with the current work.

The state-of-the-art demonstrated blockchain technology
to decentralize information, allowing data availability in a
geo-distributed manner. In such a context, this work takes
advantage of the decentralized capabilities of blockchain to
overcome the standard local and centralized infrastructure
monitoring solutions by providing a decentralized resource
monitoring tool for distributed systems.

The proposed work differs from others since it allows di-
rect and dynamic interaction with the blockchain according
to the resource monitoring needs of a distributed environ-
ment, like providing resource information related to a private
cloud comprised within several DC that receive VM requests
for many Virtual Machines Virtual Machine (VM)s and need
to perform scheduling actions in real-time.

Finally, the applicability of the SCs varies too. The re-
lated works do not allow direct iteration within the client
according to specific requests and direct submission to the
blockchain. Conversely, the proposed solution decentralizes
data storage and monitoring, allowing any node participating
in the blockchain network to check the status of the comput-
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ing resources of any other VM at any time.

4 Model

This work aims to provide a solution capable of monitoring
distributed environments in a decentralized fashion. As a
motivational case study, we can figure out a distributed clus-
ter used by a private cloud. In such a scenario, clients may
launch several VMs in parallel, and the cluster needs to dis-
patch the request by analyzing multiple features such as re-
source availability and utilization, Operating System (OS)
load, network performance, storage, and so on. Still, all the
communication between DCs must happen even when a node
or device is left behind due to an untended issue. In the fol-
lowing, this section presents all the architectural elements
needed to provide a blockchain-based resource monitoring
solution.

4.1 Architecture and Design

It is possible to observe in Figure 1 a blockchain-based archi-
tecture interconnecting distributed Peers (DCs) in a decen-
tralized fashion. The data monitoring is designed using SCs
for safe data persistence and commitment on the blockchain.
The monitoring traces represent a valuable input for the cloud
scheduler since it must dispatch user requests as quickly as
possible. Furthermore, it is essential to highlight that the
blockchain provides fast data recovery, availability, and se-
curity features, always keeping a faithful copy of the data on
all the nodes participating, and a failure in any of these nodes
does not compromise the rest of the network [Salama et al.,
2023].

f Data center Member of
Blockchain Network with
H Virtual Machines

@ Ledger

E Smart Contract

;{? Virtual Machines

Figure 1. Decentralized Monitoring Architecture Applied to a Data
Center Scenario

Each Peer will receive requests from its internal network
comprising all the monitored VMs. The distribution of the
data that was generated among all DCs is performed by the
Orderer node, in a way that each Peer that receives the new
block sent by the Orderer node must validate it and update
its local blockchain copy, as shown in Figure 2. Still, it is
important to mention the Peer nodes will also participate in
the consensus task for transactions performed in other DC.

According to Figure 2, the DCs are represented by NodeN
that hosts several VMs from a DC. Each VM is monitored
independently and continuously communicates with a Peer
container that belongs to the Hyperledger Fabric’s structure.

Dos Passos, Matteussi, Dos Anjos,

Geyer 2024
Virtual Machine NodeN Stgli?n
L:_C, N Virtual Machine ontainers
(1 ) Monitoring go Peer Ledger Smart
— 4 Contract

colector « QI;O N

) —
L = |ls)| O

5\ Invoke Smart

(2) Contract Set | |, The peer validates the data, simulates the
— - transaction in the Smart Contract, and

returns the response to the client

Recovery Metrics _||_
CPU, Memory and
Disk

The peer receives the new block, validates it, <
and writes it to the local ledger

The client evaluates &
the response and
forwards it to the

orderer service

(3 ) Response

N(2) send Container  Orderer Station |
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“ . Distributes the new block caontaining the
monitoring data to all peers in the network.

Figure 2. Model Overview

Each monitored VM executes once per second a script file
called collector.sh that retrieves CPU, memory, and disk met-
rics. After the resource information retrieval, the script per-
forms an Invoke call to Peer container, starts the validation
process, and interacts with the correspondent SC to execute
the transaction.

Following this, the output is returned to the client for a
reevaluation. If this answer is correct, it is forwarded to the
Orderer for evaluation, creating a new block for distribution.
After the creation of the new block by the Orderer, this block
is distributed to all Peers of the network. Then, each Peer is
responsible for updating the blockchain locally with the new
information regarding the retrieved resources.

4.2 Smart Contract Applied to Resource Mon-
itoring

The SC represents the technology enabling blockchain inter-
action. Each SC is installed in a channel and interconnects
all peers, allowing resource monitoring in real-time. A SC re-
ceives requests originating from properly authorized clients
and records them into the blockchain. This work proposed a
bulk of applications to interact with the blockchain, provid-
ing a way to monitor and verify computer resources through
the use of SC functions. Table 2 describes the SC functions,
type, and their objective in this work.

According to Table 2, this work provides two kinds of ap-
plications. The writing applications that use a function to ap-
pend monitored data to the blockchain, e.g., set application.
The Reading applications that uses a function that does not
alter the blockchain and performs only reading operations
to retrieve information data from raw monitored resources
in the blockchain, e.g., getTotalMonitoredData, getEquip-
mentMonitoredData, getEquipmentData, getEquipment-
LastStates application.

Depending on the read or write application, the frame-
work uses different steps in the consensus process (Endorse-
ment). Independently of the SC being used, the ordering
format applied to the consensus process is the type Solo,
which contains a single Orderer in the network responsible
for validation, creation, and distribution of new blocks. Even
though this consensus format is recommended only for de-
velopment environments, it is also recommended for perfor-
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Table 2. Implemented Smart Contracts

Smart Contract Function Purpose Complexity
set Add resource monitoring data in the blockchain. Write o(1)
getTotalMonitoredData Retrieve data about CPU, memory, and disk of all  Read o(n)
network nodes.
getEquipmentMonitoredData  Obtains the CPU, memory, and disk data from a  Read 0o(1)
specific network node.
getEquipmentData Returns all nodes that match a defined input. Read o(n)
: .. o(n)
getEquipmentLastStates Returns the last records of certain equipment, up  Read o(nlog(n))

to 10 records.

mance tests to verify the viability of monitoring resources
by using blockchain technology as a basis for it. It was made
because scenarios with one Orderer result in the worst pos-
sible case and the slightest fault tolerant. Therefore, adding
more Orderer reduces the probability of bottlenecks in the
Orderer, thus increasing the network’s performance and fault
tolerance.

4.2.1 Writing Applications

Figure 3 presents the whole workflow for the consensus pro-
cess of a writing application. As in the reading transactions,
the writing process begins with the endorsement stage. It val-
idates this endorsed proposal to verify if it is incorruptible
compared to the initial request, represented in blue. Then,
after the proposal’s endorsement, the client forwards the pro-
posal for validation and creation of the block for storing this
transaction, represented by the yellow arrows. After creat-
ing a new block, it must be spread to all the network par-
ticipants, updating the blockchain, represented by the green
arrows. The last step is communication with the client, who
will receive the responses to the requests specifying that the
transaction was correctly submitted, represented by the gray

arrow.
NodeN

Node1 Orderer

Transaction Submission

Transaction Proposal
Workload

Orderer

/

/  Execution

'\ Confirmation
\\

Transaction
Simulation

Ordering the
Transaction
and Creating
a New Block

Transaction
Simulation

HYPERLEDGER

Endorsement Proposal Response

Client Broadcast New Block

Figure 3. The Endorsement of writing applications is represented by dif-
ferent colors: the Endorsement process is represented in blue, the Ordering
process in yellow, and the Validation/Submission process in green.

As seen on Algorithm 1, it performs the validation if the
function receives the list of arguments with two items: the
first is the name of the VM, and the second represents the val-
ues of associated monitoring. Then, the function generates
the updated data and substitutes the wildcards that exist on
the value field that were inserted by the resource monitor lo-
cated at each VM using the current date and time. In the next
step, the updated data are recorded in the blockchain using

the specific Hyperledger Fabric PutState function, followed
by an error verification. Finally, the confirmation message
is returned to the requester.

Smart contract function Set is responsible for writing mon-
itoring data in the blockchain, as presented by Algorithm 1.

Algorithm 1 Set Function
1: procedure set(Qrgs)
2 if QUANTITY (args) # 2 then
3 return ”’Arguments number incorrect.”
4: end if
5: Format current Date
6
7
8

Put date on wildcards
PutState function to Record data on the chain
if CHECK _ERROR = True then

9: return “Error writing on the blockchain.”
10: end if
11: Return Write Confirmation

12: end procedure

4.2.2 Reading Applications

While executing the reading functions that do not alter the
Ledger, the Orderer does not participate in the validation pro-
cess. Figure 4 represents the whole workflow for the consen-
sus process of a reading application.

Node1 NodeN

Transaction Proposal

Workload

Execution
Confirmation

Transaction
Simulation

HYPERLEDGER

Transaction
Simulation

Endorsement Proposal Response

Client

Figure 4. Read Operation Process

Figure 4 represents the execution process of reading trans-
actions that contain only the Endorsement phase. In this pro-
cess, the client represented by the Caliper Hyperledger trig-
gers the initial transaction flow, which will assemble a trans-
action proposal over one of the available functions for the
requisition workload. Then, the client submits this proposal
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for the endorsement policy for every peer-related ot. Since it
is a reading operation, the endorsed data is validated to check
if it is incorruptible compared to the initial request. Thus, if
properly validated, it is returned to the client for use. The
implemented SC is presented below:

Smart contract function getTotalMonitoredData is re-
sponsible for returning the monitoring data of all blockchain
network participants. It is represented by Algorithm 2.

The Algorithm 2 starts performing the recovery of the
monitoring values of all existing VMs in the blockchain, us-
ing a specific data recovery function belonging to the Hyper-
ledger Fabric called GetStateByRange. Since this function
returns the data in object format, converting it to JSON for-
mat is necessary, which is done inside the loop by concate-
nating strings. Finally, the JSON is returned with monitoring
data of all VMs of the blockchain.

Algorithm 2 getTotalMonitoredData Function
1: procedure getTotalMonitoredData

2: totalKeys «— GetStateByRange()

3: if CHECK _ERROR = True then

4: return ’Operation to search keys failed.”
5: end if

6: for (totalKeys has more Keys = True) do

7: object — GetStateByRange

8: if CHECK _ERROR = True then

9: return “Error retrieving keys.”
10: end if

11: jsonReturn — jsonReturn + "{ +

object.key + : + object.value + "}

12: end for
13: Return jsonReturn

14: end procedure

Smart contract function getEquipmentMonitoredData is
responsible for returning the resource monitoring data of a
specific VM. The Algorithm 3 represents the function.

Algorithm 3 getEquipmentMonitoredData Function
1: procedure getEquipmentMonitoredData(args)
2: if QUANTITY (args) # 1 then

return ”Arguments number incorrect.”
end if

value < GetState(args)

if value = NULL then

return "Equipment search failed.”

end if
9: Return value

10: end procedure

AN AR

According to the Algorithm 3, it starts checking if the VM
name is passed as the only function parameter. Otherwise,
it returns an error to the requester. Then, the algorithm per-
forms a search in the blockchain using the GetState function,
which retrieves a specific key in the chain. If no error oc-
curs during the retrieval process, the monitoring data of the
equipment that was informed is returned.

Smart contract function getEquipmentData returns the
VMs according to the previous monitoring metrics as argu-
ments. The function’s representation is shown in Algorithm
4.
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Algorithm 4 getEquipmentData Function

1: procedure getEquipmentData(args)
2: jsonReturn « jsonReturn+ "["
3: totalKeys — GetStateByRange()
4 if CHECK_ERROR = True then
5: return “Error retrieving keys.”
6: end if
7 for (totalKeys hasMoreKeys = True) do
8: object < totalKeys.key
9: if object = NULL then
10: return “Error retrieving key.”
11: end if
12: Convert object to structure
13: if args[0] =”CPU” OR args[0] = "MEM” then
14: Retrieve first value from struct
15: Retrieve second value from struct
16: Search equip by first and second value
17: if jsonReturn # "[” then
18: jsonReturn < jsonReturn+","
19: else
20: jsonReturn — jsonReturn +
object.Key
21: end if
22: else if args[0] = "STG" then
23: Retrieve first value from struct
24: Retrieve second value from struct
25: Searching equipment according to first and second
value
26: if jsonReturn # "[” then
27: jsonReturn < jsonReturn+","
28: else
29: jsonReturn — jsonReturn +
object.Key
30: end if
31: end if

32: end for

33: jsonReturn < jsonReturn + "1"
34: Return jsonReturn

35: end procedure

The Algorithm 4 starts retrieving all monitoring data of
all VMs stored in the blockchain through the call GetState-
ByRange of the Hyperledger Fabric. After checking for er-
rors during the call, the algorithm performs iteration of all
stored VMs, converting their monitoring data and compar-
ing them with the monitoring data that were informed in the
function call.If some equipment of the list meets the require-
ments of metrics values between the initial and final values
informed in the search, then this VM is added to the list for
return upon the request’s end. By the end of the loop, the re-
turn will contain all the equipment checked out on the input’s
specific criteria.

Smart contract function getEquipmentLastStates is re-
sponsible for the recovery of the last 10 states of a specific
VM, as portrayed in Algorithm 5.

Then, the Algorithm 5 proceeds to obtain the history of
the informed VM by using the Hyperledger Fabric’s GetH-
istoryForKey function and verifying the success of the call.
Then, the algorithm creates a structure list for storing the re-
trieved values, which are iterated and stored individually in
the list. Once the list is filed entirely, the algorithm executes
a sorting by date of inclusion in the blockchain. Finally, this
sorted list is iterated ten times, storing each element into a
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Algorithm 5 getEquipmentLastStates Function

1: procedure getEquipmentLastStates(args)
2 if QUANTITY (args) # 1 then

3 return ”Arguments number incorrect.”
4: end if

5: history « GetHistoryForKey()
6 if history = NULL then

7 return “History search failed.”

8 end if

9: Create list of structure

10: historyList « StructureNode()
11: for (history hasMoreKeys = True) do

12: response « history.key()
13: historyList « historyList + response
14: end for

15: SORT (historyList)
16: for (history hasMoreKeys = True) do

17: jsonStr « history.key()

18: if counter >= LastRequests() then
19: BREAK

20: end if

21: counter < counter+1

22: end for
23: Return jsonStr
24: end procedure

JSON string to be returned to the requester.

4.2.3 Complexity Analysis

A complexity analysis from the proposed algorithms is sum-
marized as shown in Table 2. Follows a brief discussion
about them.

+ Algorithm 1 - SC set demonstrates a complexity of
O(1). Each transaction represents a write operation
with well-defined input parameters for monitoring data.

* Algorithm 2 - SC getTotalMonitoredData demon-
strates a complexity of O(n) due to the need to load
all the metrics stored for each piece of equipment on
the blockchain and then iterate them to be returned af-
ter preparation.

* Algorithm 3 - SC getEquipmentMonitoredData
demonstrates a complexity of O(1). This algorithm
performs a specific search using the equipment data en-
tered as input, so the complexity does not vary, remain-
ing at O(1).

* Algorithm 4 - SC getEquipmentData demonstrates a
complexity of O(n). The costs are associated with the
iterations over the entire blockchain to search for equip-
ment whose metrics meet the conditions applied as in-
put. Thus, the time cost increases as the data stored on
the blockchain increases proportionally.

* Finally, Algorithm 5 - SC getEquipmentLastStates
demonstrates a complexity of O(n) in the best
case when the history lists are already ordered and
(nlog(n)) in the worst case. The mean case costs are
obtained through the iterations required to traverse the
blockchain and search for the last states. The worst case
comes from the need for the ordering results to be pre-
sented chronologically.
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4.3 Summary and Discussion

The proposed monitoring tool is not only restricted by the set
write function used for the monitoring process but also by
reading functions that enable retrieval of information stored
in the blockchain. Thus, the model created allows the devel-
opment of applications with different filters to obtain specific
details on the status of each VM regarding the individual uti-
lization of resources of these machines and identify a set of
VMs that meet specific criteria.

The proposed model uses a tool called dstat for monitoring
OS metrics. However, it is important to mention that the pro-
posed solution was conceived to be generic, and other tools
may be used, obeying the necessary adjustments to integrate
with the SC.

5 Evaluation

The evaluation section investigates the viability of using
blockchain technology as a monitoring tool for distributed en-
vironments. This section presents the hardware and software
stack used to perform the experiments and the methodology
chosen to evaluate and analyze the results of this work.

5.1 Methodology

The methodology of this work aims to demonstrate a real-
world monitoring scenario using distributed DCs comprised
of many nodes and varied loads, e.g., VMs for monitoring.
In this context, to carry out the experiments, four scenarios
were proposed with different amounts of DCs and VMs that
will transact with each other. Regardless of the scenario pre-
sented, the execution of the experiments is triggered by the
Hyperledger Caliper from the first DC on the network(rnode
1). The node 1 was created with the greater computational
capacity to produce, dispatch, and record a massive number
of requests. The other DCs on the network have similar hard-
ware configurations as they do not run Hyperledger Caliper
instances for load generation.

The first scenario comprises three transactional DCs and
an ordering node. This scenario allows the execution of a
monitoring request per running VM, increasing the number
of VMs per DC and transactions per second linearly. The
other test scenarios follow the same logic regarding the incre-
ment of VMs and transactions per second, differing only in
the number of DCs. The consensus chosen to validate all the
transactions in the network is known as Solo, in which only
the Orderer verifies the transactions from the whole network.
In this way, we can observe the evolution of the configura-
tion of the experiments according to Table 3.

Caliper allows generating reports containing some perfor-
mance indicators [Hyperledger, 2022a]. Currently, indica-
tors supported by this framework are latency for the transac-
tion/read, throughput for the transaction/read, and consump-
tion of resources such as CPU, memory, and network [Hy-
perledger, 2022b].
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Table 3. Performance Evaluation Scenarios Overview

Monitored (VMs)

#DC  Orderers VMs per data center
Scenario 1 3 1 1,2,3,4,5,6,7,8,9,10,20
Scenario 2 7 1 1,2,3,4,5,6,7,8,9,10,20
Scenario 3 11 1 1,2,3,4,5,6,7,8,9,10,20
Scenario 4 19 1 1,2,3,4,5,6,7,8

3,6,9,12,15,18,21,24,27,30,60
7,14,21,28,35,42,49,56,63,70,140
11,22,33,44,55,66,77,88,99,110,220
19,38,57,76,95,114,133

5.2 Software and Hardware

All nodes were installed on top of Ubuntu 18 LTS operat-
ing system, Docker container 20.10.12, version Hyperledger
Fabric 2.3.0, node .js 10.x, Docker Compose 1.21.2, Golang
language 1.15.7, and to evaluate the blockchain performance,
Hyperledger Caliper 0.4.2 was used. The environment set
up to run the prototype is part of a cluster maintained by
UFRGS!, using the OpenStack tool.

To carry out the experiments, 20 VMs were created to rep-
resent physical nodes in this work, where one VM is respon-
sible for performing the benchmark tests and being part of
the blockchain. The other 19 are part of the DC that will
transact on the blockchain network. The VM called nodel is
responsible for running the blockchain network benchmark
tests focused on monitoring resources and is comprised of 8
vCPUs, 16GB RAM, and 300GB of disk space. The other 19
VMs in the blockchain network are comprised of 4 vCPUs,
4GB RAM, and 100GB of disk space.

5.3 Results

Table 4 presents the outcomes of two sets of tests. Initially,
the results related to 1VM per DC demonstrated the stability
of sending requests on all SC operations for scenarios 1, 2,
and 3. In such case, a constant sending rate of approximately
one Transaction per Second (TPS) per VM with a slight dis-
parity between them throughout each scenario. Conversely,
scenario 4 presented a degradation up 20% in latency and
throughput due to the lack of orderers to validate transac-
tions. Based on our estimations, one additional orderer may
be enough to steady performance and alleviate the obtained
degradation.

Still on Table 4, but looking at the results comprised by
7 VMs per DCs. It is possible to observe the latency in-
creased significantly, and sudden drops in throughput values
occurred, mainly for scenarios 3 and 4, representing 77 and
133 monitored VMs, respectively. The loss in performance
is most related to the consensus process of the network since
most of the Peers perform validations.

Beyond that, it is important to remark there is a higher la-
tency and throughput for writing operations because there is a
higher overhead than reading operations in the environment.
This overhead varies around 5.5 times during the oscillation
between 1 VM per DC and 7 VMs per DC, caused mainly by
the need to check consistency and synchronicity.

In the following, this section describes a more detailed as-
sessment of scenario 4 (Table 4), the most intensive evalua-
tion scenarios # number of Peers with associated VMs. This
scenario comprised 19 Peer nodes and one Orderer node. The
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VMs varied between 1 and 7 per Peer, totaling 133 monitored
VMs.

Figure 5 presents a significant increase in latency due to
the growth in the number of Peers in the network and the
number of associated VMs. It led to an average latency of
more than 300 seconds in experiments using 133 VMs with
a maximum value of 8100 requests. In this scenario, a trans-
action sending rate was maintained up to 120 TPS. It is also
possible to observe that the reading and writing operations
do not present significant differences. The main variation
occurred in the getTotalMonitoredData read function that
needs more computational effort to retrieve all the monitored
data from all the VMs. The getEquipamentMonitoredData
presents some variation as it retrieves the equipment’s moni-
toring data according to a search of the whole chain.

A variation in latency was observed during the execution
of'the experiments carried out by Hyperledger Caliper, which
is responsible for executing the requests to run the functions
provided by the proposed monitoring tool. As demonstrated,
high consumption of resources occurred due to the paral-
lelization of the processes for executing Caliper framework
requests, increasing even more with a growing number of
VMs on the network.
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Figure 5. Comparison between Average Latency vs Requests

As observed in other test scenarios, the CPU and memory
consumption variation in the chain code container was ex-
tremely low, which did not differ in this scenario either. Still,
in the peer container, it remained very high since the initial
tests with 19 Peers and 57 VMs, launching a total of 2014
requests, which had already exceeded 100% CPU utilization
on average and peaked with more than 200% utilization, as
shown in Figure 6.
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] Average Latency (s) Througput (TPS)
\ Scenarios Scenarios
VMs per DC Operations 1 2 3 4 1 2 3 4
Set 1.33 1 091 | 0.80 8.88 | 3.00 | 7.00 | 10.70 | 15.00
getEquipmentData 1.29 | 0.91 0.80 939 | 3.00 | 6.90 | 10.80 | 14.80
1VM getEquipmentLastState 1.32 | 0.91 0.82 10.35 290 | 7.00 | 10.80 | 15.30
getEquipmentMonitoredData | 1.27 | 0.91 0.81 10.41 3.00 | 6.90 | 10.80 | 14.90
getTotalMonitoredData 1.31 | 0.91 0.81 13.62 | 3.00 | 6.90 | 10.80 | 13.80
Set 0.47 | 3.22 | 66.19 | 341.92 | 20.60 | 46.00 | 28.60 | 14.20
getEquipmentData 0.46 | 2.25 | 58.75 | 284.99 | 20.50 | 44.00 | 28.40 | 14.00
7 VM getEquipmentLastState 0.46 | 2.25 | 58.75 | 284.99 | 20.60 | 46.50 | 27.60 | 14.50
getEquipmentMonitoredData | 0.47 | 3.96 | 5591 | 295.06 | 20.60 | 44.40 | 28.20 | 12.00
getTotalMonitoredData 0.46 | 3.02 | 58.92 | 341.92 | 20.50 | 45.40 | 26.20 | 12.00
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Figure 6. Comparison between CPU Ultilization vs Requests

The high CPU utilization occurs because the framework re-
sponsible for experimentation is allocated to one of the Peers
whose performance is being evaluated. Thus, the set of re-
quests triggered from this framework to this Peer causes a
large consumption of resources at the same time as the peer
validates transactions and updates them locally, causing an
overload in CPU consumption and, as a consequence, a de-
lay in processing the requests.

On the other hand, the memory used by the Peer is directly
related to the number of requests, reaching almost 1 gigabyte
of memory consumed for a total of 5784 requests. It is pos-
sible to observe a sudden drop and rise in consumption due
to a small drop in CPU utilization for the number of requests
reported, perhaps due to an overload on other peers, allow-
ing fewer local endorsement and recording operations to be
carried out, as shown in Figure 7.
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Figure 7. Comparison between Peer Memory vs Requests

Figure 8 presents a slight variation in CPU usage for the
chaincode container, up to 8144 requests, maintaining oscil-
lations of no more than 2% use of the computing potential
until the end of the experiments.
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Figure 8. Comparison between Chaincode CPU Consumption vs Requests

This slight variation is due to the manipulated data, which
is only a few bytes, and the simplicity of the functions used
to manipulate the information, which did not require a signif-
icant load within their methods.
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Figure 9. Comparison between Number of Virtual Machines vs Requests

Figure 9 shows the number of requests grows linearly as
the number of VMs increases, with practically no variation
between read and write operations on the chaincode.

Finally, according to Figure 10, there is a slight variation in
Throughput as the number of Peers in the network increases,
with a lower Throughput for the functions responsible for
handling a large amount of data to obtain feedback.
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6 Conclusion and Future Work

This work investigated the feasibility of using blockchain-
based technology for decentralized resource monitoring in
distributed environments. It was possible to observe that the
proposed solution successfully integrated blockchain tech-
nology and SC to provide aware monitoring, even for highly
intensive workloads. As a result, multiple copies of the data
are spread over the network, facilitating information access.

It is important to highlight the outcomes revealed
blockchain operated stable and at scale. Although some la-
tency and throughput degradation were detected, it does not
mean the proposed monitoring model is non-performable.
Conversely, in order to retrieve the maximum performance
and avoid high latency and throughput, it is necessary to pro-
vide more orderers in the network proportionally to the net-
work size by following (TotalNodes/2) + 1 [Hyperledger,
2023].

Still, it was observed the performance of Caliper frame-
work. Even though it represents a powerful tool for mea-
suring blockchain performance, the use of resources was
high, leading to some interference in the obtained results.
Thus, the monitoring process becomes costly when associ-
ating Caliper with a larger number of analyzed data centers.
Thus, changing or configuring the Caliper tool to work in a
distributed manner and including more orderers in the net-
work could improve performance.

Finally, we believe this work may contribute to the re-
search community in varied ways, such as providing a solu-
tion that serves as the basis not only for the monitoring pro-
cess but also to secure information like cloud accountability,
to serve as an entry for scheduling algorithms, to enforce se-
curity in transactions and so on.

Although the initial proposal to use a blockchain platform
to monitor computing resources has been met, further stud-
ies can be applied to improve performance in general and,
consequently, the results obtained. Therefore, here are some
suggestions for future work that could build on the work al-
ready done:

* Proceed with the increase in the number of comput-
ers in the network, enabling a decentralized validation
process, thus verifying the impact on the latency and
throughput indicators presented.

* Proceed with decentralizing the performance evaluation
software Hyperledger Caliper, allocating it to different
network nodes to provide greater competition in creat-
ing tasks to perform tests on the created SC.

+ Experiment with different controllers for request sub-
mission rates provided by the Hyperledger Caliper tool,
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to test the limits of the network under other circum-
stances.

+ Experiment with different consensus algorithms for the
computer, to verify the impact on the throughput of
transactions, comparing with the results of the Solo con-
troller tested for this proposal.

* Verify the performance variation and interference by
comparing with traditional monitoring tools such as Flu-
entd.
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