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Abstract Over the years, there has been a significant increase in the prevalence of diseases associated with the
misuse of alcoholic beverages, resulting in three million annual deaths worldwide. Despite this alarming trend,
there is a lack of dedicated applications to support individuals in their recovery from alcohol abuse. In light of
this situation, the literature presents machine learning techniques that can be employed to identify and characterize
urban areas with a high propensity for alcohol consumption in major cities. This study explores the utilization of
Location-Based Social Networks (LBSN) to assess alcohol consumption habits in Tokyo and New York. Data from
check-ins at bars and restaurants were collected, and through clustering methods, the study examined the drinking
patterns of urban residents. The findings revealed that, while there were cultural variations in drinking behaviors
between the two cities, users tended to consume more alcohol during weekends and nighttime. Furthermore, the
research successfully pinpointed the regions most conducive to such consumption.
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1 Introduction

In recent years, society observed an increasing number of
illnesses and deaths caused by abusive consumption of alco-
holic beverages, the leading cause of 200 diseases and caus-
ing 3million deaths around the world per year, which corre-
sponds to 5%of global deaths, according to theWorld Health
Organization [WHO, 2022]. From these data, the compre-
hension of causes and consequences for the elevated level
of consumption can be an essential feature to help authori-
ties take necessary measures to combat alcoholism, such as
developing new medications for this purpose, as described
in Han et al. [2021] or studying the consumption patterns as
mentioned in Boschuetz et al. [2020].
Nowadays, there are special studies for the fight against

the high consumption of alcoholic drinks, as described
in Dulin et al. [2014] and Gustafson et al. [2014], that pro-
posed applications capable of performing digital monitoring
of people who are recovering from alcohol abuse through
functionalities projected to serve this audience. The identi-
fication of High-Risk Drinking Locations (or vulnerable
regions) could be considered as the main functionality of
those applications. The functionality consists of the register
of locations where the user had the habit of drinking alco-
holic beverages. After registering these locations, the appli-
cation was supposed to emit alerts when the user was close to
these regions, allowing him to stay in this location temporar-
ily. The mapping from the High-Risk Drinking Locations is
static, which means that the user needs to create the regis-
ter from that location in the application, which brought the
main objective of the present work, the dynamic classifica-

tion from regions using check-ins collected from Location
Based Social Networks (LBSNs), one of the primary sensors
in urban computing.
Urban computing uses many data sources, such as the In-

ternet of Things (IoT) devices, Location-Based Social Net-
works (LBSN) data, and statistical data, which facilitate un-
derstanding the urban environment. As mentioned in Silva
et al. [2014b], Rodrigues et al. [2019] and Skora and Silva
[2021], urban computing can make a difference in various
areas. With the increasing availability of data through smart
city implementation initiatives, individuals are monitored in
various aspects, such as mobility, routines, interests, feel-
ings, and more. All these collectible data provide us with
insights into different domains. As highlighted in Machado
et al. [2015] and Gubert et al. [2022], it is possible to ex-
plore data from various domains through layered sensing and
multi-aspect graphs, which enables the analysis of the influ-
ence of factors like traffic and weather conditions on peo-
ple’s mobility based on the social classes of a city and the
dynamism in points of interest. Building upon the prior re-
search [Silva et al., 2023a], our primary goal in this work
is to propose a strategy capable of delineating urban ar-
eas based on their predominant activities and showing that
our strategy works. We create an application to illustrate the
results. Moreover, we can say that the main focus here is
to identify regions with a high likelihood of consuming al-
coholic beverages since this information may serve various
purposes, including facilitating data-driven marketing strate-
gies related to alcohol, optimizing delivery route planning,
aiding regulatory oversight, and assisting individuals in al-
cohol recovery programs to avoid triggering environments.
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Figure 1. Pipeline for Mapping High-Risk Drinking Locations. Here we illustrate the methodology applied in this work.

Thus, the main contributions of this work are three-fold: (i)
we propose a new graph-based strategy for delimiting vul-
nerable regions, taking into account distances between the
points of the regions and the size of the regions; (ii) a catego-
rization of these urban regions relies on data gathered from
Location-Based Social Networks, and (iii) a comparison of
this proposed method to two others. Regarding categoriza-
tion, these data, after undergoing the necessary preprocess-
ing, are subjected to three distinct methods to separate them.
We will define these methods as clustering for simplicity and
without loss of generality. The first method uses graph anal-
ysis, while the other two leverage classical machine learn-
ing techniques. These clustering techniques yield clusters
that are subsequently analyzed and categorized. It provides
a classification for the clusters and enhances our understand-
ing of the movement patterns of individuals within the urban
landscape.
The work is organized as follows. Section 2 discusses the

most relevant works that motivated this study and the chosen
methodology. Section 3 delves into the methodology, cover-
ing data collection, the databases used, and tools. Section 4
presents the clustering methods used in this work. Section 5
presents the results obtained in region classification. Sec-
tion 6 explores potential applications of the study findings.
Finally, in Section 7, we draw some considerations of this
study and suggest new directions for future research.

2 Related Work
In the current global context, with the high availability of
data collected from social sensors, several authors have pre-
sented solutions related to urban mobility. This section
presents some works that utilize this data to understand the
urban environment.
Meanwhile, in their respective works Dulin et al. [2014]

and Gustafson et al. [2014], the authors have made signif-
icant strides in addressing the challenges that patients with
alcohol use disorder face during their treatment journey.
They have introduced two applications, “StepAway” and “A-
CHESS”, which empower users to monitor their progress fol-
lowing alcoholism treatment. These applications, with their
unique functionalities, notably the identification of High-
Risk Drinking Locations, have made a substantial impact.
However, their reliance on user input for defining these lo-
cations may only partially capture the dynamic nature of ur-
ban environments. In contrast, the current research dynami-
cally categorizes these High-Risk Drinking Locations using
Location-Based Social Networks (LBSNs) data.
In Zhang et al. [2021], the authors developed algorithms

aiming at a multi-view learning model for embedding ur-

ban areas using graphs obtained from data regarding hu-
man mobility within cities and attributes of the analyzed re-
gions, which include Point of Interest (POI) and human mo-
bility within the regions. Starting from the initially generated
graphs, the Graph Attention Network (GAT) technique is ap-
plied to the model to learn about the representativeness of the
vertices. Finally, with the obtained results, a joint learning
model was created to enable the collaboration of different
visualizations.
Lastly, in Le Falher et al. [2021], the authors use the check-

ins on social networks to study similarities between neigh-
borhoods to provide users with recommendations on which
neighborhoods to visit based on their preferences. For in-
stance, if users want to go shopping, the application can di-
rect them to a specific neighborhood, and if they want to dine
out, it will suggest another neighborhood. Drawing inspi-
ration from Le Falher et al. [2021], the present work aims
to combine the functionality of classifying regions with the
functionality presented in Dulin et al. [2014] and Gustafson
et al. [2014] for identifying High-Risk Drinking Locations
within cities.
Table 1 shows how this research distinguishes itself from

others by conducting analyses utilizing check-in data from
Location-Based Social Networks (LBSNs), consolidated
into a proprietary database described in Section 3.3. The
primary focus is on identifying regions that facilitate alco-
hol consumption. This analysis opens the door to the poten-
tial development of novel applications that seamlessly merge
health and urban computing, aligning with the suggestions
presented in Dulin et al. [2014] and Gustafson et al. [2014].
This integration can take place dynamically and indepen-
dently of the application users themselves.
In this study, as we will see in the next, three clustering

algorithms are applied to delineate the regions earmarked
for analysis. This technique has also been implemented
in Le Falher et al. [2021] and Zhang et al. [2021]. However,
in this specific investigation, the K-Means and DBSCAN al-
gorithms are employed in conjunction with a graph-based al-
gorithm inspired in Cousty and Najman [2011] and Felzen-
szwalb and Huttenlocher [2004]. These algorithms generate
clusters that are subsequently subject to analysis and catego-
rization.

3 High Risk Drinking Locations

The methodology for studying alcohol consumption behav-
ior is illustrated in Figure 1. Data collection is a crucial step
in the process. The following subsections will discuss all the
stages of the methodology used in this study.
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Related Works Maps High Risk
Drinking Locations

Classify clusters
in cities

Comparison of
clustering models

Graph-based Clustering
Algorithm

LBSN data
usage

Dulin et al. [2014] X
Gustafson et al. [2014] X
Zhang et al. [2021] X X

Le Falher et al. [2021] X X
Our Work X X X X X

Table 1. Comparison between related works.

(a) Female. (b) Male. (c) Both gender.

Figure 2. Alcohol consumption in liters per capita (aged 15+) per year in Japan.

3.1 Database
Foursquare1 is a globally recognized social network that al-
lows users to share their real-time location and feedback
about places with their network of friends within the plat-
form or with their followers on linked social networks, such
as Twitter2 and Facebook3. Over time, Foursquare transi-
tioned the check-in functionality to another dedicated app
within the company, Swarm, which offers the same inter-
action users had within Foursquare but with a platform en-
tirely focused on this feature. According to Foursquare’s
privacy policy, check-ins are considered private information.
However, some users share their location via Twitter, mak-
ing check-ins public and allowing access to the data without
violating the rules of any of the used social networks, as con-
sidered in Silva et al. [2014a].
By obtaining check-ins through the Twitter API4, approx-

imately 2.7million instances were collected between May
2022 and January 2023 from around the world, enabling
a more comprehensive analysis of each country’s behavior.
A more detailed data collection version is in Silva et al.
[2023b]5. In JSON 1, an example of the return obtained
through the Twitter API is represented. It includes the Twit-
ter tweet ID, the published text (which contains the URL
related to the check-in on the Foursquare Swarm network),
the date and time corresponding to the tweet’s registration
time by the user, and finally, information regarding the re-
quests made to the Twitter API. From all attributes presented
in JSON 1, only the URL on the text field and the timestamp
are taken forward to assemble the database described in Ta-
ble 2. This way, any trace-back can relate a check-in to a
tweet since we discard the URL after it is processed.
For the analysis and understanding of alcohol consump-

tion, a database provided by the World Health Organiza-

1https://foursquare.com
2https://twitter.com
3https://www.facebook.com
4https://developer.twitter.com
5Database is available at https://doi.org/10.5281/zenodo.10037884

tion (WHO)6 through the Global Health Observatory pro-
gram was used. This database contains data from the Sus-
tainable Development Goals (SDG)7, which encompass 17
objectives defined by United Nations partner nations to erad-
icate poverty and inequality, improving health, justice, and
prosperity, as well as enhancing planet conservation. The In-
dicator used to understand global alcohol consumption was
Indicator 3.5.2, which is linked to SDG 3, aiming to ensure
health and well-being for all ages, Target 5, which seeks to
strengthen substance abuse prevention and treatment, and In-
dicator 2, which represents the amount of alcohol consumed
over the years by individuals aged 15 and above in various
countries.
The graphs illustrated in Figure 2 represent data related to

Indicator 3.5.2 for Japan. Unfortunately, forecasting for the
coming years is difficult, as no suitable pattern was observed
for such predictions. It is important to emphasize that all the
graphs for all countries behave similarly. Furthermore, such
a forecast would likely exhibit significant variations due to
the global context of the COVID-19 pandemic. The chosen
dataset within the previously explained Indicator presents the

JSON 1 Response from Twitter API.
{

”data”:{
”id”:”1560008545080430600”,
”text”:”I’m at Avenida Brasil in Belo Horizonte,

MG https://t.co/5FBbhBurSi”,
”timestamp”:”2022-08-17 21:00:01.327915”

},
”matching_rules”:[

{
”id”:”1559949275353825281”,
”tag”:”swarm”

}
]

}

6https://who.int/
7https://sdgs.un.org/
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volume of alcohol consumed in 186 countries between 2000
and 2019. It accounts for individuals aged 15 and above, di-
vided by gender, showing the difference in consumption be-
tween men and women and the average for both.

3.2 Tools
This work used various platforms to develop the necessary
tools for each stage of studying consumption behavior. Fig-
ure 3 shows all platforms used at this work in the respec-
tive order applied to the development. The Twitter API
was used for collecting check-ins, utilizing the free license
that allowed the monthly collection of 500, 000 tweets. The
data was collected on a virtual machine hosted on Microsoft
Azure8 using code written in Python. The programming lan-
guage is also used for processing the collected check-ins,
data preprocessing, database assembly, and analysis within
the Jupyter Notebook and Google Colab platforms. The clus-
tering algorithms for region characterization were executed
on these platforms as well. All the code used in this work is
available in a repository at GitHub9.

3.3 Preprocessing
Recognizing that the database contains more information
than necessary for our analysis, we removed irrelevant and
sensitive data from the collected tweets. We developed com-
prehensive filters for this data treatment to ensure the ut-
most accuracy. Our Python-based application was instru-
mental in parsing the HTML code associated with the check-
in link in Swarm, allowing us to extract the necessary data
from each check-in. This process facilitated retrieving the
desired information and eliminated the need to rely on the
Places API from the Foursquare platform. As a result of this
thorough data filtering process, we were able to create an
initial database, as detailed in Table 2, containing approxi-
mately 2.7million instances. However, after removing rows
with missing data, the filtered database now contains approx-
imately 1million instances, as shown in Table 3, which dis-
plays the number of check-ins in the studied cities and the
number of venues in each city.
Table 2 shows all attributes inserted on our database, with

attributes referring to the specific venue, such as venueID,
venueName, category, country, city, latitude, and longitude.
We also have an ID referring to the user, but we can not trace
back the ID for the owner from the check-in, and we also
have our temporal attribute called timestamp.

4 Clustering
To generate clusters to classify cities based on regions, three
data clustering algorithms were used: (i) a density-based al-
gorithm (DBSCAN), (ii) K-Means, and (iii) a graph-based
clustering algorithm.

8https://azure.microsoft.com
9https://github.com/joaoaugustoss/High-Drinking-Sense

Attribute Attribute Description
venueID Venue identifier on Foursquare
userID User identifier on Swarm

venueName Venue’s name
category Venue’s category
country Venue’s country
city Venue’s city

timestamp Timestamp from post on Twitter
latitude Venue’s latitude
longitude Venue’s longitude

Table 2. Database description.

City Check-ins Venues
Tokyo 17,320 2,635

New York 1,916 1,001
Others 966,104 230,511
Total 985,661 234,147

Table 3. Check-ins collected per city after processing.

4.1 Density-based algorithm – DBSCAN
DBSCAN, which stands for Density-Based Spatial Cluster-
ing of Applications with Noise, is a machine learning algo-
rithm focused on density-based clustering. We chose this
algorithm because it works with dense data, which we ob-
served in our database. It evaluates the distance between
points from a random starting point to differentiate between
the found groups, allowing the algorithm to determine the
number of generated clusters after its execution. The algo-
rithm proposed in Ester et al. [1996] has drawbacks, as de-
pending on the choice of the starting point, it may generate
different clusters. Additionally, DBSCAN does not work
well with large datasets, making scalability impractical. On
the other hand, it delivers excellent results by classifying out-
liers as noise, eliminating the need for their removal during
data pre and post-processing.

4.2 K-Means
K-Means is an unsupervised machine learning algorithm de-
signed for data clustering based on their characteristics Mac-
Queen et al. [1967]. Unlike the DBSCAN algorithm, apply-
ing K-Means requires the prior definition of the desired num-
ber of clusters. We used the Elbow method to define this
number, as represented in Figure 4. The Elbow method tests
the data’s variance concerning the number of clusters to re-
turn the ideal number for the clustering. In Figure 4(b), you
can identify the inflection point on the graph near the value 3
on the x-axis, indicating that beyond this value, there will be
no gain in clustering with an increasing number of clusters.
The same analysis can be performed in Figure 4(a), repre-
senting the Elbow for New York City, where the inflection
point approaches the value 2 on the x-axis. The K-means
algorithm was chosen because of its simplicity and for its
dissemination of the clustering community.

4.3 Graph-Based Clustering Algorithm
A graph G = (V, E) consists of a finite set of vertices, de-
noted by V , and a finite set of edges denoted by E, in which
E ⊆ V ×V . If {u, v} ∈ E for two vertices u, v ∈ V , then u
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Figure 3. Flowchart of the used tools. Here, we present the tools we used step-by-step to develop this work.

(a) New York. (b) Tokyo.

Figure 4. Elbow method indicating ideal number of clusters for New York
and Tokyo.

and v are adjacent vertices. The notion of vertices relates to
the data’s elemental components and edges and the connec-
tions and dynamics between the parts.
Without loss of generality, the graph partitioning could be

a clustering method in which each partition region may be a
cluster. A partition P is a set of non-empty disjoint subsets of
V , meaning that ∀ X, Y ∈ P, X and Y are regions, X ∩Y =
∅ if X ̸= Y and ∪{X ∈ P = V }.
In the case of modeling the venue clustering, a venue will

be a vertex of the graph, and two venues are connected if it
is possible to reach one another. Moreover, the edge weights
are the distance between two connected venues calculated
from their geographical coordinates. Instead of getting a
complete graph, we have used a KD-Tree (K-Dimensional
Tree) [Ooi, 1987] data structure using Euclidean Distances
to identify the k-nearest neighbors. To define the k parame-
ter indicating the number of connections, we considered the
need to obtain a connected graph with only one component.
In New York, we used k = 6, and in Tokyo, k = 11.
In Felzenszwalb and Huttenlocher [2004], the authors pre-

sented a graph-based algorithm for image segmentation in
local neighborhoods. Felzenszwalb’s Algorithm aims to par-
tition an image intomeaningful regions or segments based on
color similarity and proximity of pixels. In its operation, the
algorithm needs an input image to be segmented and a few
parameters: the sigma or scale, which controls the size of
resulting regions; the threshold, which also controls the size
and the quality of segmented regions; and the last parameter
called min size, that controls the minimum number of pixels
desired in a region.
Following the abovementioned definitions, we developed

an algorithm based on the Watershed Hierarchy Cuts for im-
age segmentation [Cousty and Najman, 2011]. We aim to
generate clusters with the minimum vertex difference in the
developed algorithm. For this, we iterate through all the
edges on the graph and calculate how many vertex will be
contained in each component after the edge’s removal if the
difference between the vertex set cardinality of the two con-
nected components is lower than the previous value obtained
by the removal of another vertex, this value is updated, and
we save the edge’s ID from removing it after verifying all the
edges on the graph. After removing an edge and obtaining
two connected components, we repeat the process in each
connected component to obtain more clusters. The computa-
tional cost of our algorithm is O(N), where N corresponds

to the number of vertex on the graph.

4.4 Comparing Clustering Algorithms

The DBSCAN algorithm was applied to the two selected
cities for analysis, considering only the geographical coordi-
nates of the data. The results were unsuitable, even after ad-
justing the ‘eps’ hyperparameter, which defines the required
distance between two points considered in the same group.
For clustering the data related to the city of Tokyo, as illus-
trated in Figure 5(d), it was necessary to set the ‘eps’ to a
value of 0.02, resulting in clustering with 4 clusters and 1
group containing 8 instances classified as noise. In the case
of New York City, an ‘eps’ value of 0.02 was also used, gen-
erating clustering with 2 clusters and 1 group containing 50
instances classified as noise, as illustrated in Figure 5(a). The
groups classified as noise are in cluster −1 in Figures 5(a)
and 5(d).
After identifying the geographical coordinates needed to

run the K-Means algorithm, we obtained results that were
consistent with DBSCAN’s results. The main difference lay
in classifying clusters with greater check-ins, primarily in
city centers, as depicted in Figure 5. It demonstrates the dif-
ficulty presented by DBSCAN in clustering very dense data.
To define the number of clusters, k=4 was chosen for cluster-
ing instances related to Tokyo, as shown in Figure 5(e). The
result visually differed from DBSCAN, which clustered the
data into 4 clusters. In the execution with data related to New
York City, represented in Figure 5(b), the value of k=4 was
also used.
The graph-based clustering procedure is based on sequen-

tial removal of the edges, so after removing three edges from
the MST , we obtained four connected components, also
called clusters. We defined the number of 4 clusters to com-
pare the results with other clustering algorithms previously
mentioned in this work. The obtained clustering in New
York, Figure 5(c), shows how our algorithm separated the
densest part of the city, standing with a similar number of
venues in each cluster, similarity K-means did not assure.
Moving to the resulting cluster in Tokyo, as seen in Fig-
ure 5(f), we can observe a similar behavior to what occurred
in NewYork, where the algorithm could split the densest part
of the city into different clusters and kept the similarity be-
tween the number of venues in each one.
Table 4 presents some comparisons in terms of venues in

each New York and Tokyo cluster. Moreover, the Silhou-
ette Coefficient [Rousseeuw, 1987] computed for each al-
gorithm and each city is also illustrated. This comparison
shows how the developed graph-based clustering algorithm
could minimize the difference between clusters by choosing
the ideal edge to be removed. However, it demonstrated a
low score for the Silhouette Coefficient compared to both
executed algorithms. As a result of this selection, we obtain
more balanced clusters, which can impact the final classifica-
tion result and lower the evaluated metric for cluster similar-
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(a) DBSCAN New York (eps=0.02). (b) K-Means New York (k=4). (c) Graph Clustering New York.

(d) DBSCAN Tokyo (eps=0.02). (e) K-Means Tokyo (k=4). (f) Graph-based Clustering Tokyo.

Figure 5. Clustering methods results. Here, we illustrate the results computed by DBSCAN, K-Means, and Graph-based methods, considering data from
New York and Tokyo.

(a) New York (K-Means). (b) New York (Graph). (c) Tokyo (K-Means). (d) Tokyo (Graph).

Figure 6. Georeferenced classification results. Here, we illustrate the results computed using the graph-based method, considering data from New York and
Tokyo.

ity; since our algorithm does not aim to obtain similar clus-
ters based on geographical coordinates, our goal is to obtain
similar clusters in the number of venues.
In summary, while DBSCAN presents severe difficulty in

clustering very dense data, the graph-based method has suc-
cessfully separated the densest part thanks to its ability to
identify reasonable distances between clusters. When com-
paring the K-Means to the graph-based method, despite the
better scores for the silhouette coefficient obtained by the K-
Means against the graph-basedmethod, the proposedmethod
produced more balanced clusters regarding the number of
venues.

5 Experimental results
In this section, the results of the neighborhood classifications
obtained from the clusters generated by theGraph-based clus-

tering algorithm and K-Means, as exemplified in Section 4,
are evaluated and compared. Our classification process in-
volved several steps. We began by considering the category
attribute from the database. We then counted the most fre-
quent category in each generated cluster and considered it the
classification for that specific cluster. To provide a clearer
picture, out of the initial 18.7 thousand data points, we ob-
tained 1.9 thousand check-ins in 1.1 thousand unique venues
in New York, divided into 4 regions. In Tokyo, we obtained
17.3 thousand check-ins in 2.6 thousand unique venues, also
divided into 4 regions.
The analysis of the data obtained after clustering was di-

vided into two parts: spatial analysis, where we considered
only georeferenced data related to check-in publication for
cluster classification (Section 5.1), and temporal analysis,
which considered information related to the day and time of
check-in publication, dividing the data into weekdays and pe-
riods (Section 5.2). This division of analyses allows us to un-
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Cluster Graph-based K-means DBSCAN
-1 0 0 31
0 261 479 959
1 277 66 5
2 226 18 6
3 237 438 0

Silhouette
Coefficient

0,40 0,50 0,15

(a) Number of venues per cluster in New York

Cluster Graph-based K-means DBSCAN
-1 0 0 4
0 553 1131 2518
1 563 771 43
2 754 185 29
3 765 548 41

Silhouette
Coefficient

0,28 0,48 0,20

(b) Number of venues per cluster in Tokyo

Table 4. Number of venues per cluster in Tokyo and New York.

derstand human mobility in the analyzed regions, making it
possible to comprehend differences in human behavior based
on the day of the week and time of day. The possible classi-
fications include Entertainment, Business, Community, Din-
ing, Event, Health, Landmarks, Retail, Sports, Transporta-
tion, or Residence, which correspond to the categories found
on Foursquare related to each venue.

5.1 Georeferenced Analysis
Following the delineation of regions produced by Graph-
based clustering and K-Means, the resulting regions under-
went a classification process. In this initial analysis, we cal-
culated the count of check-ins at each location within a spe-
cific cluster. Once we had this count, we examined the cate-
gory with the highest number of check-ins, and based on this
category, the cluster was categorized.
In Figure 6, the georeferenced classification obtained in

Tokyo and New York is compared using the clustering algo-
rithms studied. The classification is consistent between the
two cities, with few discrepancies observed in the cluster 1 in
New York and the clusters 1 and 3 in Tokyo. However, this
initial analysis does not accurately capture the dynamics of
cities because it is a static assessment that does not consider
a crucial variable in urban dynamics – time. In the following
section, we incorporated time information into two distinct
approaches to improve the classification.

5.2 Temporal Analysis
From the georeferenced analysis, we can affirm that the day
and time at which the user checks in are highly relevant in
classifying the region sought by users, which can define mo-
mentary points of interest, such as events in cities, includ-
ing professional events that usually occur during the week

and business hours or leisure events, such as shows that typ-
ically take place on weekends and during the evening. The
detection of these points of interest is carried out by the high
concentration of check-ins within a short period at the same
venue or in geographical coordinates close to each other, as
mentioned in Silva et al. [2013]. The analysis considering
temporal data related to the day and time of check-in is di-
vided into two parts: the analysis considering the day of the
week in Section 5.2.1 and the analysis with data related to
the time in Section 5.2.2.

5.2.1 Weekdays

The temporal information was divided into groups to analyze
and classify regions based on the day’s users checked in. The
first group corresponds to weekday check-ins (fromMonday
to Friday), and the second corresponds to weekends (Satur-
day and Sunday).
From the data illustrated in Figure 7, it was possible to

visualize differences between the classifications performed
in New York and Tokyo. Figures 7(a), 7(b), 7(e) and
7(f) shows the same classification comparing the regions
obtained from K-Means and our Graph-Based clustering
method. This result shows that both algorithms could show
the differences between the population’s interests on week-
days and weekends. The same can be observed in Fig-
ures 7(c), 7(d), 7(g) and 7(h), related to the classifications
performed in Tokyo. The region classifications obtained
from our clustering method differed from K-Means, where
all regions were Transportation on weekdays.
Interestingly, our clustering method classified the region

on the city’s East side as Dining and Drinking, a classifica-
tion that was not expected. Regarding the weekend classifi-
cation, both clustering methods obtained the same classifica-
tion for the East side of Tokyo. However, they differed on
the West side, with the Entertainment classification on the K-
Means region and Transportation on our clustering method.
This analysis shows different results than the georeferen-

tial analysis in Section 5.1. However, it is still incapable
of showing the intense dynamism of the urban environment,
which brought the idea of analyzing classifications based on
the hour of the day.

5.2.2 Time

In addition to identifying points of interest, the temporal anal-
ysis can also provide insights into the lifestyle and behavior
of cities. Figure 8 displays the classifications of regions in
New York City for both clustering methods, and it reveals
a distinct dynamic compared to the classifications discussed
in Section 5.2.1. This contrast is particularly evident in the
period from 12 : 00 to 00 : 00, during which all regions
formed by both clusteringmethods are uniformly categorized
as “Dining and Drinking”, which indicates that after 12 : 00,
the predominant venue category in all regions is Dining and
Drinking.
When examining the classifications obtained in Tokyo, it

becomes apparent that the time-based classification can bet-
ter represent the city’s dynamics. In the period from 00:00
to 12 : 00, the predominant category in Tokyo is “Travel
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(a) Weekday - NY (K-Means). (b) Weekend - NY (K-Means). (c) Weekday - Tokyo (K-Means). (d) Weekend - Tokyo (K-Means).

(e) Weekday - NY (Graph). (f) Weekend - NY (Graph). (g) Weekday - Tokyo (Graph). (h) Weekend - Tokyo (Graph).

Figure 7. Region classification results considering the day of the week. Here, we illustrate the results computed using the K-Means and graph-based method,
taking into account data from New York and Tokyo.

and Transportation”, which aligns with the truth, as this is
the time when people typically commute from home to work.
The remainder of the day in Tokyo exhibits a dynamic pat-
tern of classifications. For example, between 12 : 00 and
18 : 00, the categories “Arts and Entertainment” and “Din-
ing and Drinking” emerge in regions previously classified as
“Travel and Transportation”. During the final quarter of the
day, from 18 : 00 to 00 : 00, the “Travel and Transporta-
tion” classification is present in three regions delimited by
our clustering method, while it appears twice in K-Means re-
gions.
After investigating all the macro-categories mentioned

above, we decided to dive into the subcategories within the
broader classification of “Dining and Drinking” to pinpoint
the High-Risk Drinking Locations in the cities. Figures 10
and 11 illustrate the classifications of subcategories within
“Dining and Drinking” in New York and Tokyo, respectively.
In New York, we observe significant variations in the classi-
fications. During the first half of the day, all regions are cat-
egorized as “Bar” in our clustering method. In contrast, K-
Means-generated regions include one region with no check-
ins recorded from 00 : 00 to 06 : 00. Furthermore, K-Means
designates some regions as “Bar” during this time range,
which implies that these regions during this time frame could
be considered High-Risk Drinking Locations, much like all
regions in our clustering method.
Analyzing the second time range, from 06 : 00 to 12 :

00, Figures 10(f) and 10(b), the classification Cafe is pro-
nounced, classifying three regions from K-Means clusters
and two regions from our clustering, what makes sense, since
it is the time when people are looking for breakfast before
your work hours. The other classifications in this time range
are Restaurant and Smoothie Shop. The category Restaurant
is predominant when analyzing region classification from

12 : 00 to 00 : 00, except for one region from K-Means,
which was classified as Bar from 12 : 00 until 18 : 00.
The classifications incorporating check-in times have

proven more effective than those detailed in Sections 5.1
and 5.2.1. This enhanced effectiveness is attributed to the
discernible variations in the classifications, which align with
the continuous movement of people and their evolving pref-
erences according to the time of day. These findings are par-
ticularly pertinent to cities characterized by a high inrush of
people throughout the day.

6 Applications
Based on the classifications presented in Section 5 and with
the clustering performed in Section 4, it is possible to propose
applications in the following areas:

Enforcement: Guiding public agencies responsible for traf-
fic enforcement and overseeing the regulation of sub-
stances not permissible for minors to specific regions
categorized under “Dining and Drinking”. This strate-
gic approach aims to proactively deter potential crimi-
nal activities and promote a safer environment within
these areas.

E-Health: Detecting areas where alcohol consumption is
prevalent, thereby highlighting potential hazards for
individuals in the process of recovering from alcohol
addiction, with the overarching goal of preventing re-
lapses and providing necessary support.

Logistics: Facilitating logistics and supply chain planning
to promptly deliver goods to food and beverage es-
tablishments, ensuring efficient operations and uninter-
rupted services.
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(a) 00:00 to 06:00 (K-Means). (b) 06:00 to 12:00 (K-Means). (c) 12:00 to 18:00 (K-Means). (d) 18:00 to 00:00 (K-Means).

(e) 00:00 to 06:00 (Graph). (f) 06:00 to 12:00 (Graph). (g) 12:00 to 18:00 (Graph). (h) 18:00 to 00:00 (Graph).

Figure 8. Regions classification results based on the time of check-in. Here, we illustrate the results computed using the K-Means and graph-based method,
considering data from New York.

Marketing: Creating a geographical map of areas where
companies and businesses can optimize their marketing
efforts to achieve heightened success and reach their tar-
get audience more effectively.

Traffic Management: Strategically planning vehicular
routes to circumvent areas with a dense concentration
of check-ins, which may serve as early indicators of
potential traffic congestion.

7 Conclusion

Considering the findings detailed in Section 5 on alcohol con-
sumption, it is necessary to explore methodologies that can
offer support to people seeking to abstain from alcoholic bev-
erages. Additionally, there is a need for tools to assist in mon-
itoring, marketing, and logistics related to areas with a high
concentration of establishments such as bars, restaurants, and
other venues selling alcoholic products. To meet these re-
quirements, this study analyzed check-in data collected from
Location-Based Social Networks (LBSNs) using clustering
algorithms to identify clusters based on their geographic lo-
cations. These clusters were subsequently categorized based
on the predominant venue type, with consideration for time
of day, day of the week, and an analysis that does not take
temporal information into account.
The proposed Graph-Based clustering algorithm is a sig-

nificant advancement in our research, as it enables the group-
ing of data points and the subsequent categorization of these
clusters according to the dominant venue types within them.
In literature, we have Le Falher et al. [2021] that also cat-
egorizes clusters using different clustering methods. This
method’s outcomes were quite promising compared to the

traditional K-Means clustering algorithm. This approach al-
lowed for the dynamic identification of “High-Risk Drink-
ing Locations” by pinpointing clusters with a concentration
of check-ins during evening hours and on weekends, align-
ing with the initial objective of this study by adapting what
was proposed in Dulin et al. [2014] and Gustafson et al.
[2014], by mapping the “High-Risk Drinking Locations” dy-
namically using LBSN’s. Furthermore, this approach sheds
light on the urbanmobility patterns within the cities analyzed
and provides valuable information on the patterns of alcohol
consumption on specific days and times. Despite the marked
cultural differences between NewYork and Tokyo, this study
demonstrates the effectiveness of social sensors in depicting
urban dynamics and mapping alcohol consumption based on
selected days and times.
Looking ahead to future research endeavors, diving into

various methodologies for region clustering is imperative.
Furthermore, there is substantial merit in extending the as-
sessment of the classifications derived from New York and
Tokyo to other urban centers. These evaluations can provide
insights into the applicability and adaptability of classifica-
tions in various geographical contexts. Additionally, it is
vital to consider implementing one of the proposed applica-
tions outlined in Section 6, using the regional classifications
as a data source. This study expansion can offer valuable in-
sights and applications in many areas of urban environments,
such as urban planning, public health, and data analysis.
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(a) 00:00 to 06:00 (K-Means). (b) 06:00 to 12:00 (K-Means). (c) 12:00 to 18:00 (K-Means). (d) 18:00 to 00:00 (K-Means).

(e) 00:00 to 06:00 (Graph). (f) 06:00 to 12:00 (Graph). (g) 12:00 to 18:00 (Graph). (h) 18:00 to 00:00 (Graph).

Figure 10. Regions classification results based on the Dining and Drinking category check-in time. Here, we illustrate the results computed using the
K-Means and graph-based method, considering data from New York.

(a) 00:00 to 06:00 (K-Means). (b) 06:00 to 12:00 (K-Means). (c) 12:00 to 18:00 (K-Means). (d) 18:00 to 00:00 (K-Means).

(e) 00:00 to 06:00 (Graph). (f) 06:00 to 12:00 (Graph). (g) 12:00 to 18:00 (Graph). (h) 18:00 to 00:00 (Graph).

Figure 11. Regions classification results based on the Dining and Drinking category check-in time. Here, we illustrate the results computed using the
K-Means and graph-based method, considering data from Tokyo.
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