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Abstract Federated learning (FL) is a distributed approach to train machine learning models without disclosing
private data from participating clients to a central server. Nevertheless, FL training struggles to converge when
clients have distinct data distributions, which leads to an increased training time and model prediction error. We
propose ATHENA-FL, a federated learning system that considers clients with heterogeneous data distributions to
generate accurate models in fewer training epochs than state-of-the-art approaches. ATHENA-FL reduces commu-
nication costs, providing an additional positive aspect for resource-constrained scenarios. ATHENA-FL mitigates
data heterogeneity by introducing a preliminary step before training that clusters clients with similar data distribu-
tion. To handle that, we use the weights of a locally trained neural network used as a probe. The proposed system
also uses the one-versus-all model to train one binary detector for each class in the cluster. Thus, clients can com-
pose complex models combining multiple detectors. These detectors are shared with all participants through the
system’s database. We evaluate the clustering procedure using different layers from the neural network and verify
that the last layer is sufficient to cluster the clients efficiently. The experiments show that using the last layer as
input for the clustering algorithm transmits 99.68% fewer bytes to generate clusters compared to using all the neural
network weights. Finally, our results show that ATHENA-FL correctly identifies samples, achieving up to 10.9%
higher accuracy than traditional training. Furthermore, ATHENA-FL achieves lower training communication costs
compared with MobileNet architecture, reducing the number of transmitted bytes between 25% and 97% across
evaluated scenarios.

Keywords: Federated learning, non-IID data, privacy-preserving AI.

1 Introduction
Machine learning enables task automation by creating mod-
els that identify patterns in datasets to predict or classify fu-
ture data. In traditional machine learning systems, model
training requires client-data collection, which usually reveals
private or sensitive information from the user or collection
point Liu et al. [2021]. Also, the high data volume generated
by devices imposes a challenge to this practice of centraliz-
ing information into a single point in the network. Therefore,
Federated Learning (FL) has emerged as a proposal for train-
ing machine learning models that preserve the privacy of the
user without sharing local data. Federated learning (FL), pro-
posed by Google McMahan et al. [2017], has become pop-
ular among researchers and industry due to the possibility
of training machine learning models while preserving users’
data privacy de Souza et al. [2020]; Djenouri et al. [2023]; Li
et al. [2023a]; Singh et al. [2022]. After the change in data
processing regulations in several countries, for instance, the
California Consumer Privacy Act (CCPA) in the USA and
the General Data Protection Regulations (GDPR) in Europe,
the importance of federated learning research and adoption

increased.
Training in federated learning replaces data sharing with

model parameter sharing. In Federated Averaging (Fe-
dAVG), the most widely used algorithm for model param-
eters’ aggregation in FL, clients train the model locally for
a few epochs and send the result to the aggregation server,
which combines the individual trained models into a single
global model. Then, the aggregation server broadcasts the
global model back to the clients, which further improves it
with fresh training data. The aggregation server and clients
repeat this process until the global model converges or the
training reaches the amount of maximum global epochs. Fe-
dAVG is a specific algorithm for FL models based on updat-
ing parameters via the loss gradient vector and averaging the
vectors sent by the clients to update the global model. Thus,
clients’ training samples remain stored locally, preserving
data and user privacy. Nevertheless, another problem per-
sists when deploying FL on a large scale: clients have het-
erogeneous data generated from non-independent and iden-
tically distributed (non-IID) distributions, leading to con-
vergence difficulty and suboptimal performance Zhao et al.
[2018]. Therefore, a proposal that reduces the effects of data
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heterogeneity during model training and allows the general-
ization of the classifier to samples originating from other data
distributions becomes necessary. Clustering clients by data
similarity allowsmodels to be trained on IID data and quickly
converge with high final classification performance Ouyang
et al. [2021].
Zhu et al. [2021] propose using one-versus-all classifica-

tion scheme to mitigate the impact of heterogeneous data in
training federated learning models. Their Federated OvA
(FedOVA) algorithm uses models for binary classification
and selects clients having samples of the target class to per-
form the training. Nevertheless, their proposal lacks a study
on the impact of the model creation and an adequate protocol
for detector training. ATHENA-FL groups clients according
to data distributions, before training the OvA model, thus re-
ducing detector training time.
This paper proposes ATHENA-FL (Avoiding Statistical

Heterogeinety with One-versus-All in Federated Learning),
a system that uses model training with the one-versus-all
(OvA)1 technique to enable model sharing between groups.
ATHENA-FL reduces statistical heterogeneity by grouping
clients by data similarity. The one-versus-all model uses
independently-trained binary classifiers which estimate the
probability that a sample belongs to the class identified by
a detector. After training, the detectors are combined for
sample classification. Each detector estimates the probabil-
ity that the sample belongs to its class, and the classifier la-
bels the sample from the detector that generates the highest
probability. Thus, the one-versus-all method is used for effi-
cientmodel sharing between groups to create a genericmodel
for classifying data from different groups. In addition, the
system groups clients according to their data distributions so
the detectors converge quicker with high classification per-
formance.
We evaluate the accuracy evolution of the detectors and

compare the classification performance and communication
requirements for training the models. The accuracy of the
models depends on the diversity of the samples used for
training the detectors, with the accuracy of the one-versus-
all model up to 10.9% higher than the MobileNet architec-
ture Howard et al. [2017]. At the same time, the amount of
bytes transmitted over all training epochs is reduced by up to
97.37% using the one-versus-all model instead ofMobileNet.
Thus, the system provides an effective way to train FL mod-
els even in scenarios with heterogeneous distributions.
We summarize the contributions of this paper as follows:

• We propose a system that clusters federated learning
clients to reduce data heterogeneity. Each cluster trains
its models to detect specific classes.

• We generalize the models trained in each cluster by exe-
cuting the One-versus-All classification approach. The
clusters share the models to create an ensemble capable
of classifying samples among different clusters.

• We evaluate the communication requirements of our
proposal. The results show that we can reduce the com-
munication requirements in two ways. First, using only
the final layer to cluster the clients, which reduces the

1Available at https://github.com/GTA-UFRJ/ATHENA-FL

communication in the cluster assignment phase. Sec-
ond, training shallow neural networks as the OvA detec-
tors. These models converge faster, thus, they are capa-
ble of reduce the total transmitted bytes compared with
deeper neural networks, maintaining almost the same
accuracy level in different datasets.

This paper is organized as follows. Section 2 presents ba-
sic concepts about the Federated Learning scenario and the
One-versus-All model. Section 3 reviews the state-of-the-art
proposals to increase the classification performance of feder-
ated learning systems and reduce the impacts caused by data
heterogeneity. Section 4 describes the proposed ATHENA-
FL system. Section 5 presents the development of a proto-
type of ATHENA-FL and the analysis of the obtained results.
Finally, Section 6 concludes this work and discusses future
research directions.

2 Federated Learning Concepts
Figure 1 exhibits the execution diagram of the proposal pre-
sented by Google. First, the aggregation server randomly
selects a set of clients that will participate in epoch n. In the
example in Figure 1 clients 1 and 4 are selected. In this step,
the clients calculate the new model state for epoch n − 1 us-
ing local data. The computed models are transferred to the
aggregation server, which aggregates into the epoch n global
model. Among the existing aggregation algorithms, the most
popular is the Federated Average (FedAVG), which calcu-
lates the weights’ average in each model layer to perform
the model update. Federated learning average is formulated
as an optimization problem in which we search for an opti-
mal solution that minimizes the loss function by adjusting
the w model’s parameter over the parameter space V a as for-
mulated in Equation 1. After aggregation, the global model
for epoch n is generated and the aggregation server shares it
with all clients. The process runs until one of the stopping
conditions is met, such as the maximum number of epochs,
classification performance, or convergence of classification
metrics:

min
w∈V a

(
f(w) def=

N∑
n=1

pnFn(w)

)
. (1)

In the formulation above, N is the number of clients in the
system and pn is the neural network weights of the n-th
client, a.k.a model’s parameter, pn ≤ 1 and

∑
n pn = 1.

In FedAVG, pn = sn/s, where sn is the size of the n-
th client dataset and s is the number of samples among all
clients. Fn(w) is the local objective function for the client n.
Fn(w) = 1

sn

∑
k∈sn

fi(w). The function fi(w) is related
to l(xi, yi; w), the loss function for the prediction (xi, yi)
with model parameter’s w. FL algorithms’ convergence con-
ditions depend on feature distribution among clients and data
distribution. Hence, we define the classification of federated
learning according to the feature distribution and discuss how
the data can be distributed in the system.

https://github.com/GTA-UFRJ/ATHENA-FL
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Table 1. List of acronyms used.
ATHENA-FL Avoiding sTatistical HEterogeiNety with one-versus-All in Federated Learning
CCPA California Consumer Privacy Act
CEFL Communication-Efficient Federated Learning
CFL Clustered Federated Learning
CIFAR Canadian Institute For Advanced Research
DBSCAN Density-Based Spatial Clustering of Applications with Noise
DCS Decomposed Cosine Similarity
FedAVG Federated Averaging
FedOVA Federated OvA
FedTP Federated learning by Transformer Personalization
FL Federated Learning
FLEE Federated Learning Early Exit of inference
FlexCFL Flexible Clustered Federated Learning
FMNIST Fashion MNIST
GDPR General Data Protection Regulations
Hier-SFL Hierarchical Split Federated Learning
IFCA Iterative Federated Clustering Algorithm
IID Independent and Identically Distributed
LDA Label-based Dirichlet Partition
MNIST Modified National Institute of Standards and Technology
OPTICS Ordering Points to Identify the Clustering Structure
OvA One-\textit{versus}-All
RAM Random Access Memory
StoCFL Stochastic Clustered Federated Learning
TDT Total Data Transmitted

Figure 1. Federated learning architecture with four clients. Round n starts with the aggregation server randomly selecting some clients. Selected clients use
their datasets to enhance the global model for epoch n − 1 and build the local model for epoch n. Each client communicates with the aggregation server
independently, and their datasets remain on their devices throughout the training process. The aggregation server receives local updates from clients and
aggregates the responses to the global model, generating the global model for round n. Finally, the global model for round n is sent to clients. The process
is repeated until a stopping condition is reached, such as model convergence or the maximum number of global epochs.

2.1 Feature Distribution
Federated learning has three classifications according to the
features that each client has Yang et al. [2019]: Horizontal,
vertical, or federated transfer learning.
Horizontal federated learning: In horizontal federated

learning, clients have the same feature space and learning
task, however, clients’ samples are different. Horizontal
learning has difficulty establishing previously which features
the clients should collect and use in model training. How-

ever, the training and aggregation process is simple, as all
clients use identical input sizes.
Vertical federated learning: Another form of federated

learning is vertical, which assumes a scenario in which
clients have non-intersecting feature distributions. This is
the most challenging type of learning, as clients collect data
that can vary in dimension, making the global model creation
process more complex. However, there is no need to commu-
nicate which features are extracted, so clients have a more
robust privacy model.
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Transfer federated learning: This classification assumes
that the participants have some similarities in the learning
task. Thus, it is possible to train a model a few epochs
in a dataset and afterward, execute a fine-tuning in neural
network weights with the final learning task to improve the
model performance.

2.2 Data Distribution
In this section, we discuss sources of non-IID data distribu-
tions. Ma et al. [2022] identify five scenarios where data
are heterogeneous among clients: Feature distribution skew,
label distribution skew, vertical federated learning, label in-
consistency, and quantity skew, which we consider in this
work. Below are the details and characteristics of each one:
Feature distribution skew: When a client collects data,

it can be specific rather than general. Therefore, the features
might significantly differ from one user to another. The data
can be related to geographical locations, such as tempera-
ture data, or even to user personality, such as vocabulary and
handwriting traces.
Label distribution skew: Datasets that have imbalance

classes have this type of heterogeneity. For instance, client 1
has 80% samples of class 1 while the other 20% are samples
of the remaining classes, and client 2 has the opposite data
behavior, 20% samples are from class 1 and the 80% are dis-
tributed among the remaining classes. Our experiments con-
sider specifically this type of heterogeneity.
Vertical federated learning: This learning scenario is in-

herently Non-IID since clients have different feature space
distributions.
Label inconsistency: Clients may disagree with sample

labels. This can occur because the parties disagree on which
class a sample belongs to, or the labeling processing lacks a
well-defined protocol to assign classes to samples. For ex-
ample, categorical features such as good, regular, and bad
might subjectively change according to the professional re-
sponsible for defining a sample class.
Quantity skew: In this scenario, clients significantly dif-

fer in the dataset size. For instance, client 1 has |s1| = 2, 000
while client 2 has |s2| = 500, 000. The difference between
quantity skew and label distribution skew is that in quantity
skew sample might originate from the same distribution but
with different sample sizes among the clients.

2.3 One-versus-All Model
This model comprises a generic classifier, an ensemble of
several specialized classifiers. Each classifier is trained to de-
tect just a single class. The specialized classifiers are binary
classifiers that return how similar the sample is in compar-
ison to the samples of its class. Thus, they are also named
as detectors. An advantage of this approach is the model’s
size since the binary classifier can be implemented as a shal-
low neural network. Since they are binary classifiers, they
tend to converge faster in fewer epochs than a deeper neural
network. Therefore, we can reduce the communication re-
source requirements using this approach. Equation 2 shows

the classification process of a sample x:

Cova(x) = argmax
i∈[1,R]

rk(x). (2)

The model comprises several detectors rk, which classify the
sample x and return the probability that the sample belongs
to the class k. The classifier Cova assigns to the sample the
label that has the highest probability among all detectors.
The model must execute a pre-process to train the detec-

tors. This pre-processing consists of transforming the orig-
inal samples’ labels into binary labels. Thus, the detector’s
training needs an auxiliary function to binarize the labels ac-
cording to the current detector. The binarization function is
defined as:

B(k) =
∑
n∈G

⊮k(sn), (3)

if the i-th label belongs to the k-th class, the function returns
1 and zero otherwise. Each detector can be trained separately.

We highlight two advantages of using this approach.
First, detectors are smaller, hence the time between training
epochs is reduced compared to deeper neural networks. Sec-
ondly, the one-versus-all model can identify the classes from
present on other clusters easily, since we merely combine the
detectors from the system’s detectors database.

3 Related Work
One of the most relevant challenges regarding federated
learning is increasing the final model performance while re-
ducing the total training time. Although hyperparameter op-
timization is a promising alternative Neto et al. [2022], client
selection Fu et al. [2022] or local model personalization Tan
et al. [2022] could also achieve faster convergence. While
the initial federated learning proposal considers a uniform
distribution for the probability that a client participates in
training McMahan et al. [2017], client selection modifies
this likelihood function to reflect the client’s ability to sig-
nificantly contribute to model training in a global epoch. On
the other hand, model personalization locally adjusts mod-
els after the overall training has reached a predefined per-
formance threshold. In this way, client selection increases
global model performance, while personalization increases
local performance. Another strategy of model personaliza-
tion is clustered FL, where the idea is to divide clients into
clusters to train models with similar data and achieve higher
accuracy.

3.1 Selecting Clients for Efficient Training
Luo et al. [2022] and Lai et al. [2021] propose client selection
schemes that optimize model convergence speed in federated
learning environments. Selecting clients based solely on data
representativeness decreases the total number of epochs for
model convergence. Nevertheless, clients that have more rel-
evant data for the problem might have a longer training time
for each epoch, according to the amount of data and charac-
teristics of the hardware used. On the one hand, increasing
the time between epochs implies a higher overall delay, as
federated learning environments are generally synchronous
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and wait for all clients to respond or time out. On the other
hand, selecting clients with higher computational power to
reduce the time between epochs may incur more epochs for
convergence if the selected clients have statistically insignif-
icant data for the learning task. There is a trade-off between
the number of epochs for model training and the total time
for each epoch. Thus, the authors simultaneously consider
the devices’ characteristics and their data distribution rele-
vance to reduce the convergence time of the global model.
While Luo et al. propose a non-convex function regarding
the expected number of epochs based on clients’ previous
updates, Lai et al. avoids the linear programming, creating a
selection function that evaluates clients’ training losses.
Wang et al. [2020a] propose to apply reinforcement learn-

ing for client selection. The reinforcement learning agent is
tuned to select the best clients for each training epoch and
provide the best subset of clients given the current global
model state. The system estimates clients’ statistical rele-
vance through the loss gradient vector sent to the aggregation
server. This procedure maintains the privacy of the client’s
data. Fu et al. [2022] present a survey of client selection
systems and frameworks in federated learning. Their paper
presents the state-of-the-art in client selection and compares
their main differences, demonstrating that client selection
has great potential to produce more accurate models in fed-
erated learning with less training time.
FedProx is a framework to reduce the effects of statisti-

cal and system heterogeneity Li et al. [2020]. The differ-
ence between FedProx and FedAVG is the flexible amount
of work the clients perform. While FedAVG distributes an
equal amount of work to all clients, FedProx considers indi-
vidual hardware constraints to assign work to clients propor-
tionally. Also, the authors propose inserting a regularization
term on the local objective function to minimize the impact
of non-IID data in the federated network.
Nishio and Yonetani [2019] propose a protocol for client

selection in federated learning in which clients with higher
processing capabilities and lower communication latency are
prioritized in the presented selection scheme. Liu et al.
[2020] propose a hierarchical architecture for federated learn-
ing, which performs local aggregations on clients, partial ag-
gregation at the network edges, and global convergence in
the cloud. Processing data at the edge decreases communica-
tion latency, but the restricted number of devices can make
it difficult for the global model to converge. Cloud process-
ing, however, can access more devices and capture more data
variance at the cost of higher communication latency. Thus,
the authors apply federated training on levels: client-edge
and edge-cloud. Clients maintain low latency for communi-
cation with the edge, and the cloud can access the models
generated at the edges. Hierarchical Split Federated Learn-
ing (Hier-SFL) Qin et al. [2023] is an FL framework that
divides the neural network into three different levels, client-
edge-cloud, to train the model. Thus, each one of the neural
network parts has an associated loss function, which is ad-
justed separately. Hier-SFL objective is to reduce the com-
munication overhead during the training. However, the dis-
tribution of data generated by clients is not considered, which
can affect the performance of models in scenarios with non-
IID distributions.

Rai et al. [2022] propose the irrelevance sampling metric
for client selection to improve the final accuracy of federated
learning models in IID and non-IID scenarios. The objec-
tive is to select clients considering the quality and quantity of
their samples. Each client computes its irrelevance sampling
metric and sends it to the server. The server then clusters the
clients according to the informed value in the following three
clusters: positive, negative, and zero. Finally, the proposed
methodology randomly selects the clients of each cluster to
achieve faster model convergence.
Fraboni et al. [2021] propose a clustering sampling

method for client selection. The authors provide two ap-
proaches for clustering clients: client sample size and model
similarity. Nevertheless, the first approach highly depends
on the clients’ informing their exact sample size to the aggre-
gation server for cluster definition. Therefore, this approach
is susceptible to clients’ malicious behaviors. On the other
hand, the method uses all model weights in the model simi-
larity proposal, which introduces communication overhead.
The selection of clients decreases the time to convergence

and increases the final accuracy of the model. The client
selection, however, is insufficient for practical purposes in
environments with heterogeneous data. Thus, an alternative
is model personalization, which fine-tunes clients’ models
according to their local data and improves their final perfor-
mance.

3.2 Personalized Models in FL
FedTP (Federated learning by Transformer Personalization)
is a framework for reducing data heterogeneity by transform-
ing datasets and personalizing models Li et al. [2023b]. The
objective of FedTP is to define the basis of a transformation.
In this transformation, the client data is similar, and they can
personalize their models in some layers overcoming the con-
vergence problems. However, the proposal generates signifi-
cant communication overhead, requiring a long time to adjust
the projection parameters and for the model to converge.
FLEE (Federated Learning Early Exit of inference) Zhong

et al. [2022] is a hierarchical-federated learning framework
that splits the model into three different geolocations. The
model’s division between the cloud, edge, and end device al-
lows using the method of early exit inference from neural net-
works. Furthermore, the hierarchical division of the training
reduces the impact caused by non-IID data distributions on
the model convergence, as the authors assume that the data
have higher similarity according to the geographic distance
of the clients.
Ditto Li et al. [2021] is a framework for personalized fed-

erated learning. The authors separate the optimization prob-
lem into two parts: global optimization and local optimiza-
tion. Global optimization considers the contribution of all
clients to the model, while local optimization regularizes the
client’s model according to the local data. Also, the authors
provide two definitions: robustness and fairness in federated
learning environments. Robustness expresses themodel’s ca-
pacity to achieve high accuracy even in heterogeneous data
or data poisoning attacks. Fairness represents how different
clients’ performance is when using local test data. We use
these definitions to evaluate our proposal.
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Table 2. Comparison of related works
Work Heterogeneity Reduction Strategy Algorithm Strategy Input Iterative Hierarchy

Ouyang et al. [2021] Client Clustering Periodic clustering All models’ weights YES 1
Wang et al. [2020a] Client Selection Reinforcement learning All Weights NO 0
Luo et al. [2022] Client Selection Optimization Users’ resources NO 0
Lai et al. [2021] Client Selection Client’s utility measurement Users’ resources NO 0
Li et al. [2020] Client Selection Model regularization Proximal term value NO 0

Nishio and Yonetani [2019] Client Selection Optimization Users’ resources YES 0
Liu et al. [2020] Hierarchical Training Geographical training Users’ Location NO 2
Qin et al. [2023] Hierarchical Training Hierarchical early-exit Transformed Data YES 2
Rai et al. [2022] Client Selection Irrelevance measurement Irrelevance Metric NO 0

Fraboni et al. [2021] Client Selection Clustered sampling Sample size or similarity NO 0
Li et al. [2023b] Model Personalization Learn-to-personalize Local data NO 0

Zhong et al. [2022] Hierarchical Training Hierarchical early-exit Users’ Location NO 2
Li et al. [2021] Model Personalization Two-steps optimization All Weights YES 2

Dennis et al. [2021] Client Clustering Distributed clustering Users’ centroid NO 1
Zhu et al. [2021] Model Personalization One-versus-All Users’ response NO 0
Chu et al. [2022] Client Clustering Louvain method Euclidean distance NO 1
Zeng et al. [2023] Client Clustering Cosine similarity Users’ loss function NO 1
Ghosh et al. [2020] Client Clustering Iterative clustering Clients’ decision YES Multiple
Duan et al. [2022] Client Clustering DCS All Weights YES 1
Sattler et al. [2020] Client Clustering Recursive clustering Loss gradient vector YES Multiple

Our Client Clustering Generic clustering Last Layer Weights NO 1

3.3 Clustered Federated Learning
Clustered federated learning is a subfield of model personal-
ization in federated learning research. This subfield focuses
on creating strategies to arrange FL clients into groups, re-
ducing data heterogeneity. The proposals are mostly differ-
entiated by clustering strategy, metrics, and training.
CEFL (Communication-Efficient Federated Learning) is

an FL-based framework for medical-data model training Chu
et al. [2022]. The authors determine the similarity between
clients by calculating the Euclidean distance of the clients’
neural network weights. Based on similarity, the system clus-
ters clients using the Louvain method Blondel et al. [2008].
In each group, the client with the highest sum of similar-
ity is the leader. The leader performs federated training of
the model’s first layers with leaders from other groups. The
model’s final layers are trained individually in each group.
StoCFL (Stochastic Clustered Federated Learning) Zeng

et al. [2023] is a federated learning framework that clusters
clients according to the cosine similarity. The proposal intro-
duces two models: the global model and the cluster model.
The global model maintains information from all clusters,
while clients only participate in model training inside the
cluster they are involved. Meanwhile, there is a high cost
to the system’s clients, who must simultaneously train the
two models.
IFCA (Iterative Federated Clustering Algorithm) Ghosh

et al. [2020] is a proposal for clustering clients to personal-
ize their models. In the proposal, clients are responsible for
choosing their clusters. In addition, the authors propose the
use of multi-task learning, which consists of sharing some
neural network weights for clients who have data distribu-
tions with intersections but are in different clusters. Never-
theless, the downside of delegating the process of identifying
groups to the clients is that the environment becomes suscep-
tible to malicious behavior and requires more computational
costs from the clients’ devices. Another disadvantage of this
proposal is to assume that the number of groups is known a
priori, which may be unfeasible and can either overestimate

or underestimate the number of existing clusters.
CFL Sattler et al. [2020] recursively partitions federated

learning clients into more homogeneous groups. This pro-
cedure mitigates the problems generated by non-IID distri-
butions. Partitioning occurs whenever the loss gradient vec-
tor exceeds a pre-established distance threshold. However,
clients’ recursive partition leads to computational overhead
on the aggregation server since it needs to run the procedure
at each global training epoch. ClusterFl Ouyang et al. [2021]
is a framework for creating homogeneous clients’ clusters in
federated learning environments. The authors propose clus-
ters’ periodic verification to detect inefficient clients, aiming
to reduce the convergence time for the cluster model. How-
ever, the proposal may present unnecessary high computa-
tional overhead, as the authors foresee models’ periodic re-
training. Furthermore, CFL and ClusterFl proposals do not
combine information from models of other clusters, which
might reduce the accuracy for clients with generic tasks.
FlexCFL Duan et al. [2022] is a framework that considers

clients’ data distribution time shifts. The grouping strategy
is static, which avoids rescheduling clients for each epoch
as Sattler et al. [2020] and Ghosh et al. [2020] do. Also,
the framework uses only a subset of clients to determine the
number of clusters in the system. The remaining clients are
clustered after the decision about the number of clusters. Be-
fore each round, the authors execute a strategy to detect if the
clients remain with the same distribution or if it has changed.
When the distance exceeds a predefined threshold the client
needs to perform the clustering step again. Nevertheless, the
proposal requires higher computational resources than our
proposal to detect the data shift.
de Souza et al. [2023a] propose a cluster federated learn-

ing system in which each cluster trains a single model.
Clients use FedAVG to train the cluster model after the clus-
tering step. This approach increases the final model’s accu-
racy and reduces the time to convergence. However, the pro-
posal is limited to specific tasks, like classifying data similar
to the cluster training data. Thus, clients only retain local
cluster knowledge. Our current work improves the system,
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providing a way to combine the models generated in differ-
ent clusters through the One-versus-All model.
We propose ATHENA-FL, a federated learning system

based on clustering clients by data distribution similarity and
training neural network models through the One-versus-All
(OvA) approach. Initially, our proposal clusters clients us-
ing their neural network weights as input for the clustering
algorithm. Like other CFL proposals, the clustering pro-
cess increases the accuracy and reduces the training time
of the models of each cluster, as it makes the training data
more homogeneous. Unlike previous proposals, each group
trains multiple models, which are detectors of the classes
present in the clients’ datasets. At the end of training the
models of each group, it is possible to combine them to de-
tect the class of samples outside the cluster by using the
OvA model. The performance of ATHENA-FL is compared
to FedAVG using the MobileNet Howard et al. [2017] and
MobileNetV2 Sandler et al. [2018] architecture, lightweight
deep neural networks for image classification. Furthermore,
the experiments compare the communication cost of the two
approaches, calculated through the number of bytes trans-
mitted per client during training. We show that there is a
trade-off between the number of existing classes and the ac-
curacy of the one-versus-all model when the clusters have
few classes. More classes in the system imply more detec-
tors, which must be trained with more diverse data for a
better distinction between classes. Thus, detectors trained
with few classes present a lower performance on out-of-
group data, reducing the accuracy of the OvA model. This
paper extends a Portuguese-written paper previously pub-
lished de Souza et al. [2023b] by executing new experiments
about the communication impact. We consider the transmis-
sion time among epochs and how the number of layers used
to cluster impacts the system. Also, we show that our pro-
posal of using just the final layer significantly reduces the
input size to define clusters. Finally, we add an experiment
considering a distribution generated by the LDA function,
which is a more realistic form to generate non-IID data.

Table 2 summarizes the characteristics and comparisons of
all related works. We classify the works due to the strategy
to reduce heterogeneity, the algorithm used, the algorithm in-
put, whether the approach is iterative, and how many hierar-
chical levels there are. The strategies to reduce training het-
erogeneity are client selection, hierarchical training, model
personalization, or client clustering. Besides, there are mul-
tiple algorithms used, which depend on different inputs. The
algorithm also determines if the strategy is iterative. Regard-
ing the clustering level, 0 means that the proposal uses a sin-
gle global model, and 1 the proposal has clusters where each
one has a cluster global model. Multiple or 2 clustering lev-
els mean that the cluster can be divided into one or more
sub-clusters.

4 The ATHENA-FL System
ATHENA-FL is a federated learning system for trainingmod-
els ensuring data privacy. Our system relies on a set of
clients clustered according to data similarity. Client cluster-
ing allows the training of machine learning models more ef-

ficiently than the initial federated learning proposal McMa-
han et al. [2017] under non-IID data distributions, increasing
the final accuracy and reducing the total epochs for model
convergence. Nevertheless, clustering creates specific mod-
els, which usually can only classify samples generated from
the same cluster. Thus, we propose the adoption of the one-
versus-all (OvA) model to share models trained on different
clusters and to create generic models. The OvA learning
model consists of training binary detectors for each data la-
bel. Each detector gives the probability that a sample belongs
to its class. Since they execute a binary classification, their
training process is easier and converges faster than a deep
neural network for multi-class classification. We combine
the detectors and take the one that provides the greatest prob-
ability to assign a sample predicted label. Figure 2 displays
the steps proposed for executing the system.

4.1 Problem Formulation
We assume a federated learning scenario with horizontal
data distribution that the clusters are formed homogeneously,
therefore, clients have similar samples of the same classes.
The group trains detectors for all existing classes in the client
datasets. In addition, the server together with the clients
uniquely identifies existing classification tasks and labels. In
this way, new classes can be incorporated into the system
without loss of generality in relation to existing models. Fur-
thermore, there are no equal labels for samples belonging to
different classes in the system before grouping. Therefore,
our non-IID tests are based on the label distribution skew
scenarios.
We cluster clients based on their data similarity to reduce

non-IID effects during the training. ATHENA-FL uses the
weights of the last layer as input for a clustering algorithm,
which assigns clients to one of the G clusters.

ATHENA-FL uses one detector per class. Thus, instead
of minimizing a single objective function, our system mini-
mizes the classification error for each detector rk by adjust-
ing the parameter wk:

min
wk∈V a

(
rk(wk) def=

N∑
n=1

pkn
Fkn

(wk)

)
, (4)

where rk(wk) is the detector of the k-th class, pkn
is the

weight of the n-th client during the k-th detector’s training.
Finally, Fkn(wk) is the local objective for the n-th client to
the k-th detector.

4.2 Data Similarity-based Clients Clustering
Initially, the system arrange clients into clusters according to
the data similarity. This step produces clusters in which the
training data are independent and identically distributed. IID
datasets facilitate model convergence and increase final clas-
sification performance Wang et al. [2020b]. Nevertheless,
to maintain the privacy assumptions of Federated Learning,
ATHENA-FL indirectly obtains from clients’ data distribu-
tion for client clustering. Thus, we use a test model, in which
clients execute a few training epochs with their local data.
The aggregation server uses these model weights as input for
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Figure 2. The ATHENA-FL execution scheme consists of 6 steps. Steps 1 to 3 mitigate the system’s statistical heterogeneity by clustering clients according
to the similarity of the data. In Step 4, clients train the models inside the cluster, while Step 5 shares detectors among other clusters. Finally, in Step 6, a
client can combine models from different clusters to create a generic OvA model.

the Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) clustering algorithm to identify the differ-
ent data distributions and assign clients to their clusters.
Figure 2 shows the steps executed by ATHENA-FL.

Firstly, Steps 1 to 4 group clients according to data similar-
ity. Initially, the system broadcasts a generic test model to all
the clients. Then, clients adjust the neural network’s weights,
which depend on the private data used. After training locally,
each client holds the same neural network structure, but with
different weights. The clients share neural network weights
with the aggregation server in Step 2. As the neural network
weights are correlated with the local data, users with simi-
lar data have closer weight vectors than users with different
data distributions. Therefore, they are assigned to the same
cluster in Step 3. We use the DBSCAN Ester et al. [1996],
to identify the clusters as done in a previous work de Souza
et al. [2023a]. Unlike detectors, the model used for testing is
a deep model for multiclass classification, as it is necessary
to compare data distributions across all clients at this step.
The clustering process ends with Step 4, which trains the de-
tectors. New clients, absent in the group creation stage, must
request the server to be allocated into a cluster by executing
the previous steps.

4.3 From Specific to Generic Models
Training starts with the selection and aggregation server de-
termining which detector will be trained federated into a
group. After defining the class of interest to be trained, the
server sends this information so that clients can pre-process
the labels. Thus, in Step 4 of Figure 2 the system trains de-
tectors for each class. Detector models are trained indepen-
dently, concerning models from different clusters and detec-
tors trained within each cluster. Thus, this step can be paral-
lelized to reduce the models’ training time. Each group has
a total of k detectors, which can vary according to the group,
and the system has R detectors in total.
The convergence time for each detector is reduced due to

the clients’ clustering that has approximately IID datasets.
However, the models generated in the group are specific and
detect only the existing classes that belong to the cluster.
Thus, after its convergence, each detector is made available
in the detector’s database of the system in Step 5 of Figure 2.
This allows clients from other groups to build one-versus-all
models with detectors generated in the whole system.
Step 6 allows the creation of a generic model, which uses

detectors trained in other clusters. After sharing models in
the ATHENA-FL’s detectors database, clients select the de-
tectors of interest to create the one-versus-all model, Cova.
ATHENA-FL allows a parallel classification process, given
that, as detectors are independent of each other, each model
can simultaneously generate the sample’s probability of be-
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longing to the detector’s class.

5 Development of the Prototype and
Experimental Results

We developed the ATHENA-FL prototype using the Python
v3.9.1 programming language with the Flower v1.1.0 Beutel
et al. [2020] framework for building the federated learning
environment and the Scikit-learn v1.0.2 library for creating
clustering models and the Keras v2.6.0 library to create the
deep learning models. The experiments were executed on
an Intel Xeon CPU E5-2650 2.00 GHz server with 32 pro-
cessing cores and 504 GB of RAM. We show experimental
results of the models’ evaluation, with the average accuracy
obtained among all the clients and a 95% confidence inter-
val. We compare our proposal with FedAVG because other
approaches use different models or datasets. Thus, FedAVG
establishes a baseline comparison with the state-of-the-art al-
gorithms.
The federated learning scenario has 50 clients that train the

model during 5 local epochs for a total of 200 global epochs,
with a selection probability of 20%. The selection probability
is the percentage of clients selected within each cluster for
training global epoch. We use a batch size of 32 samples,
and the accuracy results are obtained from the selection of
all clients at the end of each global epoch. The clustering
algorithm is defined with the distance parameter d = 0.0279
and the minimum number of clients per group equal to 2.
The neural network architecture used in the one-versus-all

model was adapted from a dog and cat image identification
problem, establishing a simple model for binary classifica-
tion Sanguineti [2021]. Then, this neural network architec-
ture was adapted to be the basis of the detectors used in the
one-versus-all model due to its small size and its high capac-
ity to correctly identify samples.
The deep architectures used in classification tasks with

multiple classes are MobileNet and MobileNetV2. Mo-
bileNetV2 was chosen because it is the architecture used in
the classification example of the CIFAR-10 dataset in the
Flower framework and MobileNet because it has a shorter
inference time and it is shallower than MobileNetV2.
We evaluate the training and performance of models on

three image datasets: CIFAR-10 Krizhevsky et al. [2014],
MNIST LeCun et al. [2010], and Fashion-MNIST (FM-
NIST) Xiao et al. [2017]. The CIFAR-10 dataset has 60,000
samples and a total of 10 classes representing objects or an-
imals. The images are colored with 3 matrix which repre-
sents RGB channels and have 32x32 pixels each. The second
dataset, MNIST, has 70,000 samples divided into 10 classes,
which represent handwritten decimal digits. FMNIST also
has 10 classes and 70,000 samples that represent different
fashion clothes, divided into 60,000 for training and 10,000
for testing. MNIST and FMNIST images are provided in
grayscale, originally 28x28 pixels. We process the datasets
to extend to 32x32 pixels to use the same neural network
architecture in all data. The datasets are equally balanced
among existing classes.
We conduct four evaluations: (i) we study the impact of

using different layers during the clustering step, (ii) we ver-

ify the detectors’ accuracy and compare it with a complex
model trained with FedAVG; (iii) we define the number of
epochs necessary for both models to converge, and finally,
(iv) we estimate the total amount of bytes transmitted dur-
ing the training process for the two alternatives. Evaluation
(i) is discussed in Section 5.1, then Section 5.2 presents the
discussion of evaluations (ii) and (iii), while the last one is
presented in Section 5.3.

5.1 Test Model Size Evaluation
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Figure 3. Amount of bytes transmitted according to the number of neural-
network-layers used during the clustering process.

The goal of this experiment is to determine the amount of
information needed to classify the clients into clusters better.
We want to prove that using the last layer of the neural net-
work is sufficient to cluster the clients efficiently. Thus, we
execute two procedures to verify the impact on the communi-
cation of using the entire neural network. The first procedure
determines howmany bytes we need to transmit as a function
of the number of layers used in the clustering. Secondly, we
evaluate the success rate according to the number of layers
used. The experiment determines the clustering efficiency
using the scenario 2 classes per client as a ground truth to the
KMeans number of expected clusters.
Figure 3 shows the results for the first procedure. We

observe that sharing all neural network weights is required
for each client 12.98 MB. Thus, it is essential to reduce the
amount of transmitted bytes for a scalable scenario. Then, we
evaluate different layers as the clustering input. To define a
layer, we use the non-IID scenario with 2 classes per client
as the ground truth for the KMeans clustering algorithm. Ex-
ecuting this procedure for each layer in the neural network,
we observe that the final layers have more correlation with
the data than the initial layers, since using the layers near
the output all clients are correctly assigned to the expected
clusters.
The evaluation also demonstrates that the last layer has

only 41.48 kB. Therefore, using the last layer as input for the
clustering algorithm reduces 99.68% of the transmitted bytes
to generate the clusters.
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(a) Evolution of detector’s test accuracy over training epochs using the
CIFAR-10 dataset.
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(b) Accuracy of detector’s over training epochs using the MNIST dataset.

Figure 4. Evaluation detector’s accuracy when clients have IID data distributions.

5.2 Accuracy Evaluation
We evaluate ATHENA-FL on IID and non-IID data distribu-
tions. The non-IID data distributions are considered in two
scenarios, in the first one each client has samples of only two
classes of the dataset, and the second considers clients with
samples of five different classes.

5.2.1 IID Data Scenario

The detectors quickly converge to a high accuracy value, as
shown in Figure 4(a), and the final performance of the one-
versus-all model for the CIFAR-10 dataset is (95.5 ± 0.3)%.
Meanwhile, the architecture MobileNetV2 has a final accu-
racy of (73 ± 1)% and the MobileNet has (66 ± 2)%. In
the MNIST dataset, the performance is better, with (99.3 ±
0.1)% and (99.8 ± 0.1)% for MobileNet and ATHENA-FL,
respectively. However, MobileNetV2 is too complex for
this data and has an overfitting problem, leading to only
(7.69 ± 0.01)% accuracy. Finally, the FMNIST shows that
MobileNetV2 has the best performance in the IID setting,
with (91 ± 1)% against only (8 ± 1)% for the MobileNet
and (67.0 ± 0.5)% for ATHENA-FL, as shown in Figure 5.
Thus, the experiment shows that under IID settings,

ATHENA-FL has competitive results, but in some scenar-
ios, the detectors might need to be well-adjusted to have a
better performance. The variation in performance between
the datasets is due to the difficulty of the problem presented
by each one. MNIST has simpler grayscale images, which
are simpler for classification. Therefore, the detectors have
higher accuracy and less variance in this dataset than in
CIFAR-10, which has color images with more elements. Fi-
nally, the shapes of clothes in the FMNIST dataset are dif-
ficult to distinguish. Thus, we need more complex models
to differentiate them. This behavior is also observed in the
other evaluated scenarios.

5.2.2 Scenarios with Non-IID Data

Scenarios with non-IID data consider distributions of data
where clients own only a subset of the classes of the dataset.
In the first non-IID case, clients have samples from five dis-
tinct classes. Figure 7 exhibits the accuracy evolution of each

classifier among training epochs and Figure 6 shows the fi-
nal performance of the one-versus-all model, MobileNet and
MobileNetV2. ATHENA-FL provides the best accuracy re-
sults for all datasets in this setting, having with the CIFAR-
10 dataset 10% higher accuracy compared to the MobileNet,
which is the second-best model, and 10.9% higher accuracy
in the MNIST dataset. Thus, the experiment demonstrates
that ATHENA-FL has the potential to increase the classifi-
cation accuracy up to 10.9% under the Non-IID setting com-
pared to the MobileNet model trained purely with FedAVG.
The last scenario considers a Non-IID data distribution

with two classes per client. Figure 8 shows the evolution
of detectors accuracy among the training epochs for CIFAR-
10 and MNIST datasets, while Figure 9 demonstrates the
performance of the classifiers combined. The accuracy of
ATHENA-FL was (47 ± 1)% for the MNIST dataset, while
the deep models achieved an accuracy of (40 ± 10)% and
(10 ± 5)% for MobileNet and MobileNetV2, respectively.
For the CIFAR-10 dataset, the observed accuracy is (30 ±
3)% combining the detectors, while the MobileNet and Mo-
bileNetV2 architectures have a final accuracy of (20 ± 10)%
in this configuration. Lastly, MobileNet has (22 ± 2)%, Mo-
bileNetV2 has (60 ± 20)%, and ATHENA-FL has (50.0 ±
0.7)% accuracy in the FMNIST dataset.
The results show that when the detectors are trained on

datasets with more classes, the final classification perfor-
mance is better since they can learn more patterns of the
whole data distribution. This behavior can be explained by
the higher variance of data from classes that are not of the
detector’s class. The greater variance of data in other classes
allows the detector to identify more relevant features in the
data of interest, instead of just differentiating specific image
features that are not representative of the problem. For in-
stance, the detectors trained in the MNIST dataset with only
classes 2 and 3 have trouble differentiating 5 and 8 which
have similar shapes. Nonetheless, we see that in MNIST and
CIFAR-10, ATHENA-FL was able to reach up to 7% and
10% accuracy compared to the best deeper model.

Finally, our last experiment evaluates the accuracy of
ATHENA-FL compared with the traditional FL approach in
a non-iid scenario where the clients’ datasets are not limited
to samples of a subset of classes. This configuration offers
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(a) CIFAR-10 dataset.
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(b) MNIST dataset.
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(c) FMNIST dataset.

Figure 5. Models’ accuracy evaluation in the IID setting.
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(a) CIFAR-10 dataset.
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(b) MNIST dataset.
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(c) FMNIST dataset.

Figure 6. Final models’ accuracy in federated learning with Non-IID distribution of 5 classes per client.
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(a) Evolution of detector’s test accuracy over training epochs using the
CIFAR-10 dataset.
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(b) Accuracy of detector’s over training epochs using the MNIST dataset.

Figure 7. Evaluation detector’s accuracy when clients have non-IID data distributions with 5 classes per client.
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(a) Evolution of detector’s test accuracy over training epochs using the
CIFAR-10 dataset.
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(b) Accuracy of detector’s over training epochs using the MNIST dataset.

Figure 8. Evaluation detector’s accuracy when clients have non-IID data distributions with 2 classes per client.
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(a) CIFAR-10 dataset.
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(b) MNIST dataset.
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(c) FMNIST dataset.

Figure 9. Final models’ accuracy in federated learning with Non-IID distribution of 2 classes per client.

a scenario closer to those encountered in real-life. We gener-
ate the dataset of each client using the Label-based Dirichlet
Partition (LDA) Tang et al. [2021]. ATHENA-FL increases
the traditional FL accuracy by almost 7×, as depicted in Fig-
ure 10.
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Figure 10. Final accuracy of models trained with LDA distribution in the
FMNIST dataset.

MobileNetV2 MobileNet Xcepetion Sanguineti M.
100

101

102

103

104

105

  
  
  
 M

o
d
e
l 
S

iz
e
 (

k
B

)

Figure 11. Comparison between the size in bytes of different neural net-
work architectures. The size of the model directly depends on the number
of parameters used by the architecture.

5.3 Communication Evaluation
The objective of this experiment is to evaluate the cost
of communication between the clients and the aggregation
server while training the one-versus-all models and a deep
neural network to classify multiple classes. The communica-
tion evaluation considers the total number of bytes transmit-
ted on average to perform model training. Let Tdec be the
size in bytes of the detector, edec be the probability density
function that indicates the number of epochs necessary for

the detector to converge, and R the number of existing de-
tectors in the problem of classification, the average amount
of bytes transmitted per client Bova can be expressed by the
following relation, for the one-versus-all learning model:

Bova = Tdec × R × E[edec]. (5)

On the other hand, the communication cost of neural
network architectures for multi-class classification Bcmc is
given by:

Bcmc = Tcmc × E[ecmc], (6)

where Tcmc is the size and ecmc is the probability density
function that indicates the number of epochs required for the
convergence of the multiclass classification model. The val-
ues of Tdec and Tcmc are deterministic and depend on the
neural network architecture used.
Figure 11 shows the comparison between the size in bytes

of the different neural network architectures evaluated in
this work. Using the Keras library to create the models,
each detector has Tdec = 551k bytes. Nonetheless, the
MobileNetV2 architecture has 9.2MB, while MobileNet and
Xception have 13MB and 81MB, respectively. The number
of detectors is also a deterministic value that depends only on
the dataset used for evaluation, which in the tested cases has
the value R = 10. Furthermore, the expected values of edec

and ecmc, E[edec] and E[ecmc], are obtained experimentally,
through training performance along the epochs. When the
model does not show a significant improvement concerning
previous epochs, the training is considered finished. Analyz-
ing the costs presented, so that the communication cost of
the one-versus-all model is lower or equivalent to the mul-
ticlass neural network model, it is necessary that the total
amount of bytes transmitted for training the models are re-
lated as follows: Bova ≤ Bcmc. To verify the validity of
the relationship and thus the communication efficiency of the
one-versus-all model, it is necessary to estimate the values of
E[edec] and E[ecmc].
The criterion to determine the epoch at which the model

converged consists of comparing the accuracy in the current
epoch with the accuracy in the previous epoch. If the epoch
is in the limit of tol = 0.001% the previous epoch, we con-
sider that the model has converged. The adopted value of tol
allows considering cases in which the model is stable only
over a short interval. Increasing the value of tol implies re-
ducing the number of epochs required for convergence, but it
decreases the final classification performance. The opposite
occurs when we reduce the parameter.
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Table 3. Communication requirements to train themodels until convergence in different datasets and sample distribution settings considering
the Total Data Transmitted (TDT).

IID Non-IID 5 Classes Non-IID 2 Classes
Dataset Model E[e] (#) TDT (MB) E[e] (#) TDT (MB) E[e] (#) TDT (MB)

CIFAR-10
ATHENA-FL 7 37.635 12 64.517 14 75.270
FedAVG (MobileNet) 30 378.106 23 289.881 8 100.828
Economy (%) - 90.05 - 77.74 - 25.35

MNIST
ATHENA-FL 4 21.506 24 129.034 4 21.506
FedAVG (MobileNet) 7 88.225 58 731.005 65 819.230
Economy (%) - 75.62 - 82.35 - 97.37

FMNIST
ATHENA-FL 5 26.88 81 435.49 21 112.91
FedAVG (MobileNet) 44 554.56 151 1903.10 80 1008.30
Economy (%) - 95.15 - 77.12 - 88.8

(a) CIFAR-10 dataset. (b) MNIST dataset.

Figure 12. Time to compute a local update. This time is equivalent to 5 local epochs for a client.

The accuracy results from analysis over the training
epochs presented in Section 5.2.1 according to the adopted
convergence criterion, allows the estimation of the value
E[edec] and E[ecmc] for the datasets in each experimental
setup. We show the results of ATHENA-FL compared with
MobileNet in Table 3. The MobileNetV2 model needs hun-
dreds of epochs to converge. For conciseness, we only show
the results of MobileNet due to its faster convergence in tens
of epochs in most scenarios.
After estimating the number of epochs necessary for the

models to converge, it is possible to compare them in its sce-
nario using properly the Equations 5 and 6. The results show
how many bytes each neural network model needs to trans-
mit during the training, and finally, we compare the economy
of both approaches of computing 1 − Bova/Bcmc.
In the IID setting, the detectors converge in a few epochs,

reducing over 75% of bytes transmitted. A second highlight
is the data used to train and test the models. ATHENA-FL
converges faster than MobileNet in MNIST and FMNIST,
which have grayscale images and, therefore, use a single
channel to represent the pixels.
We observe that in all scenarios, ATHENA-FL reduces the

total amount of bytes transmitted during the training execu-
tion. In the worst-case scenario, our approach saves at least
25% of the bytes transmitted. For the best case scenario,
we can reduce by approximately 97% the communication re-
quirements for training the model.

5.4 Computational Time
Finally, we evaluate the computational time among the lo-
cal updates. The local update is equivalent to 5 local epochs

since each client updates its model 5 times in our scenario be-
fore sending it to the aggregation server. To be concise, we
show the results for the CIFAR-10 and MNIST datasets be-
cause samples in the FMNIST dataset have the same shape as
samples in the MNIST dataset. Besides, to measure the time
to a local update, only the number of training samples pro-
duces an impact. Clients have the same number of training
samples in IID and non-IID distributions. The only differ-
ence is the data distribution. Therefore, we exhibit the time
for the IID distribution, equivalent to the others. Also, the
comparison considers the models of Table 3. Figure 12 ex-
hibits the computational time results for both datasets using
the two models.
Once the detectors consist of shallow neural networks,

thus it takes less time to compute the local update. When us-
ing the ATHENA-FL, each client experiences a mean delay
value near 8 seconds in CIFAR-10, while this value increases
to 10 seconds in the MNIST dataset. Meanwhile, MobileNet
introduces a higher delay, close to 13 seconds in CIFAR-10
and 15 seconds in MNIST. Despite the MNIST dataset hav-
ing fewer features, it has more samples, which explains the
increased delay compared to the CIFAR-10 dataset.
The results of this experiment show another advantage of

our proposal. To compare the total training time, we use the
values of the total number of epochs exhibited in Table 3. It
is worth noting that the local updates for different detectors
can be executed in parallel as long as the system has compu-
tational resources. Thus, even though it is necessary to train
more models, we do not need to multiply the computational
time by the number of models in the system. For instance, us-
ing the MobileNet in the non-IID scenario with the MNIST
dataset takes 65 epochs to train the model will generate a de-
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lay of 65 × 15 = 975 seconds, or more than 16 minutes. On
the other hand, for the same scenario, ATHENA-FL gener-
ates a delay of 4 × 10 = 40 seconds, which is less than a
minute. Nonetheless, in the IID scenario with the CIFAR-10
dataset, our detectors need 14 × 8 = 112 seconds, while the
MobileNet needs 8 × 13 = 104 seconds to be trained. De-
spite the MobileNet learning faster in this case, the total time
is closer, leading to nearly 2 minutes for each approach to
train the models. Hence, ATHENA-FL reduces the training
time in most of the experiment scenarios.

6 Conclusion and Future Work
We presented ATHENA-FL, a federated learning system that
clusters clients to reduce data heterogeneity during training.
Furthermore, the system applies the one-versus-all model to
create a generic classifier, which shares knowledge among
clusters. The results show that communication during the
training epochs is efficient, reducing between 25.35% and
97.37% total transmitted bytes compared to the FedAVG ap-
proach with the MobileNet neural network. The accuracy of
the one-versus-all model depends on the data distribution sce-
nario used during the training step, being up to 10.9% higher
in the best case and presenting a better performance than the
model trained with FedAVG in most of the evaluated scenar-
ios. ATHENA-FL also outperforms traditional FL in non-
iid scenarios closer to those encountered in real-life while re-
ducing the required communication overhead by over 99%.
ATHENA-FL also reduces the training time in most of the ex-
periment scenarios especially due to the capability of training
detectors’ models in parallel. In future works, we will detail
the proposal’s security guarantees, providing a protocol tol-
erant to malicious participants’ updates.

Declarations

Authors’ Contributions
Lucas Airam Castro de Souza: Conceptualization, Validation, In-
vestigation, Writing – original draft, Writing – review & editing
Gustavo Franco Camilo: Validation, Investigation, Writing – origi-
nal draft, Writing – review & editing

Matteo Sammarco: Methodology, Writing – original draft, Writ-
ing – review & editing,

Miguel Elias Mitre Campista: Methodology, Writing – original
draft, Writing – review & editing, Supervision Luís Henrique Ma-
ciel Kosmalski Costa: Methodology, Writing – original draft, Writ-
ing – review & editing, Supervision

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
There is a GitHub repository associated with the paper:
https://github.com/GTA-UFRJ/ATHENA-FL

References
Beutel, D. J. et al. (2020). Flower: A Friendly Fed-
erated Learning Research Framework. arXiv preprint
arXiv:2007.14390. DOI: 10.48550/arXiv.2007.14390.

Blondel, V. D. et al. (2008). Fast Unfolding of Communi-
ties in Large Networks. Journal of Statistical Mechanics:
Theory and Experiment, pages 1–12. DOI: 10.1088/1742-
5468/2008/10/P10008.

Chu, D., Jaafar, W., and Yanikomeroglu, H. (2022). On the
Design of Communication-Efficient Federated Learning
for Health Monitoring. IEEE GLOBECOM, pages 1–6.
DOI: 10.1109/GLOBECOM48099.2022.10001077.

de Souza, L. A. C., Camilo, G. F., Campista, M. E. M.,
and Costa, L. H. M. K. (2023a). Hierarchical cluster-
ing of nodes for accuracy increase in federated learn-
ing. Techinical Report, Electrical Engineering Program,
COPPE/UFRJ. Available at:https://www.gta.ufrj.br/
ftp/gta/TechReports/SCM23.pdf.

de Souza, L. A. C., Camilo, G. F., Rebello, G. A. F., Sam-
marco, M., Campista, M. E. M., and Costa, L. H. M.
(2023b). ATHENA-FL: Evitando a Heterogeneidade Es-
tatística através do Um-contra-Todos no Aprendizado Fed-
erado. In Anais do VII Workshop de Computação Urbana,
pages 40–53. SBC. DOI: 10.5753/courb.2023.717.

de Souza, L. A. C. et al. (2020). DFedForest: De-
centralized Federated Forest. In IEEE Interna-
tional Conference on Blockchain, pages 90–97. DOI:
10.1109/Blockchain50366.2020.00019.

Dennis, D. K., Li, T., and Smith, V. (2021). Heterogeneity for
the Win: One-Shot Federated Clustering. arXiv preprint
arXiv:2103.00697. DOI: 10.48550/arXiv.2103.00697.

Djenouri, Y., Michalak, T. P., and Lin, J. C.-W. (2023). Fed-
erated Deep Learning for Smart City Edge-based Appli-
cations. Future Generation Computer Systems, 147:350–
359. DOI: 10.1016/j.future.2023.04.034.

Duan, M., Liu, D., Ji, X., Wu, Y., Liang, L., Chen, X.,
Tan, Y., and Ren, A. (2022). Flexible Clustered Fed-
erated Learning for Client-Level Data Distribution Shift.
IEEE Transactions on Parallel and Distributed Systems,
33(11):2661–2674. DOI: 10.1109/TPDS.2021.3134263.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.
(1996). A Density-based Algorithm for Discover-
ing Clusters in Large Spatial Databases with Noise.
In KDD, pages 226–231. Available at:https:
//cdn.aaai.org/KDD/1996/KDD96-037.pdf?source=
post_page---------------------------.

Fraboni, Y., Vidal, R., Kameni, L., and Lorenzi, M. (2021).
Clustered Sampling: Low-Variance and Improved Rep-
resentativity for Clients Selection in Federated Learn-
ing. In International Conference on Machine Learn-
ing, pages 3407–3416. PMLR. Available at:https://
proceedings.mlr.press/v139/fraboni21a.html.

Fu, L. et al. (2022). Client Selection in Feder-
ated Learning: Principles, Challenges, and Opportuni-
ties. arXiv preprint arXiv:2211.01549, pages 1–8. DOI:
10.48550/arXiv.2211.01549.

Ghosh, A., Chung, J., Yin, D., and Ramchandran, K.
(2020). An Efficient Framework for Clustered Feder-

https://dx.doi.org/10.48550/arXiv.2007.14390
https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008
https://iopscience.iop.org/article/10.1088/1742-5468/2008/10/P10008
https://ieeexplore.ieee.org/document/10001077/
https://www.gta.ufrj.br/ftp/gta/TechReports/SCM23.pdf
https://www.gta.ufrj.br/ftp/gta/TechReports/SCM23.pdf
https://doi.org/10.5753/courb.2023.717
https://ieeexplore.ieee.org/document/9284805
https://doi.org/10.48550/arXiv.2103.00697
https://doi.org/10.1016/j.future.2023.04.034
https://ieeexplore.ieee.org/document/9647969
https://cdn.aaai.org/KDD/1996/KDD96-037.pdf?source=post_page---------------------------
https://cdn.aaai.org/KDD/1996/KDD96-037.pdf?source=post_page---------------------------
https://cdn.aaai.org/KDD/1996/KDD96-037.pdf?source=post_page---------------------------
https://proceedings.mlr.press/v139/fraboni21a.html
https://proceedings.mlr.press/v139/fraboni21a.html
 https://doi.org/10.48550/arXiv.2211.01549


ATHENA-FL: Avoiding Statistical Heterogeneity with One-versus-All in Federated Learning de Souza et al. 2024

ated Learning. arXiv preprint arXiv:2006.04088. DOI:
10.48550/arXiv.2006.04088.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., Andreetto, M., and Adam, H.
(2017). MobileNets: Efficient Convolutional Neural Net-
works for Mobile Vision Applications. arXiv preprint
arXiv:1704.04861. DOI: 10.48550/arXiv.1704.04861.

Krizhevsky, A., Nair, V., and Hinton, G. (2014). The
CIFAR-10 Dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 55(5). Available at:https://
www.cs.toronto.edu/~kriz/cifar.html.

Lai, F., Zhu, X., Madhyastha, H. V., and Chowd-
hury, M. (2021). Oort: Efficient Federated Learning
via Guided Participant Selection. In USENIX OSDI,
pages 19–35. Available at:https://www.usenix.org/
conference/osdi21/presentation/lai.

LeCun, Y., Cortes, C., and Burges, C. J.
(2010). MNIST Handwritten Digit Database.
http://yann.lecun.com/exdb/mnist/. Available
at:https://yann.lecun.com/exdb/mnist/.

Li, D., Lai, J., Wang, R., Li, X., Vijayakumar, P., Gupta,
B. B., and Alhalabi, W. (2023a). Ubiquitous Intelli-
gent Federated Learning Privacy-preserving Scheme un-
der Edge Computing. Future Generation Computer Sys-
tems, 144:205–218. DOI: 10.1016/j.future.2023.03.010.

Li, H., Cai, Z., Wang, J., Tang, J., Ding, W., Lin, C.-
T., and Shi, Y. (2023b). FedTP: Federated Learn-
ing by Transformer Personalization. IEEE Transac-
tions on Neural Networks and Learning Systems. DOI:
10.1109/TNNLS.2023.3269062.

Li, T., Hu, S., Beirami, A., and Smith, V. (2021). Ditto:
Fair and Robust Federated Learning through Personaliza-
tion. In International Conference on Machine Learn-
ing, pages 6357–6368. PMLR. Available at:https://
proceedings.mlr.press/v139/li21h.

Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar,
A., and Smith, V. (2020). Federated Optimization in
Heterogeneous Networks. Proceedings of Machine
Learning and Systems, 2:429–450. Available at:https:
//proceedings.mlsys.org/paper_files/paper/
2020/hash/1f5fe83998a09396ebe6477d9475ba0c-
Abstract.html.

Liu, B., Ding, M., Shaham, S., Rahayu, W., Farokhi, F., and
Lin, Z. (2021). When Machine Learning Meets Privacy:
A Survey and Outlook. ACMComputing Surveys (CSUR),
54(2):1–36. DOI: 10.1145/3436755.

Liu, L., Zhang, J., Song, S., and Letaief, K. B. (2020). Client-
Edge-Cloud Hierarchical Federated Learning. In Interna-
tional Conference on Communications, pages 1–6. DOI:
10.1109/ICC40277.2020.9148862.

Luo, B. et al. (2022). Tackling System and Statistical Het-
erogeneity for Federated Learning with Adaptive Client
Sampling. In IEEE INFOCOM, pages 1739–1748. DOI:
10.1109/INFOCOM48880.2022.9796935.

Ma, X., Zhu, J., Lin, Z., Chen, S., and Qin, Y. (2022). A
State-of-the-Art Survey on Solving Non-IID Data in Fed-
erated Learning. Future Generation Computer Systems,
135:244–258. DOI: 10.1016/j.future.2022.05.003.

McMahan, B. et al. (2017). Communication-efficient

Learning of Deep Networks from Decentralized Data.
Artificial Intelligence and Statistics, pages 1273–1282.
Available at:https://proceedings.mlr.press/v54/
mcmahan17a?ref=https://githubhelp.com.

Neto, H. N. C., Dusparic, I., Mattos, D. M., and Fer-
nande, N. C. (2022). FedSA: Accelerating Intrusion
Detection in Collaborative Environments with Federated
Simulated Annealing. In International Conference on
Network Softwarization (NetSoft), pages 420–428. IEEE.
DOI: 10.1109/NetSoft54395.2022.9844024.

Nishio, T. and Yonetani, R. (2019). Client Selection for Fed-
erated Learning with Heterogeneous Resources in Mobile
Edge. In International Conference on Communications,
pages 1–7. DOI: 10.1109/ICC.2019.8761315.

Ouyang, X. et al. (2021). ClusterFL: a Similarity-Aware Fed-
erated Learning System for Human Activity Recognition.
In Proceedings of the International Conference on Mobile
Systems, Applications, and Services, pages 54–66. DOI:
10.1145/3458864.3467681.

Qin, T., Cheng, G., Wei, Y., and Yao, Z. (2023). Hier-
SFL: Client-Edge-Cloud Collaborative Traffic Classifica-
tion Framework based on Hierarchical Federated Split
Learning. Future Generation Computer Systems. DOI:
10.1016/j.future.2023.07.001.

Rai, S., Kumari, A., and Prasad, D. K. (2022). Client Se-
lection in Federated Learning under Imperfections in En-
vironment. AI, 3(1):124–145. DOI: 10.3390/ai3010008.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). MobileNetV2: Inverted Residuals
and Linear Bottlenecks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
4510–4520. DOI: 10.1109/CVPR.2018.00474.

Sanguineti, M. (2021). Cats VS Dogs Convolutional
Classifier. Towards Data Science. Available
at:https://towardsdatascience.com/cats-vs-
dogs-convolutional-classifier-44ec04c8eb7a.

Sattler, F., Müller, K.-R., and Samek, W. (2020). Clustered
Federated Learning: Model-Agnostic Distributed Multi-
task Optimization under Privacy Constraints. IEEE Trans-
actions on Neural Networks and Learning Systems. DOI:
10.1109/TNNLS.2020.3015958.

Singh, S., Rathore, S., Alfarraj, O., Tolba, A., and Yoon,
B. (2022). A Framework for Privacy-preservation of IoT
Healthcare Data using Federated Learning and Blockchain
Technology. Future Generation Computer Systems,
129:380–388. DOI: 10.1016/j.future.2021.11.028.

Tan, A. Z., Yu, H., Cui, L., and Yang, Q. (2022). Towards
Personalized Federated Learning. IEEE Transactions on
Neural Networks and Learning Systems, pages 1–17. DOI:
10.1109/TNNLS.2022.3160699.

Tang, Z., Hu, Z., Shi, S., Cheung, Y.-m., Jin, Y., Ren,
Z., and Chu, X. (2021). Data Resampling for Feder-
ated Learning with Non-IID Labels. In FTL-IJCAI’21.
Available at:https://federated-learning.org/fl-
ijcai-2021/FTL-IJCAI21_paper_3.pdf.

Wang, H. et al. (2020a). Optimizing Federated Learn-
ing on Non-IID Data with Reinforcement Learning. In
IEEE INFOCOM, pages 1698–1707. DOI: 10.1109/INFO-
COM41043.2020.9155494.

 https://doi.org/10.48550/arXiv.2006.04088
 https://doi.org/10.48550/arXiv.1704.04861
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.usenix.org/conference/osdi21/presentation/lai
https://www.usenix.org/conference/osdi21/presentation/lai
https://yann.lecun.com/exdb/mnist/
https://doi.org/10.1016/j.future.2023.03.010
https://ieeexplore.ieee.org/document/10130784
https://proceedings.mlr.press/v139/li21h
https://proceedings.mlr.press/v139/li21h
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2020/hash/1f5fe83998a09396ebe6477d9475ba0c-Abstract.html
https://doi.org/10.1145/3436755
https://ieeexplore.ieee.org/document/9148862
https://ieeexplore.ieee.org/document/9796935
https://doi.org/10.1016/j.future.2022.05.003
https://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
https://proceedings.mlr.press/v54/mcmahan17a?ref=https://githubhelp.com
https://ieeexplore.ieee.org/document/9844024
https://ieeexplore.ieee.org/document/8761315
https://doi.org/10.1145/3458864.3467681
https://doi.org/10.1016/j.future.2023.07.001
https://doi.org/10.3390/ai3010008
https://ieeexplore.ieee.org/document/8578572
https://towardsdatascience.com/cats-vs-dogs-convolutional-classifier-44ec04c8eb7a
https://towardsdatascience.com/cats-vs-dogs-convolutional-classifier-44ec04c8eb7a
https://ieeexplore.ieee.org/document/9174890
https://doi.org/10.1016/j.future.2021.11.02
https://ieeexplore.ieee.org/document/9743558
https://federated-learning.org/fl-ijcai-2021/FTL-IJCAI21_paper_3.pdf
https://federated-learning.org/fl-ijcai-2021/FTL-IJCAI21_paper_3.pdf
https://ieeexplore.ieee.org/document/9155494
https://ieeexplore.ieee.org/document/9155494


ATHENA-FL: Avoiding Statistical Heterogeneity with One-versus-All in Federated Learning de Souza et al. 2024

Wang, J. et al. (2020b). Tackling the Objective In-
consistency Problem in Heterogeneous Federated
Optimization. NeurIPS, 33:7611–7623. Available
at:https://proceedings.neurips.cc/paper/
2020/hash/564127c03caab942e503ee6f810f54fd-
Abstract.html.

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
MNIST: A Novel Image Dataset for Benchmark-
ing Machine Learning Algorithms. arXiv preprint
arXiv:1708.07747. DOI: 10.48550/arXiv.1708.07747.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Feder-
atedMachine Learning: Concept and Applications. Trans-
actions on Intelligent Systems and Technology (TIST),
10(2):1–19. DOI: 10.1145/3298981.

Zeng, D., Hu, X., Liu, S., Yu, Y., Wang, Q., and
Xu, Z. (2023). Stochastic Clustered Federated
Learning. arXiv preprint arXiv:2303.00897. DOI:
10.48550/arXiv.2303.00897.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., et al. (2018).
Federated Learning with Non-IID Data. arXiv preprint
arXiv:1806.00582. DOI: 10.48550/arXiv.1806.00582.

Zhong, Z. et al. (2022). FLEE: A Hierarchical Federated
Learning Framework for Distributed Deep Neural Net-
work over Cloud, Edge and End Device. ACMTIST, pages
1–24. DOI: 10.1145/3514501.

Zhu, Y., Markos, C., Zhao, R., Zheng, Y., and James, J.
(2021). FedOVA: One-vs-All Training Method for Feder-
ated Learning with Non-IID Data. In IEEE IJCNN, pages
1–7. DOI: 10.1109/IJCNN52387.2021.9533409.

https://proceedings.neurips.cc/paper/2020/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
 https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1145/3298981
 https://doi.org/10.48550/arXiv.2303.00897
 https://doi.org/10.48550/arXiv.1806.00582
https://doi.org/10.1145/3514501
https://ieeexplore.ieee.org/document/9533409

	Introduction
	Federated Learning Concepts
	Feature Distribution
	Data Distribution
	One-versus-All Model

	Related Work
	Selecting Clients for Efficient Training
	Personalized Models in FL
	Clustered Federated Learning

	The ATHENA-FL System
	Problem Formulation
	Data Similarity-based Clients Clustering
	From Specific to Generic Models

	Development of the Prototype and Experimental Results
	Test Model Size Evaluation
	Accuracy Evaluation
	IID Data Scenario
	Scenarios with Non-IID Data

	Communication Evaluation
	Computational Time

	Conclusion and Future Work

