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Abstract Many IoT scenarios demand continuous capture of information from multifunctional sensors and smart
units, as well as sending those data to cloud centers. However, allocating tasks to these sensors is not straightfor-
ward due to the urgency and priority that each type of data collection requires depending on the needs of the urban
environment. This paper presents the POSITRON scheme for managing the sensing allocation in a multifunctional
IoT network from previously defined policies. The policies take into account the characteristics of the applications
running on the network and the different specifications of the available devices. We implemented POSITRON in a
network simulator aiming to analyze its efficiency in allocating network resources. The results point out that con-
sidering the requirements demanded by applications and the distinct characteristics of multifunctional IoT devices
brings benefits to resource allocation.
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1 Introduction

In recent decades, urban centers have experienced unprece-
dented population growth, with the estimation that by 2050,
about 68% of the world’s population will live in cities [Klein
and Anderegg, 2021]. A larger population means longer
lines, more traffic, competition for jobs, the need for more
hospitals and health centers, more housing, and increased
generation, capture and distribution of energy and water,
among other problems [United Nations, 2019]. The Internet
of Things (IoT) has become a basic and essential technology
for the operation of various intelligent urban scenarios [Pe-
droso et al., 2021]. In this context, all environments/objects
(“things”) can present a better performance through the in-
corporation of technology, making them have a unique iden-
tification and communicate with each other for the transfer
of data. This interaction, guided by the actions these objects
perform, supports the creation of intelligent and autonomous
infrastructures. Functional intelligence is then provided by
incorporating heterogeneous objects into environments in a
non-perceptible way to users [El Bouanani et al., 2019].
IoT devices from various manufacturers may have differ-

ent physical characteristics, like battery power capacity and
transmission range, which could limit the types of applica-
tions that a given set of devices can serve [Perera et al., 2021].
Thus, a single multifunctional IoT network, that could serve
different applications and support different types of devices,
could then replace several other IoT networks and reduce
costs. Therefore, application developers would take advan-
tage of the same existing infrastructure of IoT devices. Re-

search initiatives, however, disregard the potential of such in-
frastructure and focus on offloading the applications in some
Edge/Cloud environment, as a way of allocating resources
and reducing usagemetrics. Contrary to this trend, initiatives
like the former Array of Things Project [Catlett et al., 2022],
and now SAGE: A Software-Defined Sensor Network [Catlett
et al., 2020], exemplify the deployment of an extensible ur-
ban monitoring and environmental awareness ecosystem in-
tegrated into an IoT infrastructure. Here, multifunctional de-
vices act as robust computing platforms for a wide array of
applications. Prioritizing privacy and security above all else,
on-device processing of images and sound is emphasized, re-
ducing reliance on cloud-based data storage or transmission.

In that regard, efficiency in allocating resources to appli-
cations refers to the ability to effectively and appropriately
distribute computational, storage, communication, and en-
ergy resources among various IoT applications or services
running on a network of connected devices. This is crucial
for ensuring a smooth operation, at the same time delivering
the desired functionality, and minimizing resource wastage.
Efficiency can be defined by several key aspects, such as: re-
source utilization, which measures how effectively the avail-
able resources are used, by evaluating the percentage of re-
sources (e.g., CPU, memory, storage) that are actively en-
gaged in processing tasks compared to the total available;
latency, which refers to the time it takes for a request to
be sent from a source to a destination and for a response to
be received; energy efficiency, which focuses on how effi-
ciently energy is utilized by IoT devices that often have lim-
ited battery life; load balancing, which involves distributing
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workloads evenly across available resources to prevent over-
loading some devices while leaving others underutilized; and
fault tolerance, which shows the ability to continue operat-
ing in the presence of hardware or software failures, possibly
reallocating resources to backup or redundant systems. Effi-
cient resource allocation is often achieved through a combi-
nation of hardware utilization in terms of applications’ re-
quirements and intelligent software algorithms.
In this paper, we present the POSITRON scheme for

managing the “efficient” selection and allocation of mul-
tifunctional IoT devices in urban sensing environments.
POSITRON takes into account the characteristics of the ap-
plications running on the network, as well as the different
specifications of available devices. It employs two levels of
management through a policy that, at the first level, maps ap-
plications to a previously defined workload profile (resource
consumption). At a second level, it performs load balancing
or saturation (concentration) on possible devices. It should
be noted that the feature of “efficiency” in the allocation of re-
sources means an appropriate fit between the application pro-
file and the device where it is executed. Thus, it is intuitive
to assume a more efficient use of network resources. The im-
plementation of POSITRON in a network simulator demon-
strated its efficiency in resource allocation. The results indi-
cate that considering the requirements demanded by applica-
tions and the distinct characteristics of multifunctional IoT
devices brings benefits in the allocation of resources. A pre-
liminary version of the proposed scheme was previously pub-
lished in Rocha et al. [2022]. We extended the previous work
with a more appropriate representation of the simulated sce-
narios, expanded the number of applications, increased the
number of nodes, and diversified the scenarios to reflect a
more accurate real-life situation. These changes allowed for
a comprehensive performance evaluation. Mainly, the previ-
ous paper was extend with the following contributions:

• A better contextualization of the addressed problem in
terms of resource allocation efficiency;

• A wider comparison with the related work literature;
• A broader formalization of themanagement policies em-
ployed by the proposed scheme;

• A detailed description of the solution implemented as a
proof of concept;

• A more extensive evaluation of different performance
aspects related to allocating and usage of resources, as
well as the level of preempted applications.

The rest of the paper is organized as follows. Section 2
presents related works. Section 3 describes the POSITRON
scheme. Section 4 details the implemented solution, evalu-
ation methodology, and achieved results. Lastly, Section 5
presents the concluding remarks.

2 Related Works
Despite the literature shows up solutions to deal with re-
source allocation in IoT networks, they have usually fo-
cused on reducing specific metrics such as communication
costs [Tsai, 2018], latency [Zhao et al., 2019; Sangaiah
et al., 2020] and energy consumption [Guim et al., 2022;

Xavier et al., 2022; Nikpour et al., 2023; Andal and Jaya-
pal, 2022]; are aimed at a specific environment/solution such
as in Multi-access Edge Computing (MEC) [Xavier et al.,
2020; Bolettieri et al., 2021; Wang et al., 2022], Zigbee [Lv
et al., 2020], Software-Defined Networking (SDN)/Network
Function Virtualization (NFV) [Mukherjee et al., 2020],
blockchain [Rafique et al., 2020]; and propose some kind
of proof-of-concept (PoC) implementation [Calderoni et al.,
2019; Ali and Calis, 2019] or optimization via mathemati-
cal models [Li et al., 2021; Bashir et al., 2022]. Further,
they mostly focus on applications’ offloading as a way of
allocating resources. Table 1 presents a comparison with
related works, taking into account important aspects of the
POSITRON design. The proposed allocation scheme aims
to leverage resource distribution in multifunctional IoT envi-
ronments by integrating application requirements, node hard-
ware specifications, and policy-based management. This
approach would involve a proof-of-concept implementation
to validate technical feasibility before full-scale deployment.
By considering application requirements, the system can
tailor resource allocation to meet specific smart city user
needs, prioritizing critical tasks. Node hardware specifica-
tions would ensure fair resource distribution, enhancing per-
formance and reducing bottlenecks. Policy-based manage-
ment offers flexibility to dynamically adjust resource allo-
cation based on system variability and user priorities. Ulti-
mately, this comprehensive approach promises a robust and
efficient resource allocation system suited for complex com-
puting environments like the ones with IoT.
In Tsai [2018], the authors take into account several con-

straints in a high-performance IoT system on resource allo-
cation, namely, different user requirements, different types
of devices, huge need for communications, network band-
width, and computing power limited. The work proposes an
algorithm to solve the issue of resource allocation in such
a system, aiming to reduce the total cost of communication
between devices. For that, concepts of data clustering and
meta-heuristics are employed, in addition to the use of IoT
gateways for more efficient communication. However, the
solution does not consider the multifunctional characteris-
tics of the network nodes, and nor does it use policies for
autonomous management of the IoT network. So, efficiency
is measured in terms of data communication, disregarding
other aspects of resources such as processing and storage.
In Zhao et al. [2019], the authors study the challenge of

efficiently allocating resources to edge servers, in a scenario
of a growing number of IoT devices and services in smart
cities. They optimize hosted applications for satisfactory per-
formance and compare workload offloading algorithms as-
suming response time as the main metric. In Sangaiah et al.
[2020], the authors propose an optimization algorithm for the
allocation and scheduling of resources in IoT systems in or-
der to reduce the total communication cost between devices
and a nearby gateway. An unfeasible manual approach due
to data heterogeneity and the amount of resources to be al-
located. The efficient allocation proposed here, on the other
hand, may consider different aspects other than communica-
tion to better allocate applications in existing multifunctional
IoT devices. Furthermore, in addition to implementing a load
balancing policy, we also introduce a saturation policy.
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Table 1. Comparative summary with related works.
PoC Applications’ Specification Multifunctional Policy-based

implementation requirements of nodes IoT management
Tsai [2018] ✓ ✓
Zhao et al. [2019] ✓ ✓
Calderoni et al. [2019] ✓
Ali and Calis [2019] ✓
Sangaiah et al. [2020] ✓
Xavier et al. [2020] ✓ ✓
Lv et al. [2020] ✓
Mukherjee et al. [2020] ✓
Rafique et al. [2020] ✓
Li et al. [2021] ✓
Bolettieri et al. [2021] ✓
Clarindo et al. [2021] ✓ ✓
Wang et al. [2022] ✓
Bashir et al. [2022] ✓
Guim et al. [2022] ✓
Xavier et al. [2022] ✓
Andal and Jayapal [2022] ✓ ✓
Nikpour et al. [2023] ✓ ✓
POSITRON ✓ ✓ ✓ ✓ ✓

In Guim et al. [2022], an autonomous lifecycle manage-
ment is proposed for converged green-computing edge plat-
forms, enabling resource-efficient workload orchestration.
Dynamic and intelligent resources that host services from
multiple users are configured, ensuring SLOs for each ser-
vice. However, the efficiency is only considered in terms
of energy consumption and multifunctional devices are disre-
garded. In Xavier et al. [2022], the authors present a fully dis-
tributed resource allocation algorithm for an IoT-edge-cloud
environment. It manages the usage of resources by promot-
ing collaboration between edge nodes and supports applica-
tions’ heterogeneity and requirements, reducing latency and
increasing energy efficiency at the edge. They also aim
at optimizing the energy management, while our proposal
deals with the efficient allocation of several computational
resources, being able to balance the workload to save battery.
In Nikpour et al. [2023], the authors have developed an

IoT framework tailored for energy management within smart
cities. This framework not only undertakes data collection
and storage but also serves as a platform for application de-
velopment. Furthermore, the study delves into intelligent en-
ergy management solutions and elucidates how the gathered
data contributes to the continuous monitoring and enhance-
ment of system efficiency. Despite a shared context that un-
derscores the vital role of continuous data capture through
multifunctional sensors and smart devices, it is noteworthy
that this study is primarily based on energy consumption re-
duction, while our work is distinctly focused on the resource
management process facilitated by policy-based strategies.
Similarly, the authors in Andal and Jayapal [2022] intro-

duce a real-time energy management system integrated into
a suitable platform that leverages the Internet of Things (IoT)
for monitoring and processing real-time control data. Multi-
functional sensors wirelessly detect data, transmitting it to
cloud servers via internet connectivity. The system exhibits
the capability to manage energy production across various
micro grids and enables remote control of energy consump-

tion and generation. While both articles delve into resource
management within IoT networks, our study centers on the
equitable allocation of multifunctional devices, whereas this
study focuses on a renewable energy system.
In Xavier et al. [2020], the authors propose a resource al-

location algorithm for a CoT (Cloud of Things) environment,
which combines a three-tier architecture with IoT devices,
edge nodes and the cloud. The proposal supports the het-
erogeneity of devices and applications, taking advantage of
the distributed nature of edge nodes to promote collaboration
during the allocation process. The collaborative algorithm
follows a heuristic-based approach inspired by an economic
model to solve the resource allocation problem in CoT. The
simulated results indicate efficient use of system resources
while meeting latency requirements and assuming different
priorities of IoT applications, compared to a two-tier cloud-
based approach. Unlike our scheme, which works centrally,
the collaborative algorithm depends on the use of external
resources for greater efficiency in resource allocation.
The study in Clarindo et al. [2021] proposes an architec-

ture that integrates a cloud layer with a fog computing layer
for data extraction, transformation, and loading into a spatial
data warehouse. It introduces guidelines for smart city man-
agers to implement this architecture effectively. The work
addresses the context of using IoT in urban environments.
While this article focuses on managing spatial data for anal-
ysis in smart cities, ours highlights task allocation in a multi-
functional IoT network based on predefined policies.
In Bolettieri et al. [2021], the issue of multiple edge ac-

cess (MEC) by applications running on IoT devices is in-
vestigated. The proposed MEC architecture aims at sup-
porting several IoT service providers on a common plat-
form. From an application perspective, service placement
(placement) and data management are modeled, assuming
data-level dependencies between IoT services and sensing re-
sources. Though, it does not consider the multi-functionality
of IoT devices nor different hardware specifications. In
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[Wang et al., 2022], the authors propose an offloading algo-
rithm based on distributed deep learning in the SD-MEC IoT
scenario. Multiple neural networks are invoked in parallel to
optimize resource scheduling. Similar to our work, applica-
tion characteristics are considered in the offloading decision.
However, the MEC strategy seeks to reduce the IoT utiliza-
tion, instead of making efficient use of available resources.
The work Lv et al. [2020] outlines an intelligent urban en-

vironment monitoring system utilizing the ZigBee wireless
network. This system comprises a basic monitoring network
and a remote receiving terminal. The network nodes are dy-
namically organized, with each node assigned a unique ad-
dress. Similar to ours, the work addresses the need for con-
tinuous data capture in IoT scenarios. Nevertheless, there
are distinctions in terms of the proposed solutions. While
POSITRON primarily focuses on the efficient allocation of
network resources, the article places emphasis on informa-
tion gathering and its transmission to a remote terminal.
The research by the authors of Mukherjee et al. [2020] in-

troduces the development of a distributed IoT network based
on SDN with NFV implementation for smart cities, aiming
to enhance network performance, scalability, availability, in-
tegrity, and security. Multiple distributed controllers and a
clustering scheme are employed to improve load balancing.
Despite the similarities, this article proposes a distributed IoT
network based on SDN with NFV implementation for smart
cities, whereas the POSITRON scheme presents an approach
to resource allocation through predefined policies.
The work Rafique et al. [2020] suggests the use of

Blockchain technology for secure implementation of ITS,
providing a framework that securely and efficiently inte-
grates smart vehicles and service infrastructure. While both
works propose solutions to optimize network resource utiliza-
tion and enhance application efficiency in IoT contexts, this
article particularly emphasizes the utilization of Intelligent
Transportation Systems (ITS) and concerns regarding their
security vulnerabilities. In contrast, our work focuses on ef-
ficient management through resource allocation via policies.
In Calderoni et al. [2019], the authors propose the utiliza-

tion of the IoT Manager, a comprehensive framework devel-
oped at the University of Bologna. IoT Manager presents an
open and flexible solution for the management of sensor net-
works, complete with a detailed implementation strategy and
a readily available client for research and educational pur-
poses. While the work addresses the imperative need for IoT
network management, IoT Manager is presented as an open-
source framework tailored for sensor network management,
whereas POSITRON is a specialized scheme designed for re-
source allocation in multifunctional IoT network. While the
former places emphasis on implementation strategy and its
accessibility for research and education, the latter focuses in
efficiently allocating resources through predefined policies.
In Ali and Calis [2019], the authors outline a centralized

intelligent governance framework for monitoring the perfor-
mance of governmental entities in a smart city. Thousands of
IoT devices communicate with each other, generating a vast
amount of data. The objective is to control, manage, monitor,
operate, and consolidate this network of devices from a cen-
tral location. The framework employs optimal classification
techniques to analyze data and monitor the performance of

governmental entities. Both articles address IoT device man-
agement in different contexts. While the article introduces
an intelligent governance framework for monitoring the per-
formance of governmental entities, the POSITRON scheme
is presented for resource allocation management in a multi-
functional IoT network.
In Li et al. [2021], the network availability is affected by

various types of applications and devices with limited com-
putational capabilities. To deal with this, it is proposed a
cooperative offloading model of multi-user IoT applications
based on a mixed-integer nonlinear programming formula-
tion. Results indicate the efficiency in allocating part of the
applications at the edge, by reducing energy consumption,
latency and network utilization. Nonetheless, the multifunc-
tional characteristic of devices is not explored and a reference
implementation is not provided. In Bashir et al. [2022], sim-
ilar to the previous one, an offloading approach is a dynamic
resource allocation strategy for cloud and fog environments,
using logistic regression to calculate the required edge load.
A framework for ranking available nodes takes into account
decisions performed by the TOPSIS algorithm. However,
the mathematical formulations in both works do not relate
different workload profiles to multifunctional devices. Fur-
ther, they use an inverse approach to our proposed scheme,
which makes a more adequate allocation in the final nodes,
based on their specifications.
Overall, POSITRON addresses resource allocation within

a multifunctional IoT network through predefined policies
while satisfying all the above-mentioned important charac-
teristics. Most works lack consideration for multifunctional
characteristics and autonomous management policies, such
as Tsai [2018] that emphasize data communication efficiency.
Yet, some works deal with resource allocation for edge
servers in smart cities, considering workload offloading al-
gorithms, e.g. [Zhao et al., 2019], that take into account com-
munication costs, but lack policy-based management and
multifunctional device utilization. The works Guim et al.
[2022], Xavier et al. [2022], Nikpour et al. [2023], and
Andal and Jayapal [2022] primarily focus on energy man-
agement rather than policy-based resource allocation, disre-
garding multifunctionality. Xavier et al. [2020] proposes a
platform for collaboration among nodes and Clarindo et al.
[2021] mainly focuses on spatial data management as a ser-
vice layer. In contrast, POSITRON emphasizes task alloca-
tion in a multifunctional IoT network and can be seen as
an infrastructure manager for both works. Bolettieri et al.
[2021] also disregards multifunctionality or hardware speci-
fications. Wang et al. [2022] considers application character-
istics in resource scheduling but seeks to reduce IoT utiliza-
tion rather than making efficient use of available resources
like POSITRON. Lv et al. [2020] focuses on continuous data
capture, similar to POSITRON, but emphasizes information
gathering and transmission rather than resource allocation.
Mukherjee et al. [2020] shares similarities with POSITRON,
but it focuses on network enhancement rather than resource
allocation through predefined policies. Rafique et al. [2020]
emphasizes security and efficiency, and Calderoni et al.
[2019] focuses on sensor network management, but unlike
POSITRON, they don’t focus on policy-based resource allo-
cation. Ali and Calis [2019] focuses on managing network-
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ing aspects of IoT devices, contrasting with POSITRON’s
emphasis on resource allocation. Li et al. [2021] and Bashir
et al. [2022] don’t explore multifunctionality, policy-based
management, or workload profiles. In particular, Sangaiah
et al. [2020] focus on minimizing communication costs be-
tween resources and gateways by efficiently assigning re-
sources to gateways, while POSITRON aims to optimize re-
source usage by matching application needs with device ca-
pabilities. Both approaches involve load balancing policies,
but they differ in implementation: POSITRON has been val-
idated through a PoC, while Sangaiah et al. [2020] propose
heuristic-based optimization using evolutionary algorithms.

3 The POSITRON Scheme
This section details the hierarchical network setting for
POSITRON operation and describes its modules that com-
prise the Controller component, the selection policies, and
the allocation algorithm to meet applications’ demands.

3.1 Multifunctional Network Organization
The multifunctional feature comes from different types of
IoT devices and configurations. Such environment attends
different types of applications requesting services in many
contexts (e.g. IA, ITS, blockchain, etc.), as expected in smart
cities. Moreover, these applications have the most varied
hardware demands. One can assume that monitoring pub-
lic roads requires a minimum storage capacity available at
the network nodes, while performing encryption can take ad-
vantage of greater processing power. Certainly, applications
sensing some physical phenomenon need to constantly trans-
mit data on the network. However, even though IoT devices
have heterogeneous characteristics, it is likely to find groups
of nodes with similar configurations. Such similarities may
indicate that a given group of nodes is more suitable for run-
ning one type of application. Figure 1 depicts the hierarchical
network organization where POSITRON operates.

Controller

Decision
Module

Configuration
Module

Persistence
Module

Blockchain

Security ITS

AI Monitoring

wired wi-fi LoRaWAN

Communication Infrastructure

Figure 1. Multifunctional IoT topology (adapted from Rocha et al. [2022]).

In this multifunctional IoT environment, a control layer
coordinates the efficient allocation scheme employed by
POSITRON. The Controller acts as an interface between the
applications that demand resources and the adjacent network
infrastructure. The Decision Module (DM) evaluates the ap-
plication demands and uses policies to determine the most
suitable set of devices to meet applications’ requirements, ac-
cording to their current status. This policy-based approach
allows the system to make adaptive decisions considering
network conditions. The DM result is the input for the Con-
figuration Module (CM), which communicates with the de-
vices through the infrastructure layer, enforcing the alloca-
tion suggested by the DM. The PersistenceModule (PM) reg-
isters and periodically updates all information regarding the
IoT nodes in a database, so that POSITRON has an always-
updated view of the network state. In addition to nodes’ at-
tributes, the PM records the execution history related to de-
vices and the applications they execute.

3.2 Selection policies
POSITRON employs a hierarchy of policies to dynamically
select the devices according to the state of network nodes and
applications’ demands, as illustrated in Figure 2. This allows
the system auto-configuration based on pre-established rules,
with no need to reboot or redeploy [?]. Furthermore, by em-
ploying this hierarchy of policies, successive refinements in
the selection can be performed to search for the most appro-
priate subset of nodes. This approach simplifies the addition
of new policies to meet different objectives, such as reducing
operational costs or fulfilling commercial agreements.

Policy n

Policy 1

Policy 2Decision
Module

Application
requirements

Devices’
States

Selec. devs.

Selec. devs.

Selec. devs.

Figure 2. Selection policy hierarchy (adapted from Rocha et al. [2022]).

We have applied three simple policies at two
hierarchical levels to validate the POSITRON
scheme, as can be seen in Figure 3. The function
satisfy(nodeList, node.resources, app.requirements)
filtrates all nodes with the minimum amount of free
resources to meet the application’s requirements. The
select(n, nodeList) function then selects the first n nodes
from the list. The sort(nodeList, criterion, order) func-
tion sorts nodeList according to the specific criterion (CPU,
ram, storage, or network), in ascending or descending order
of node usage (number of running applications). Initially,
the system applies a fitness policy by choosing the IoT
nodes that meet the application’s requirements. Afterward,
POSITRON fine-tunes the selected node list by applying a
second policy: load-balancing or saturation. Load balancing
aims to balance the use of computational resources in the
nodes, sorting the list in ascending order. Thus, the first
n nodes are those that meet the application’s requirements
and are least overloaded. On the other hand, the saturation
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policy sorts the list in descending order, making the first n
nodes the most overloaded. So, the network has more free
nodes to serve future requests.

policy is

FITNESS

LOAD-BALANCING

SATURATION

nodeList = satisfy(nodeList,
node.resources, app.requirements)

nodeList = select(n,sort(nodeList,
criterion, ASC))

nodeList = select(n, sort(nodeList,
criteron, DESC))

YES

YES

YES

NO

NO

Figure 3. Workflow policies (adapted from Rocha et al. [2022]).

The system assumes that the Controller has access to up-
dated device information stored in a database (PM module),
including processing power, storage, memory, transmission
rate, and current application usage. It uses this information
to search for devices that meet specific application require-
ments. Messages are exchanged whenever device informa-
tion is updated or events like application termination occur.
The satisfy function finds nodes capable of meeting mini-
mum application requirements by searching the database. It
triggers the selection of a set of nodes, which uses a sorting
function based on a predefined balancing or saturation pol-
icy. ASC parameter sorts devices by ascending usage, while
DESC parameter sorts by descending allocation.
Algorithm 1 describes the general node selection process,

which uses the application’s demand input. Essentially, the
procedure consists of waiting for the arrival of a specific
application (line 2) and extracting its description, including
type and minimum requirements (e.g. CPU, memory, and
storage). Although it is not always easy, we assume that it is
possible to estimate such minimum requirements (line 3) and
draw a profile (line 4) used for the first hierarchical level of
the management policy. Then, POSITRON triggers a query
(line 5) to search for a list of nodes that meet these require-
ments. It is worth noting that this query considers the idle
computing resources of the nodes, even if they are running
other applications. If the query returns an empty list, the sys-
tem sends an unavailability message (line 7) and configures a
node availability alert (line 8). If a non-empty list returns, the
system chooses a policy (load-balancing or saturation) from
the second hierarchical level based on network conditions
(line 10). As discussed earlier, it sorts the list in ascending
or descending order depending on the chosen policy. Finally,
POSITRON allocates the application to the node (line 11).
The algorithm’s computational complexity can be ana-

lyzed from two perspectives: technological considerations
and the algorithm itself. Technological issues like transmis-
sion delay and computational power are abstracted, assuming
various edge and cloud computing techniques can address
them. The algorithmic complexity involves searching for
nodes meeting certain criteria and then sorting them based
on a chosen policy (balancing or saturation). Searching typ-
ically has a complexity of O(n), where n is the number of

Algorithm 1Multi-functional node allocation process.
Require: AppDesc, Policy
1: while TRUE do
2: AppDesc← waitApp()
3: requirements← estimateReq(AppDesc)
4: profile← defineProfile(requirements)
5: nodeList← queryDB(nodes.resouurces ≥ requirements)
6: if (nodeList = empty) then
7: echo(“No available node”)
8: configureAvailabilityAlert()
9: else
10: nodeList← enforces “load balancing” or “saturation”
11: alocateApp(AppDesc, nodeList[1])
12: end if
13: end while

elements. Sorting is often O(n log n) for known algorithms
like mergesort. Combining both steps, the overall complex-
ity is the sum. Since sorting usually dominates, especially
with large lists, the overall complexity averages to O(n log n).
However, improving the computational time by proactively
pre-ordering based on node occupancy is ideally possible.

4 Evaluation
In this section, we present the POSITRON implementation,
simulated scenarios, considered metrics, and results.

4.1 Implementation
POSITRON was implemented in C++ at the network simu-
lator NS-3 version 3.38. Regarding IoT specs, we extended
the class that implements the network nodes with common at-
tributes tomultifunctional devices: battery level, initial con-
sumption rate, current consumption rate, CPU,memory,
transmission rate, and storage capacity. The control layer
considering the three functional modules in Figure 1 was also
implemented. This layer runs on a special node called Con-
troller, which applies all the functions corresponding to the
management policies. To this end, an application concep-
tual model that echoes UDP packets was used for generating,
sending, and handling network packets. IoT nodes account-
able for executing the applications are called Workers. The
POSITRON code is available in a public repository1.
Figure 4 shows a sequence diagram with the interaction of

modules, representing the arrival of two applications, going
through the selection process, efficiently allocatingWorkers,
and ending with the applications’ execution. Nodes are se-
lected and sorted based on both the application profile and the
previously defined management policy. In this hypothetical
example, a battery loss situation of a chosen node (Worker
X) is also represented. Once the alert message is received,
the MC starts again the selection process of a new device
(WorkerY) in order to run the corresponding application. Af-
ter each application’s execution, alerts are sent byWorkersY
and Z to the MC so their status is updated in the MP, which
in turn maintains current information about Workers’ usage.
For the sake of simplification, status update, node registra-
tion and output messages were omitted from the figure.

1https://github.com/ifpb/positron

https://github.com/ifpb/positron
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Figure 4. Modules interaction (adapted from Rocha et al. [2022]).

4.2 Simulated Scenarios

The base configuration scenario comprises one Controller
and a variable number ofWorkers representing the multifunc-
tional IoT devices. Additionally, network communication
takes place through LrWPAN, 6LoWPAN, and IPv6 proto-
cols. In this common configuration, IoT device specs are
differentiated through groups with equivalent attributes, like
the ones defined in Section 4.1. Similarly, application types
are differentiated by their minimum requirements, as detailed
below. The arrival ofWorkers occurs at the beginning of the
simulation and, consequently, registration in the PM happens
as soon as they arrive. Applications’ arrivals are randomly
set along the simulation period, as further explained.
We assumed three distinct types of applications that re-

quire: high processing power, e.g. encryption algorithms;
large storage capacities, e.g. monitoring public roads; and
high data transmission rate in the network, e.g. environmen-
tal sensing. Three different groups of IoTWorkers were also
configured in each scenario, whose specifications vary ac-
cording to the demands requested by the applications. More
specifically, one group more suitable for applications that re-
quire processing power, another for applications that need

storage capacity, and a last one for applications requesting
high network throughput.
The total number ofWorkers ranges from 30 to 180 nodes

in the system, which represents a factor of 10, 20, 30, 40, 50,
or 60 times each group. A total batch of 600 applications
(200 of each type) arrives in the system, approximately 1/3
of them randomly arrives at each 8h-shift interval along the
day; i.e. the first 200 between 0 and 8 a.m., 200 more be-
tween 8 a.m. and 4 p.m., and the last 200 ones after 4 p.m.,
totaling a number of 600 applications through the day. The
duration of each application was selected according to a nor-
mal distribution, with an average of 6h and a standard devi-
ation of 20%. The idea is to represent a day in a smart city,
where different applications may arrive at distinct times and
a number of IoT nodes is available for their execution. We
evenly match the arrivals with adequate Workers to verify
the efficiency of the POSITRON scheme. Every scenario
was repeated 30 times for the appropriate statistical analysis
and the confidence level used was 95%. Regarding battery
consumption, we first simulate the scenario with no battery
loss, and then consider scenarios whereWorkers lose battery
throughout the simulation, i.e. 10%, 20%, and 30% ofWork-
ers completely loosing their battery power. Given that not
all nodes can be conveniently located near a power source,
our objective is to assess the impact of nodes running out of
energy on the proposed efficient allocation scheme and inves-
tigated policies. Table 2 presents the simulation parameters.

Table 2. Simulation parameters.
Parameters Values
Number of applications 600 (200 of each type)a
Number of Workers n × 3 (one of each group)b,

n = {10, 20, 30, 40, 50, 60}
Management policies 2 levels (demandc and loadd)
Applications’ arrivals 60 (20 of each typea) every 8h,

during a total time of 24h
Applications’ duration normally distributed

(avg of 6h, sd of 20%)
Workers battery No battery loss,
scenarios 10% of battery loss,

30% of battery loss,
50% of battery loss

a Cryptography (cry), monitoring (mon), and sensing (sen).
b Processing (pro), storage (str), and transmission rate (tra).
c Corresponding application demand and device specification.
d Node utilization saturation or load balancing.

4.3 Metrics
We developed two metrics to assess the POSITRON effi-
ciency. The first one takes into account the number of nodes
actually used, as a way to distinguish the policies of load bal-
ancing or saturation in fewer devices. To do that, we assume
a finite set of application profiles P . The number of applica-
tions that arrived in each profile is defined as Ip. Similarly,
IoT nodes are classified from a finite set of types G and the
amount of each node, in each type, is represented by the set
Jg . So, the set of arriving applications, the set IoT nodes,
and the total number of nodes are defined, respectively, as:

A = {ai,p|i ∈ Ip; p ∈ P}, N = {nj,g|j ∈ Jg; g ∈ G}, and
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|N | =
|G|∑
g=1

|Jg|∑
j=1

(g + j)0.

The first metric, therefore, indicates the percentage of IoT
nodes used throughout the simulation and is represented by:

Pused = 102

|N |

|G|∑
g=1

|Jg|∑
j=1

U(nj,g), (1)

where a utilization function is defined by,

U(nj,g) =

{
1, if nj,g performed any application;
0, otherwise.

This metric is notably related to the allocation policy used
and does not necessarily indicate a good or bad value.
The second metric concerns the percentage of “efficient”

allocation, which represents the “hit” rate when executing the
applications on the most suitable devices. Namely, devices
with the more appropriate hardware specs for the considered
application profiles. So, the percentage at a given node g is:

Pg
efficient = 102

|N |

|P |∑
p=1

|I|∑
i=1

|J|∑
j=1

U(nj,g, ai,p) · J (ai,p, g),

(2)
where we use a specification of the previous usage function,

U(nj,g, ai,p) =

{
1, if nj,g performed any ai,p application;
0, otherwise.

Also, both application profile and IoT group are related as:

J (ai,p, g) =

{
1, if g is the appropriate group to profile p;
0, otherwise.

Then, the total percentage of efficient allocation is defined
as the sum for each group of IoT nodes:

Pefficient =
|G|∑
g=1

P g
efficient.

Two other metrics that effectively quantify the system’s
overload are the percentage of preempted applications, pri-
marily caused by node failures; and the makespan increase,
which indicates the percentage growth in applications’ re-
sponse time. The former can be represented by the ratio of
applications that were preempted at least once, given by:

Ppreempted = 102

|A|

|P |∑
p=1

|I|∑
i=1

R(ai,p), (3)

where,

R(ai,p) =

{
1, if ai,p was re-executed at least once;
0, otherwise.

Finally, the percentage increase in makespan takes into ac-
count both the application’s duration and the total time in the
system; which in turn is the time the application was finished
minus the arrival time, both represented respectively by:

D(ai,p), F(ai,p), and A(ai,p),
were

M(ai,p) = F(ai,p) − A(ai,p)
is the makespan (system time) of an application ai,p, and

Pmakespan = 102

|A|

|P |∑
p=1

|I|∑
i=1

(
1 − D(ai,p)

M(ai,p)

)
, (4)

is the percentage of makespan increase. It is noted that

D(ai,p)
M(ai,p)

≤ 1

and
D(ai,p) = M(ai,p)

if and only if ai,p is executed immediately (upon arrival)
and uninterruptedly. Basically, the percentage increase in
makespan normalizes an application’s system time by dura-
tion. A higher percentage increase indicates a system time
proportionally higher compared to its overall runtime.
The simulation parameters (Table 2) were instantiated as

follows: P = {cry, mon, sen}, Ip = {1, 2, ..., 200} ∀p,
G = {pro, str, tra}, and Jg = {1, ..., n} ∀g | n =
{20, 30, 40, 50, 60}; the latter varies in each scenario.
4.4 Results
Before detailing the allocation results, Figure 5 demonstrates
a balanced execution of the applications over the simulation
time, in each one of the 3 distinct groups ofWorkers, for one
specific scenario. As also expected, the applications’ arrivals
are well distributed among the 3 shifts of the day.
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Figure 5. Running applications per group ofWorkers.

Figure 6 illustrates the results for the execution of a simu-
lated scenario with no battery loss among Workers. Firstly,
as we can see in Figure 6(a), there is a clear difference in
the number of used resources according to the applied pol-
icy, whether it is load balancing or not. As expected, a re-
source balancing policy uses a higher number of available
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Workers and can be applied in situations where the several
network nodes have enough battery to run the applications.
On the other hand, in a situation where it is more advanta-
geous to use a smaller number of Workers, given, for exam-
ple, a power consumption saving scenario, the saturation pol-
icy always uses a smaller percentage of nodes. Both plots
in Figure 6(b) depict the ability to properly allocate applica-
tions, considering the specific demands and specs of existing
Workers. In case of a device saturation policy, applications
are allocated in the most “efficient” way possible; i.e. to the
most suitable Workers for their executions, validating then
the POSITRON management scheme. When a load balanc-
ing policy is used, there is also a high percentage of “effi-
cient” allocation, with no less than 88% of applications al-
located properly. In other words, even using a policy that
seeks to balance resource usage and, in this way, save others,
it is possible to achieve high allocation efficiency. Thus, the
price you “pay” for balancing does not cause great damage
to the “efficiency” exercised during the allocation.
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Figure 6. Results for the scenario with no battery loss.

It is noteworthy to highlight that an “inefficient” alloca-
tion to a given node does not mean that the application was
not executed. This situation represents an allocation where
the application would be more appropriate for another type
of device, but it wasn’t disregarded. For instance, from the
obtained results in Figure 6, the average of applications allo-
cated “inefficiently” was no more than 12%, in the balanced
scenario with 30Workers. Overall, the application execution
rate was virtually 100% considering all scenarios.
Figure 7 presents the results for the execution of a simu-

lated scenario with 10%of battery loss amongWorkers. Like-

wise expected, Figure 7(a) shows a higher percentage of used
Workers compared to Figure 6(a), since 10% of nodes run out
of battery and leave the simulation. So, the applications run-
ning on those Workers are preempted and re-executed after
the selection of new ones. There is still a difference between
load balancing and saturation policies, which can enforce
clear utilization patterns according to network conditions. In
Figure 7(b), an almost fully efficient allocation of applica-
tions can be seen, no matter the leaving number of Work-
ers. However, an evident impact on the allocation process is
noted since an unequal percentage of allocated applications
is achieved. In particular, for the saturation policy, the per-
centage of applications “efficiently” allocated to the Group
1 of Workers increases as the total number of Workers also
increases. This happens when a saturated Worker loses its
battery and a high number of applications must be preempted.
As the applications suitable for the Group 1 type ofWorkers
are more restrictive in terms of requirements (CPU and mem-
ory), we observe a higher number of preemption and, conse-
quently, more applications are reallocated on thoseWorkers.
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Figure 7. Results for the scenario with 10% of battery loss.

Figure 8 presents the results for the execution of a sim-
ulated scenario with 30% of battery loss among Workers.
Just like the previous result, Figure 8(a) shows an increas-
ingly smaller difference between load balancing and satura-
tion policies. Additionally, the percentage of efficient alloca-
tion is also strongly impacted at this level of battery loss, as
we can see in Figure 8(b). Regarding the load balancing pol-
icy, there is still a certain balance considering only applica-
tions that were allocated efficiently, especially as the number
of Workers increases. However, the number of applications
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allocated “inefficiently” increased significantly. The results
with the resource saturation policy are even worse, given the
more restrictive approach of trying to allocate as few Work-
ers as possible. Again, we observe that the saturation policy
allocates applications more efficiently, even if this means re-
locating the same application several times.
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Figure 8. Results for the scenario with 30% of battery loss.

The results with a battery loss level of 50% confirm that
POSITRON is strongly impacted in allocating resources, as
observed in Figure 9. Figure 9(a) shows that roughly all
Workers are used to run applications to some extent, as a con-
sequence of nodes leaving the system due to lack of battery.
A 50% battery loss is a level at which most Workers are re-
quired for the simulation. In other words, from this level
of decrease on, we almost lose the ability to distinguish be-
tween balanced resource utilization and saturation. Likewise,
Figure 9(b) illustrates that the efficiency of resource alloca-
tion is even more affected, confirming unsatisfactory results
with a high Worker loss rate. As the number of nodes los-
ing battery increases, it’s clear that remaining nodes in each
category are insufficient to execute applications “appropri-
ately”, i.e., preempted applications must be executed by any
available nodes and not the most appropriate ones. This is
more evident for a smaller number of Workers. The bottom
line is that, as the level of battery loss increases, efficiently
allocating resources becomes increasingly challenging.
Figure 10 corroborates that the saturation policy has a

higher percentage of preempted applications, those started
in more than one Worker. For all battery loss levels, 10%
(a), 30% (b), and 50% (c), the resource saturation policy has
a higher average number of applications preempted than the
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Figure 9. Results for the scenario with 50% of battery loss.

load balancing one, varying in the range of approximately
4 to 25%. Since the former is more restrictive and seeks to
overload as few Workers as possible, those nodes lose bat-
tery more quickly and need to preempt applications again.
The latter also presents a significant number of preempted
applications, with averages in the range of 2 to 20%.
A significant outcome is the percentage increase in

makespan, as depicted in Figure 11. The load balancing
policy consistently exhibits lower increases, resulting in
makespans closer to those observed in scenarios without ap-
plication preemption. For this policy, the average makespan
increase ranges from approximately 1 to 7%. These values
translate to an average makespan increase of 1% with 10%
battery loss, 3.2% with 30% loss, and 4.7% with 50% loss.
Conversely, the results with the saturation policy range from
approximately 1 to 11%. These values translate to an aver-
age makespan increase of 2% with 10% battery loss, 5.8%
with 30% loss, and 8.1% with 50% loss. We attribute these
results to the overload introduced to the system due to battery
loss on the part ofWorkers, leading to lost executions and the
need for application re-execution.
Although the results demonstrate POSITRON’s ability to

allocate resources efficiently, it’s also envisioned the inabil-
ity to react to a very high level of Worker loss. This might
happen because the battery level is not taken into account
when choosing the resources to be allocated. After all, we be-
lieve that it’s not common to describe the requirements of an
IoT application in terms of the battery level needed, given the
heterogeneous and multifunctional environment described in
this work. However, the POSITRON scheme can be fully
adjustable to also consider the battery level as a Worker pa-
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(c) 50% of battery loss.
Figure 10. Results for the percentage of preempted applications (Eq. 3).

rameter of choice. Trying to infer the minimum battery level
during the allocation procedure can be an interesting research
problem, in order to mitigate the situation of preemption and
battery loss. For example, selecting Workers taking into ac-
count their battery level and current allocation scenario can
represent a multi-variable optimization problem, and this in-
vestigation is also a subject of interest for further research.

5 Conclusion
The presented work introduces the POSITRON scheme, de-
signed to efficiently manage sensing allocation within a mul-
tifunctional IoT network. Unlike previous approaches, this
scheme takes into account not only application character-
istics but also the unique specifications of available nodes.
The implementation in the NS-3 network simulator demon-
strates its effectiveness in a controlled IoT network scenario.
The findings indicate that POSITRON excels in employ-
ing resource usage policies and allocating applications ef-
ficiently, particularly in scenarios with minimal node bat-
tery loss. However, introducing a node battery-saving policy
emerged as a promising enhancement.
The experiments confirm POSITRON’s capabilities in

managing multifunctional IoT devices in systems with low
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(a) 10% of battery loss.
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(b) 30% of battery loss.
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(c) 50% of battery loss.
Figure 11. Results for the percentage of makespan increase (Eq. 4).

preemption rates under the proposed policies. Future endeav-
ors will focus on devising strategies to further minimize bat-
tery loss. Additionally, a more comprehensive characteriza-
tion of application requirements and IoT node sensing capa-
bilities is planned. Lastly, an investigation into formulating
management policies for diverse IoT devices will be pursued.
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