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Abstract Internet of Things (IoT) devices are increasingly pervasive and essential in enabling new applications and
services. However, their widespread use also exposes them to exploitable vulnerabilities and flaws that can lead to
significant losses. In this context, ensuring robust cybersecurity measures is essential to protect IoT devices from
malicious attacks. However, the current solutions that provide flexible policy specifications and higher security
levels for IoT devices are scarce. To address this gap, we introduce T800, a low-resource packet filter that utilizes
machine learning (ML) algorithms to classify packets in IoT devices. We present a detailed performance benchmark-
ing framework and demonstrate T800’s effectiveness on the ESP32 system-on-chip microcontroller and ESP-IDF
framework. Our evaluation shows that T800 is an efficient solution that increases device computational capacity by
excluding unsolicited malicious traffic from the processing pipeline. Additionally, T800 is adaptable to different
systems and provides a well-documented performance evaluation strategy for security ML-based mechanisms on
ESP32-based IoT systems. Our research contributes to improving the cybersecurity of resource-constrained IoT
devices and provides a scalable, efficient solution that can be used to enhance the security of IoT systems.
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1 Introduction
Cybersecurity is increasingly becoming a vital strategic as-
pect of business continuity [Klint, 2021]. According to the
World Economic Forum’s 2021 Global Risk Report [McLen-
nan, 2021], incidents of this nature represent one of the
most significant post-pandemic challenges. They potentially
cause economic disruption, financial losses, geopolitical ten-
sions, and social unrest. Thus, it is important to highlight that
cybersecurity should be essential to the product and service
development lifecycle. Due to the digital transformation that
the world is going through, incidents have appeared in media
due to the possible disruption of services by cyber-attacks
that affect the population directly, like urban computing sys-
tems, impacting intelligent city services and directly affect-
ing urban populations [Kovacs, 2020; Smith, 2022]. The vul-
nerabilities in Internet of Things (IoT) devices, integral to ur-
ban infrastructures, exemplify this challenge, underscoring
the need for robust cybersecurity mechanisms in the urban
computing landscape [Almeida, 2023].
High critical attacks can be achieved in this constantly

changing environment by orchestrating large-scale compro-
mised devices for malicious purposes. In this sense, a
typical approach consists of a set of computational re-
sources composing a command and control network (i.e., bot-
nets) [Bertino and Islam, 2017; Lakshmanan, 2022]. Then,
the attacker’s objective is to compromise computers, smart-
phones, Wi-Fi routers, IP cameras, and others to compose

this botnet. In this context, Internet of Things (IoT) devices
are a common target because they usually have a precari-
ous update, improper configuration, and maintenance proce-
dures, as seen in attack campaigns like Mirai and Mozi [An-
tonakakis et al., 2017; McMillen, 2021]. Moreover, this bot-
net risk tends to be present if the development practices do
not ensure robust updating of security policies, intelligent se-
curity mechanisms, and secure-by-design. Additionally, it is
common sense that IoT enables new technological, efficient,
and profitable solutions. However, subverting IoT systems
is profitable also to malicious actors [Al-Sarawi et al., 2020;
Georgoulias et al., 2023].
Nowadays, cybersecurity mechanisms focusing on

resource-constrained devices are scarce. Specifically,
there is a lack of work evaluating security mechanisms
using machine learning for microcontroller-based IoT
systems. Our work contributes to this research gap by
proposing T800: a packet filter for Internet of Things (IoT)
devices. T800 is a combination of mechanism and policy
to implement a more secure operating environment for IoT
systems, as it can work as an enabler to implement zero-trust
architectures. The mechanism consists of instrumentation
of the ESP-IDF framework TPC/IP stack, the lightweight IP
(lwIP). It allows intercepting the network ingress traffic and
deciding whether to drop the current packet. The policies
are the translation of machine-learning algorithms trained
to identify malicious packets in the incoming network
traffic. Hence, the mechanism allows the introduction of an
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ML-based filter that returns boolean values to allow packets
to proceed in the network stack. As contributions of this
paper, we highlight:

• Design and implementation of T800 allowing the de-
ployment of rules for packet filtering with machine
learning algorithms such as decision trees and neural
networks in the ESP32 platform (FreeRTOS, TCP/IP
protocol stack lwIP, and ESP-IDF SDK) with Tensor-
Flow.

• Considering the port scanning use-case in this paper, a
solution to allow IoT devices to go unnoticed during lat-
eral movement or internet-wide scanning campaigns.

• Performance evaluation of T800, indicating low over-
head and energy efficiency for low-end edge devices.
The results demonstrate a reduction in resource con-
sumption by removing unsolicited traffic from the pro-
tocol stack and avoiding processing them.

To our knowledge, this work is the first to evaluate the
technical feasibility of machine learning-based stateless in-
trusion detection on microcontroller-based systems. Fur-
thermore, the work is reproducible and opens research for
further developments in network security mechanisms for
microcontroller-based systems. Our results advance knowl-
edge in packet filtering for security purposes and have impor-
tant implications for microcontroller-based systems and the
IoT domain.
The remainder of the paper is organized as follows: Sec-

tion 2 discusses related works. Section 3 describes the ar-
chitecture of T800. Section 4 describes the experimental de-
sign. Section 5 reports the obtained results and the influence
of the factors. Finally, Section 6 presents the conclusion of
the work and future directions.

2 Related Works
As observed in a broader application domain of computer
networks and security, the characterization, identification,
and creation of rules for packet filtering are well estab-
lished [Roesch, 1999; Khraisat and Alazab, 2021; Alieyan
et al., 2021]. However, viewing them as componentized net-
work functions to move them from the perimeter towards
the endpoint of low computational power presents difficul-
ties and restrictions [Qin et al., 2019]. Saha et al. [2022]
performs a survey on the deployment of ML on low-resource
devices. They highlight the importance of moving the intelli-
gence to the edge to achieve independence from the network
infrastructure, and low deployment costs.
The TinyML is a broader concept focusing on advance-

ments to complex deep learning layers deployment to con-
strained devices and the on-device training approach [Ren
et al., 2021; Schizas et al., 2022]. TinyML improves energy
efficiency, low cost, data integrity, privacy, security, and la-
tency. Abadade et al. [2023] presents a taxonomy of TinyML
applications, but security-related applications, as proposed in
this work for packet filtering, is not identified.
Among the works exploring the deployment of machine

learning in constrained environments, Murshed et al. [2019]

provides a survey on applying machine learning at the net-
work edge. It addresses operational challenges and the ben-
efits of such deployments. The survey underscores the need
for edge-computing solutions catering to IoT environments’
unique demands. This includes managing the challenge of
network security within these constrained devices. Our work
directly contributes to this by proposing a novel approach
for deploying dynamic, updateable ML-based intrusion de-
tection systems designed explicitly for microcontrollers. By
focusing on the network security aspect within the IoT edge
computing context, we provide a solution that enhances se-
curity while maintaining the operational benefits of edge de-
ployments highlighted by Murshed et al. [2019].
Furthermore, Viegas et al. [2021] showed that ML-based

solutions for network security have a limited lifetime, mean-
ing that there is evidence that attacks have time-varying be-
havior. The findings indicate a framed life of 6 (six) weeks,
with an acceptable accuracy of 2 (two) to 8 (eight) weeks.
Therefore, solutions that allow updating security policies in
response to incidents are part of the requirements for sound
performance.
Low-power devices constitute an essential part of the in-

dustrial scenario [Niedermaier et al., 2019]. The reference
shows an architecture to carry out the attack detection pro-
cess in a distributed way. The focus is on the context of
SCADA and PLC systems. As described, there is a precise
characterization of the periodic communication behavior be-
tween the devices. Therefore, it allows the identification of
anomalies. However, the study needs more generality, re-
quiring an effort to implement new rules and apply them in
other contexts.
In Manocchio et al. [2022], the authors implement a

microcontroller-based network intrusion detection system.
They evaluate three different microcontroller architectures
for their proposition. Their focus, however, consisted of
loading the trained model on the resource-constrained device
and sending network flow-based samples through a serial
interface for only inference on the devices. Thus, this still
needs to be a real security mechanism on a microcontroller-
based system once an actual system is required to process the
packet since its reception in the network interface.
Targeting a single-board computer platform, Soe et al.

[2020] presents a solution for detecting malicious activities
and provides results that indicate low computational demand
for execution. Even though it is a flexible solution, the gen-
eralization of the filtering method and an update mechanism
was outside the scope of the work. However, means for
adapting to new attacks, revoking access, and incorporating
new devices are out of their scope. In Jan et al. [2019], the au-
thors implement a system focused on IoT devices using SVM
(Support Vector Machine) as an identification model. Even
though the results indicate reproducibility, the data source
consists of a conventional dataset without considering the im-
plementation in an IoT device, with all conclusions based on
MATLAB analysis. Filus et al. [2021] presents neural net-
works as a potential approach. However, it does not discuss
the need for a feasible update mechanism to tackle the evolu-
tionary nature of network attacks. It neither implements nor
evaluates its proposition on resource-constrained devices.
In Mudgerikar et al. [2019], IoT devices are considered
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specific-purpose devices, where deviations from their pri-
mary periodic function, called profiles, can indicate an in-
trusion or malicious activity. The authors propose profiling
IoT devices by analyzing running processes and system calls.
Their approach aims to apply to various architectures and
Linux distributions, but it is unsuitable for microcontroller-
based systems. Furthermore, their method relies on an ex-
ternal server to process all device logs, whereas our ap-
proach suggests processing and decision-making at the edge.
Moreover, their work primarily focuses on IoT devices and
does not address the scope of microcontroller-based systems,
which typically lack system logs and SysMon for log gen-
eration. Regarding attack detection, their system-level ap-
proach identifies attacks only after the device has been com-
promised, while our network traffic-based approach allows
for early attack prevention. The authors provide a qualitative
analysis of CPU and memory usage for device and server ap-
plications. Still, it lacks precise details about the specific
hardware used, as recommended by Apruzzese et al. [2023],
making it difficult for more comparison on runtime perfor-
mance evaluations.
Mirsky et al. [2018]; Eskandari et al. [2020]; Hafeez et al.

[2020] presents an anomaly-based intrusion detection sys-
tem. They use real traffic generated by testbeds composed
of IoT devices/sensors to evaluate their proposition. How-
ever, in contrast to our approach, these propositions consider
the intrusion detection system part of a gateway instead of
deploying the solution in the node device. In all cases, no up-
date mechanism is discussed, and their runtime performance
evaluation on a single-board computer considers only net-
work throughput for Mirsky et al. [2018]. Eskandari et al.
[2020]; Hafeez et al. [2020] evaluates metrics such as CPU,
network bandwidth, and memory consumption but no power
consumption.
In this work, we design, implement, and evaluate machine

learning algorithms in an ESP32 (320 kB of RAM) for pro-
tecting IoT devices (i.e., edge nodes), demonstrating ade-
quate performance. Another differentiation from our work
compared to the knowledge on intrusion detection for IoT is
the lack of low-level implementation (i.e., kernel mode) for
the security mechanism. Usually, they work with user-space
implementations and commonly consider the use-case of de-
ployment in an IoT gateway. In our case, we use edge deploy-
ment in the device itself. Additionally, works consider more
powerful devices than microcontroller-based systems, such
as single-board computers like Raspberry Pi [Mirsky et al.,
2018; Eskandari et al., 2020; Hafeez et al., 2020; Utomo and
Hsiung, 2019; Bertoli et al., 2021]. We evaluate and propose
a low-level implementation tied to the network stack on mi-
crocontrollers (Lightweight IP – lwIP).
We summarize all the presented related works in Table 1.

Our findings show IoT, IT, and OT domain applications.
Next, we evaluate the presence of an update mechanism
for the security mechanism, for this attribute only our work
presents an specific solution. We are also assessing the
deployment of T800 on resource-constrained devices, the
microcontroller-based system. Regarding runtime perfor-
mance evaluation, our scope is CPU, memory, network, and,
in addition to previous works, the power consumption of the
proposed mechanisms.

Our contribution advances the state-of-the-art in deploy-
ing machine learning for network security on constrained de-
vices. Unlike previous frameworks that primarily focused
on the characterization and prevention of known attacks
using machine learning models in high-resource environ-
ments [Bertoli et al., 2021], our work specifically addresses
the challenges of implementing such models directly on mi-
crocontrollers. We propose an approach that facilitates the
deployment of machine learning algorithms on devices with
limited computational capacity and incorporates a dynamic
update mechanism. This mechanism enables our system to
adapt to evolving network threats, a feature absent inmost ex-
isting solutions. By embedding the intelligence and decision-
making capabilities directly on the edge device, our method
achieves autonomy from network infrastructure (i.e., zero-
trust), enhances security, and lowers deployment costs.
Furthermore, we systematically address the issue of the

limited lifespan of ML-based security solutions by propos-
ing a modular framework that allows for easy updates and
modifications in response to changing attack patterns. This
approach ensures that our system remains effective over time,
addressing the framed life limitation of 6 to 8 weeks identi-
fied in previous studies [Viegas et al., 2021]. The direct de-
ployment on microcontrollers, combined with an updating
protocol, sets our work apart by providing a scalable, effi-
cient, and cost-effective solution for enhancing the security
of IoT devices at the network’s edge.
Most related works focus on point methods with restricted

generality and often lack on-device deployment (edge nodes).
T800 differs from them because it has a design adaptable to
other platforms with low computational performance and ca-
pable of coupling to different TCP/IP protocols and operating
systems stacks. Our solution also allows IoT devices to drop
malicious traffic, increasing constrained devices’ complete
scope and considering CPU, memory, network, and power
for runtime performance evaluation policies. T800 enables
the execution of decision trees, logistic regression, SVM,
and multilayer perceptron algorithms. Hence, the present
work advances state-of-the-art by making security policies
directed to packet filtering viable in resource-constrained IoT
devices.

3 T800 — Packet filtering
In this section, we detail the design and execution plan of
the T800 packet filtering mechanism, engineered for ESP32
microcontroller-based IoT devices, which are constrained by
a limited memory capacity of 320 kB RAM. The primary
goal of this design is to facilitate the deployment of efficient
packet filtering mechanisms on such devices, ensuring they
consume minimal computational resources while providing
an additional security layer.
Addressing the unique challenges of edge computing de-

vices, our design strategy emphasizes minimal overhead and
seamless integration with the device’s existing software in-
frastructure. To this end, we adopt machine learning-driven
security policies with a zero-trust framework. This approach
shifts the defense mechanisms onto the device, moving away
from traditional network perimeter-based security models.
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Table 1. Related works for IoT attack detection / security-mechanisms. The✓ means the presence of the attribute under evaluation, in the
resource-constrained device the evaluated microcontroller is presented. For runtime performance evaluation, the complete scope considers
CPU, Memory, Network, and Power.

Domain Update Mechanism Resource-constrained
Device

Runtime Performance
Evaluation

Niedermaier et al. [2019] OT ✓ (ARM Cortex-M7) only network
Manocchio et al. [2022] IoT ✓ (ESP32, ESP8266, ATMega328p)

Soe et al. [2020] IoT
Jan et al. [2019] IoT
Filus et al. [2021] IoT
Bertoli et al. [2021] IT ✓(no power)

Mudgerikar et al. [2019] IoT ✓(no power, qualitative)
Mirsky et al. [2018] IoT only network

Eskandari et al. [2020] IoT ✓(no power)
Hafeez et al. [2020] IoT ✓(no power)

Utomo and Hsiung [2019] IoT
Our work IoT ✓ ✓ (ESP32) ✓

This is particularly relevant in IoT, where devices face di-
verse and continuously changing threats.
The T800 initiative responds to these challenges by offer-

ing a framework for implementing adaptable security poli-
cies tailored to resource-constrained environments. While
T800 currently focuses on stateless packet filtering, its ar-
chitecture allows for integrating more sophisticated models,
including stateful processing and anomaly detection mecha-
nisms. T800 leverages the ESP-IDF1 — an open-source IoT
development framework by Espressif designed for creating
applications on the ESP32 platform. This ensures that the
T800 packet filter minimizes computational demand and of-
fers a flexible structure that can be extended to accommodate
additional functionalities and adapt to various system require-
ments.

3.1 Architecture
The T800 component, as depicted in Figure 1, is designed to
analyze network traffic on ESP32-based devices, focusing
on evaluating incoming packets.
Figure 1 provides a comprehensive view of the IoT device

architecture, detailing the integration of the T800 component
within the FreeRTOS environment supported by the ESP-
IDF. This includes interactions with the scheduler, mem-
ory management, process and task management, and system
monitoring. It emphasizes that T800 intercepts incoming net-
work packets at the kernel space level before any processing
by the device, ensuring a preliminary security assessment of
all ingress traffic.
First, all the evaluation is based on packet header features

to differentiate the traffic between malicious and benign. For
this purpose, T800 captures each network packet entering
the TCP/IP stack. The implementation follows the function
of processing the TCP/IP protocol stack packets within ESP-
IDF’s lightweight IP (lwIP) component.
T800 has been integrated into the ESP-IDF as a novel com-

ponent, extending the framework’s capabilities. Once T800
evaluates trained machine learning algorithms for the packet

1esp-idf: https://github.com/espressif/esp-idf

filtering task, it introduces dependencies on two critical li-
braries for its operation: esp-nn2, which is Espressif’s opti-
mized library for neural network operations, and tflite-lib3,
provided by Google for deploying TensorFlow Lite models
on resource-constrained devices like the ESP32. These li-
braries enable machine learning techniques, such as model
quantization, to process network traffic data efficiently.
While running on the ESP32, T800 undergoes an initial-

ization step. This initialization step occurs by providing an
initial configuration structure, including a function that clas-
sifies packets and information about the function execution
context (static or dynamic). This type of context is necessary
because T800 can operate in two different ways, whether
storing the TCP flow state (stateful) or not (stateless). Dur-
ing the T800 initialization, it runs in the foreground of the
process in a dedicated thread (i.e., FreeRTOS task). As a re-
sult, FreeRTOS preempts the ready processes (tasks) among
the available CPU cores, and T800 is one of them. After
the initialization step, T800 acts directly on the Network and
Transport layers, capturing the packets provided by one of
the network interfaces. The function that uses a machine
learning model to classify packets is chosen and defined in
advance in the initial configuration structure.
The analysis begins with the examination of TCP and IP

header data. These are encapsulated within packets that
the ESP32 device captures, utilizing a structure known as
pbuf, a fundamental component of the lwIP stack [Dunkels,
2001]. The pbuf structure encompasses the essential ele-
ments of network communication, including TCP/IP headers,
data link layer information, payload content, and, optionally,
links to subsequent packets in a sequence when applicable.
The pbuf structure in the lwIP stack is a sophisticated

mechanism designed to efficiently manage network packets
within constrained environments, such as embedded systems.
At its core, pbuf facilitates the encapsulation and sequenc-
ing of network data, allowing for the modular handling of
diverse communication protocols. This structure is particu-
larly adept at conserving memory resources, a critical consid-

2esp-nn: https://github.com/espressif/esp-nn
3Tensorflow Lite: https://github.com/tensorflow/tflite-

micro

https://github.com/espressif/esp-idf
https://github.com/espressif/esp-nn
https://github.com/tensorflow/tflite-micro
https://github.com/tensorflow/tflite-micro
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Figure 1. T800 packet filtering architecture. T800’s mechanism consists of intercepting the network packets after they are available in RAM. The interception
point corresponds to the first function inside the TCP/IP stack to ensure filtering before processing by the adjacent layers. The decision to accept or drop
packets is pluggable, leaving the security policy specification flexible and dynamic (Adapted from Fernandes et al. [2022]).

eration for devices like the ESP32. It achieves this through
a chained list architecture, enabling the assembly and disas-
sembly of packet sequenceswithout necessitating contiguous
memory blocks.
T800’s evaluation process decisively impacts how the

lwIP stack processes packets. Should the integrated machine
learningmodel classify a packet asmalicious, T800 promptly
disposes of the corresponding pbuf, effectively neutralizing
the threat. In contrast, packets classified as safe are per-
mitted to proceed along the ESP-IDF’s processing pipeline,
ensuring uninterrupted legitimate network traffic. Through
this discerning approach, T800 serves as a critical line of
defense against malicious incursions, enhancing the ESP32-
based IoT device’s security posture at the very edge of the
network.

4 Methodology
This section initially provides an overview of the machine
learning approach employed in this study. We then detail
the T800 modular implementation and its update mechanism.
Following that, we delve into creating packet filtering rules
using machine learning and describe the specific use case of
port scanning that we have considered in this work. We also
discuss the dataset for training themodels and provide details
about the machine learning parameters. Finally, we present a
comprehensive methodology for rigorously evaluating com-
putational metrics.

4.1 Machine Learning Approach
In traditional software development, a specific set of rules is
defined to process inputs and produce desired outputs. For
instance, consider a software program designed to control
a thermal system. This program would read data from a
temperature sensor and compare it against a predetermined
threshold. If the temperature is below the threshold, the

program will activate a heater; otherwise, no action will be
taken.
In contrast, machine learning takes a different approach.

Rather than relying on predefined rules, machine learning
models are trained using data and corresponding labels (the
supervised learning approach). Taking our previous example,
amachine learning approachwould learn from historical tem-
perature data and the related decision to use the heater. While
the previous example is relatively straightforward and can be
effectively addressed using traditional software implementa-
tions, more complex scenarios, such as intrusion detection,
pose challenges that cannot be easily solved with fixed rules
or accommodate the ever-evolving nature of network traffic.
Our study employs a machine learning approach to de-

velopmodels that effectively distinguish between benign and
malicious packets a microcontroller-based system receives.
In this application, the complexity and dynamic nature of
attack behaviors make it infeasible to code rules to cover
all possible scenarios manually. Furthermore, understand-
ing and interpreting these behaviors for traditional software
implementation would also be challenging. Therefore, lever-
aging machine learning enables us to tackle the intricacies of
the problem and effectively detect and classify attacks in a
more adaptable and comprehensive manner.

4.2 T800 Implementation
Implementing T800 has the following main objectives: low
computational cost and the ability to update filtering policies
(update mechanism). In this context, the filter implementa-
tion establishes a standardized interface that, with few re-
sources, facilitates the development and implementation of
new filtering rules. Figure 2 depicts this structure. It has
two essential entities: a value responsible for encoding how
it works (working mode) and a classification function that
enforces a packet filtering policy, a classification function
represented by a trained machine learning model.
The working mode defines how the system performs the

packet capture and when it executes the classification func-
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tion, including its arguments. The classification function
receives the required context for performing the classifica-
tion and returns the packet’s classification. Therefore, given
requirements for execution time and memory footprint, the
possible choices could be made to achieve the most suitable
workingmode and the best policy available. Such as selected
working mode (thus capturing and categorizing the incoming
packets) but using a lower footprint machine learning algo-
rithm, like a decision tree.
An important attribute is that this approach allows the al-

teration of both entities at runtime, like turning it off or chang-
ing the trainedmachine learningmodel. This design decision
provides greater flexibility to the filter and achieves the up-
date mechanism requirement.

WORKING 
MODE

CLASSIFICATION
FUNCTION

 SELECTED
 OFF

MACHINE
LEARNING 

MODEL

Packet
Class

Malicious

Normal

Packets

T800

Figure 2. Implementation structure of T800. The current packet workflow
is dynamically activated or deactivated depending on the execution context.
In addition, the pluggable classification function implements the heuristics
to identify malicious or normal packets (Adapted fromMonici et al. [2022]).

4.3 Packet filtering rules
A packet filtering policy specifies whether a packet contin-
ues its natural processing path within a protocol layer. Thus,
considering how general this definition may be, there are nu-
merous ways to construct such a policy. Its construction can
range from rules selected by a domain expert to unsupervised
machine learning models. In this work, we aim to assess
if machine learning-based models apply to microcontroller-
based IoT systems for packet filtering.
T800 follows the AB-TRAP framework [Bertoli et al.,

2021] that seeks to design protection mechanisms based on
machine learningmodels. AB-TRAP covers thewhole devel-
opment chain, from the study of the normal behavior charac-
terization to the implementation and performance evaluation
of the proposed solution to the operation. Thus, the packet fil-
tering solutions tested on the T800 followed this same frame-
work.
First, we consider generating data from the attacks and

training the applicable machine-learning models with this
data. Next, we transpose those trained models to a software
component. Then, we implement these components on the
ESP32 device for performance evaluation. In other words,
the filtering policies used by T800 correspond to machine
learning models trained offline, which may require periodic
updates according to the needs of each application and envi-
ronment.
For the T800 evaluation, we employ five different filtering

policies – machine learning supervised learning algorithms –
to test the operational viability on a low computational cost
platform represented by the ESP32 target. Another point un-
der consideration is to verify the applicability of the T800 in

preserving the ability to generalize the rules.
The algorithms under consideration for effectiveness in-

clude a Decision Tree (DT) with a depth of 12 (DT-12). Ad-
ditionally, a Multi-layer Perceptron (MLP) featuring two hid-
den layers, each containing 16 neurons, alongside an output
layer equipped with two neurons. Furthermore, the study
also encompasses Logistic Regression (LR) and a Support
Vector Machine (SVM) fitted with a linear kernel, which are
also being assessed.
For a baseline reference, we consider the standard sys-

tem provided by the ESP-IDF framework that comprises the
FreeRTOS with lwIP but without the T800 component; this
approach allows us to verify how the introduction of our so-
lution impacts the system resources.
Decision Trees require less computing power when put

into operation, whereas Multilayer Perceptrons are more in-
tensive than the former, as reported on Bertoli et al. [2021].
Thus, choosing them for comparison allows us to explore a
wide range of classical machine learning algorithms in the
computing exigency spectrum, a microcontroller-based de-
vice. A key point is the algorithm implementation feasibility
in our testbed, the Espressif ESP32. Therefore, we intend to
verify the on-device cost of models with both high and low
expected computing costs.
These traditional machine learning algorithms (i.e., poli-

cies) fit nicely in implementing the T800 component since
minimizing the computational cost in a microcontroller-
based device is essential due to the scarcity of resources.
Considering the system’s limited resources, the Logistic Re-
gression and the SVM models are expected to exhibit these
same qualities. Furthermore, the models are implemented
with the Tensorflow framework and then converted to the fi-
nal model for ESP32 through Tensorflow-Lite.
To better understand, the Decision Trees (DT) correspond

to a chain of conditional structures based on attribute tests
derived from the original models. Interpretability and porta-
bility (from training to implementation) are key features that
make DT feasible for low-power computing platforms, re-
quiring low memory footprint and computing power. Thus,
these models are a good fit to implement as policies for the
T800 component. Similarly, the Logistic Regression and the
SVM models exhibit the same qualities concerning the sys-
tem’s limited resources. Furthermore, these models were im-
plemented through the Tensorflow framework and then con-
verted to the final model of ESP32 through Tensorflow-Lite.
The MLP is specified with a sigmoid activation function

for the hidden layers and a softmax activation function for
the output layer. Both its implementation and training are
done with Tensorflow and converted to the final model on
ESP32 with Tensorflow-Lite. This conversion makes this
model adopt space and processing optimizations that offer
satisfactory performance in implementing inference mecha-
nisms on embedded and resource-constrained devices.

4.4 Use-case, dataset and model training
In this work, the use case under analysis is detecting port
scanning attacks. Port scanning is part of the reconnaissance
step of an attack. The reconnaissance is the first step accord-
ing to the cyber kill chain framework [Yadav and Rao, 2015].
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Thus, avoiding an attack in its initial phase saves resources
and reduces its possible impact.
Considering the IoT networking characteristics, most at-

tacks rely on scanning the networks to identify visible and
vulnerable IoT devices. Also, scanning the local infras-
tructure (e.g., lateral movement) or throughout the Internet.
Thus, port scanning represents a critical attack vector to IoT
systems [Durumeric et al., 2014, 2015; DeMarinis et al.,
2019; Dahlmanns et al., 2022].
Regarding themodel training, the decision tree uses the en-

tropy metric as a division criterion for the training stage. The
MLP was trained for 2, 000 epochswith the Adam optimizer,
a learning rate of 1.10−5, and a batch size 260.
The dataset for all training steps is the AB-TRAP [Bertoli

et al., 2021]with a slight change that consists of removing the
tcp.window_size attribute. This dataset generates attack
packets through a testbed and a collection of exclusively port-
scanning malicious traffic. On the one hand, we use TCP
scanners such as Zmap, masscan, Hping3, Unicorn Scan,
and NMap, resulting in 86.480 malicious packets.
On the other hand, MAWILab [Fontugne et al., 2010])

to represent the benign samples. The dataset consists of
103, 094 packets sampled on November 21, 2019, from an
Internet link that connects the United States of America to
Japan. After that, the malicious and benign traffic is merged
into a single dataset through a salting approach. From this
process, the results of F1-score 0.79, 0.34, 0.93, and 0.91
were obtained for the Logistic Regression, SVM, Decision
Tree, and MLP in an anticipated evaluation before T800 de-
ployment and assessment.

4.5 Computational Metrics Evaluation
The T800’s performance is measured using four metrics sum-
marized in Table 2. The first is the CPU utilization rate of
the two cores present in ESP32. The second is the amount of
memory allocated by the T800 (only static memory is mea-
sured as the component does not perform dynamic memory
allocation). The third is the rate at which the Wi-Fi inter-
face receives packets. The last one is the power consumption
of the device. These metrics are similar to the performance,
memory, and energy metrics proposed by Almakhdhub et al.
[2019].

Table 2. Measurements collected and evaluated for T800.

Metric Description

CPU CPU usage (all cores)
MEM Memory usage (stack only)
NET Network usage (Wi-Fi only)
POWER Energy consumption in milliwatts (mW)

Software developed for edge IoT devices usually works in
the context of scarce computing resources. Thus, these met-
rics are relevant to the context of embedded systems, which
is why we consider them in our analysis. For example, the
ESP32 has only 320 kB of RAM and a dual-core processor
with a clock cycle of 240MHz. Thus, verifying eventual in-
creases in the lwIP processing rate or allocated memory is

mandatory to ensure the system’s operation. Furthermore,
the system may become overloaded depending on the packet
rate experienced by the network interface due to such com-
puting constraints. Thus, monitoring the network utilization
is crucial to understanding how T800 impacts the TCP/IP
protocol stack implementation of lwIP. Finally, as some IoT
devices could be battery-powered, it is also necessary to un-
derstand the impact of the T800 on energy consumption.
Based on these metrics, we consider different execution

environments to contrast the ESP32 operation with and with-
out the T800 in different situations. Table 3 describes the de-
sign of experiments we adopt in our study. Two factors are
under consideration for simulating different execution sce-
narios. One of them is the intensity of benign network traffic
received on the Wi-Fi interface (I), which can be 8Mbps (I0)
or 16Mbps (I1). The other is the presence of malicious pack-
ets in the network traffic destined for ESP32 that varies be-
tween the absent (M0) and present (M1) values. We refer to
the experiments as IxMy codes in all possible combinations,
{M0I0, M0I1, M1I0, M1I1}.

Table 3. Properties of the traffic during the experiments.

Property Level Code

Traffic intensity 8Mbps or 16Mbps I0, I1
Malicious traffic Absent or Present M0, M1

Attacker

Loop

:ESP32
"START"   (1)

< MODEL >   (2)

"ASSIGNED"   (3)

IPerf Traffic (4)

"DONE"      (5)

"COMPLETE"      (6)

Figure 3. Sequence diagram for ESP32’s evaluation metrics capturing. De-
scribe the protocol to execute an experiment replica. It dynamically loads
the corresponding classification function, and the workload excites during
a period after the system signaling is ready (Adapted from Monici et al.
[2022]).

The messages between the test devices occur between an
ESP32 and an attacking computer on the same wireless net-
work. The attacking computer generates both benign and at-
tack traffic (over TCP) and collects all the experiment data
(over UDP). To do this, they communicate through the UDP
protocol to manage the settings of a TCP connection that will
be active for 360 seconds. As depicted in Figure 3, in the
first execution step (1), ESP32 sends a message to the attack-
ing machine, signaling the beginning of the experiment. In
the second step (2), the attacker sends a code specifying the
T800’s filtering policy or disabling T800. Then, in the third
step (3), the ESP32 responds by communicating that it has re-
ceived the necessary information and has already completed
its initial configuration. In this process, two servers start on
ESP32. The first gets all TCP traffic from the simulation.
In contrast, the second collects performance metrics and
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Packet 
Capturing
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Packet 
Processing
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Figure 4. Interaction of T800 with ESP-IDF stack lwIP. T800’s design as-
sumes coupling to the lwIP, influencing the minimum with the original sys-
tem. However, it is flexible to adapt to other stacks (Adapted from Monici
et al. [2022]).

Table 4. Description of the hardware used in the experiments.
Description CPU (GHz) Memory Operating System

Test computer Intel i7-8565U-(4.6) x8 16GiB Manjaro Linux x86_64
ESP32 DevKit V1 Xtensa-(0.240) x2 320 kB FreeRTOS, ESP-IDF
Test computer Intel i5-3337U-(2.7) x4 6GiB Ubuntu 20.04.2 LTS

sends them to the attacking machine via UDP at a 1-second
rate. After that, in the fourth step (4), the attacking machine
generates the network traffic. Finally, after collecting all the
metrics, in the fifth step (5), the attacking machine sends a
message to ESP32 representing the end of the experiment.
Finally, in the sixth step (6), the ESP32 sends a response con-
firming the end of the experiment. It is worth noting that this
approach allows the packet filtering policy to be changed at
runtime (step 2), enabling the solution’s adaptability.
As illustrated in Figure 4, the packet filter integrates with

the system’s base TCP/IP stack (lwIP). First, packets ingress
through the stack and are intercepted by the instrumentation
part before reaching T800. Then, T800 is configured with
its working mode to perform the filtering. Such filtering can
be traditional or advanced. The first performs static packet
filtering rules without requiring complex algorithms. The ad-
vanced one follows the approach taken in our experiments
with the help of machine learning models. Finally, the packet
can be classified as malicious or not and can be processed in
lwIP or discarded. This integration allows T800 to have an
in-depth view of the system, which allows the measurement
of computational cost.
All the performance metrics except the energy consump-

tion are available from the FreeRTOS API functions imple-
mented in ESP32. For power consumption, the ESP32 power
pins with a current/power sensor4 allows to monitor the en-
ergy consumption by hardware. The sensor transmits the
readings of these measurements by I2C communication to
a reading device (Arduino-based) that uses serial communi-
cation with the test computer, in our case the same as the at-
tacker, to record these measurements (serial over a USB con-
nection). In conjunction with the energy measurements, the
reading device also monitors a discrete signal from ESP32
that is responsible for indicating the start and conclusion
of an experiment, thus facilitating the post-processing of

4Texas Instrument INA219: https://www.ti.com/lit/ds/
symlink/ina219.pdf

the data. In addition, the normal traffic with intensities of
8Mbps (I0) and 16Mbps (I1) are generated through IPerf
v2.0 and malicious traffic is generated with Nmap to perform
scanning attacks through wireless communication. Figure 5
depicts the setup.

Power

Ground

I2C

Power

Ground

Discrete Signal

ESP32 
Device

T800
Serial

Arduino-based 
Board

Power
Measure 
(INA-219)

Nmap / IPerf

Figure 5. Setup for measuring the T800 energy consumption in an ESP32-
based system. The monitor is implemented in hardware and attached to the
physical system. All data gathered is stored separately on the monitor.

This work adopts a complete factorial design of experi-
ments. Experiments I0M0, I0M1, I1M0, and I1M1 run with
all filtering policies and without T800. Further, we collect all
measurements in a thirty (30) replicas experiment execution.
Finally, the hardware specifications of both the test/attacker
computer and the ESP32 are present in Table 4, along with
those of the device used to measure energy consumption dur-
ing collection (later test computer).

5 Results and Discussions
All processes described in Section 4.5 result in the values
presented in Figures 6 to 9. These figures show the con-
sumption of CPU, Network Bandwidth, Stack Memory us-
age, and Energy, respectively. We grouped metrics under
interest in each of the corresponding experiment graphs. For
instance, Figure 6 presents CPU consumption for the I0M0
experiment with all models under consideration: decision
tree (DT-12), logistic regression (LR), multilayer perceptron
(MLP), SVMandwithout T800. We presented all themetrics
as violin plots, meaning the samples represent a single aggre-
gate value. However, the energy metric was continuously
collected throughout the experiment, whereas we employed
3, 600 samples for the remaining metrics. Then, it was possi-
ble to analyze the median, maximum, and minimum. Finally,
we compare the data from the executions of each model and
those that do not use T800. The bars of each violin plot repre-
sent the extremities (maximum andminimum values) and the
median (central bar) with the probability density function.
The CPU usage is present in the graphs of Figure 6. For the

experiment, I0M0, the medians of this metric are in the inter-
val [0.10, 0.12]. For the experiment I0M1, the medians are in
the interval [0.10, 0.15]. Finally, for I1M0, the medians are
in the interval [0.15, 0.19]. Finally, for the experiment I1M1,
the medians are in the interval [0.16, 0.20]. This data indi-
cates a significant difference between the versions of T800
(all models) and those without T800. Furthermore, Figure 7
shows the network bandwidth. The I0 experimental levels
represent a traffic intensity of 8Mbps (median), and the I1
level exposes a median of 16Mbps. Therefore, this metric’s
value remains close to the benign traffic intensity specified
for the experiment.

https://www.ti.com/lit/ds/symlink/ina219.pdf
https://www.ti.com/lit/ds/symlink/ina219.pdf
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Figure 6. Consumption values obtained from experiments: CPU Usage.
The row I0Mx corresponds to low-intensity traffic (8Mbps) and I1Mx to
the high intensity (16Mbps). The column IxM0 indicates the absence of
malicious traffic, and IxM1 the presence. T800 enables the system to experi-
ence lower CPU usage, as it drops the unsolicited packets before processing
them.
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Figure 7. Consumption values obtained from experiments: Network Band-
width. The row I0Mx corresponds to low-intensity traffic (8Mbps) and
I1Mx to the high intensity (16Mbps). The column IxM0 indicates the ab-
sence of malicious traffic, and IxM1 the presence.

Moreover, the stack memory metric is shown in Figure 8.
The resultingmedians remain constant with the value of 4116
bytes, and the interquartile ranges show that the variation in
this metric is negligible because of the magnitude being in
tens of bytes. For last, Figure 9 displays the energy consump-
tion. In them, most medians are in the range of [174, 176].
Besides, it is relevant to analyze the time series of the

CPU usage shown in Figure 10. The results of the experi-
ments using machine learning models trained by Tensorflow
presented lower computing consumption (SVM, Logistic Re-
gression, and Multilayer Perceptron). It suggests that the
framework optimizations make the models suitable for our
low computing capacity systems context. Additionally, the
graphs display an apparent discrepancy in performance when
malicious traffic is present in the network flow. For instance,
the baseline policy (AN - without T800) CPU usage is much
higher than the filtering policies that use machine learning
models in the I1M1 and I0M1 graphs. However, after the
malicious traffic is interrupted, the CPU usage decays. Thus,
T800 provides (i) security protection against the reconnais-
sance (Cyber Kill Chain [Yadav and Rao, 2015]) and (ii) a
reduction in the IoT system resource usage.
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Figure 8. Consumption values obtained from experiments: Stack Memory
Usage. Thememory footprint remains approximately the same as the system
with the T800.
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Figure 9. Consumption values obtained from experiments: Energy Usage.
The energy demands remain approximately the same as the system with the
T800.
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Figure 10. Time series of the CPU consumption values obtained through
the experiments. We observed that the experiments executed without the
T800 demand more CPU than those with a packet filter. For instance, the
time series without T800 presents a high peak, and it is due to the burst of
the malicious packets received by the network interface. On the other hand,
each machine-learning model rejected those packets, causing a steady-state
behavior.

5.1 Influence of Factors
To analyze the influence of the selected factors on the varia-
tion of CPU usage values, we consider a machine learning-
based filtering policy (A) as a factor of the experiments.
Thus, as presented in Table 5, besides the factors and levels
of the experiment design already presented in Section 4.5, the
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values present (A1) or absent (A0) were introduced to make
up the new factor A. In addition, the levels were mapped for
discrete values so that T0 = −1 and T1 = 1 for any factor
A. In this way, the experiment and such performance met-
ric started to be represented by Table 6, where the variables
yi,j are the mean of the values obtained in the replication j
of the experiment i. From that, it was realized that the re-
gression XQ = Ȳ that considers an additive system model
under analysis, as presented by equations 1, and 2.

X =


...

...
...

...
...

...
...

...
1 T I M TI TM IM TIM
...

...
...

...
...

...
...

...

 (1)

Q =



q0
qT

qI

qM

qT I

qT M

qIM

qT IM


and Ȳ =



Ȳ1
Ȳ2
Ȳ3
Ȳ4
Ȳ5
Ȳ6
Ȳ7
Ȳ8


(2)

Table 5. Properties of the traffic during the experiments.

Property Level Code

Machine learning policy Absent or Present A0, A1
Traffic intensity 8Mbps or 16Mbps I0, I1
Malicious traffic Absent or Present M0, M1

Where Q represents the set of estimated parameters by
the least squares algorithm, X the set of predictors related
to each factor and the interactions between them, and Ȳ the
sample mean values generated by the experiments, thus, it is
possible to not only obtain the variations caused by each fac-
tor and their combinations (SSA, equation 3) but also to com-
pute the variation attributed to experimental errors (SSE,
equation 4) and a value corresponding to the total variation
of the metric.

SSA = 23 10 qA (3)

SSE =
8∑

i=1

10∑
j=1

(yij − ȳi)2 (4)

Finally, we computed the influence factor as the variation
caused by a factor divided by the total variation for each filter-
ing policy. Then, it calculated an average of all the policies
as a form of aggregation (Equation 5).

SST = SST + SSI + SSM + SST I + SST M + SSIM

+SST IM + SSE

(5)

The obtained results are in Table 7. Each column in the
table quantifies directly how much the factor impacts CPU

Table 6. Representation of the complete factorial planning with
adding the factor T and discrete levels.

i 1 T I M TI TM IM TIM Yi,1 … Yi,175 Ȳi

1 1 −1 −1 −1 1 1 1 −1 y1,1 … y1,10 ŷ1
2 1 −1 −1 1 1 −1 −1 1 y2,1 … y2,10 ŷ2
3 1 −1 1 −1 −1 1 −1 1 y3,1 … y3,10 ŷ3
4 1 −1 1 1 −1 −1 1 −1 y4,1 … y4,10 ŷ4
5 1 1 −1 −1 −1 −1 1 1 y5,1 … y5,10 ŷ5
6 1 1 −1 1 −1 1 −1 −1 y6,1 … y6,10 ŷ6
7 1 1 1 −1 1 −1 −1 −1 y7,1 … y7,10 ŷ7
8 1 1 1 1 1 1 1 1 y8,1 … y8,10 ŷ8

utilization. As seen, the I factor (traffic intensity) impacts
most in CPU utilization, 46%, 52%, 57%, 63%, and 72% for
Linear Regression (LR), without T800 (w/o T800), Support
Vector Machine (SVM), Multilayer Perceptron (MLP), and
Decision Tree (DT-12), respectively. For example, the traffic
intensity influences from 46% to 72%of the current observed
CPU utilization. The presence of T800 (factor A) is the sec-
ondmost impacting factor of CPU, followed by the incidence
of malicious traffic (factor M). On the other hand, the inter-
action of the factors (columns AI, AM, IM, and AIM) is
negligible. The last column (Err) is the error observed in the
least square regression due to the systems’ stochastic behav-
ior. Finally, the last row is the simple average of the values.
In conclusion, the traffic intensity (I) corresponds to 58%
on average of the currently observed CPU utilization. T800
(A) leads to an overhead of 12%. The malicious traffic (M)
yields 10%. Furthermore, the interaction of the factors cor-
responds to 4%, and the observed error is 14%.
The influence of factors indicates that the predominant fac-

tor in the CPU usage value is the benign traffic produced
by the IPerf traffic generator (I). Also, the results obtained
for the presence or absence of the machine learning models
showed that this factor has little influence on the variation
of CPU usage. Therefore, our results suggest that T800 in
lightweight IP incurs low computing overhead regardless of
the network workload (high security and low traffic or one
with low security and high traffic), a feasible solution for
an intelligent packet filtering mechanism on microcontroller-
based devices.

Table 7. Results of the influence of factors analysis for the CPU
usage metric. Here, A represents the presence of a filtering policy
in the T800, I represents the IPerf network traffic intensity, andM
represents the presence of malicious traffic in the network.

Model A I M AI AM IM AIM Err

w/o T800 0.00 0.52 0.23 0.00 0.00 0.03 0.00 0.22
MLP 0.12 0.63 0.07 0.01 0.03 0.00 0.02 0.12
DT-12 0.03 0.72 0.05 0.02 0.06 0.01 0.01 0.11
LR 0.27 0.46 0.09 0.00 0.03 0.00 0.01 0.12
SVM 0.17 0.57 0.08 0.00 0.04 0.00 0.01 0.12

Average 0.12 0.58 0.10 0.00 0.03 0.00 0.01 0.14

6 Conclusion
This paper presented the T800 packet filter for Internet of
Things (IoT) devices with low-computing power. The pro-
posed architecture is adaptable to other platforms due to the
instrumentation of the protocol stack used, simply identify-
ing the packet interception point. It allows different filtering
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policies deployment through implementation with the operat-
ing system. We show the solution’s effectiveness by describ-
ing the implementation with the ESP32 development plat-
form (FreeRTOS, lwIP TCP/IP stack, and ESP-IDF frame-
work).
The experiments showed high efficiency in the chosen ap-

proach since the presence of the T800 reduced the consump-
tion of computing resources in the presence of malicious
traffic. Moreover, the action of the packet filter allowed
malicious traffic disposal and positively impacted the sys-
tem. The results suggest that our design adequately filters
network packets with low impact in IoT platforms. Further-
more, our findings showed no statistically significant differ-
ence among the baseline, Decision Tree, and Multilayer Per-
ception; therefore, the model with the highest accuracy is
suitable for T800’s deployment.
In future works, the objective is to implement stateful

packet filtering policies. Another point of experimentation
concerns an anomaly detection approach to detect never seen
attacks [de Carvalho Bertoli et al., 2023]. Finally, to inte-
grate a zero-trust based architecture aimed at IoT devices
where the T800 is an enabler for such a solution.
Finally, this paper represents an effort to bring more re-

alism while approaching machine learning to devise secu-
rity mechanisms in IoT with a microcontroller-based imple-
mentation. Understanding how to operate the algorithms
(MLOps) in kernel mode is challenging. Moreover, evalu-
ating how to translate data science notebook analysis into an
ESP32 implementation represents a turning point toward re-
alistic testbeds. All reproducible code used is in the reposi-
tory https://github.com/c2dc/T800.
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